IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995 615

Performance Characterization of
Optimizing Compilers

Rafael H. Saavedra, Member, IEEE, and Alan Jay Smith, Fellow, IEEE

Abstract—Optimizing compilers have become an essential
component in achieving high levels of performance. Various sim-
ple and sophisticated optimizations are implemented at different
stages of compilation to yield significant improvements, but little
work has been done in characterizing the effectiveness of optimiz-
ers, or in understanding where most of this improvement comes
from. In this paper we study the performance impact of optimi-
zation in the context of our methodology for CPU performance
characterization based on the abstract machine model. The model
considers all machines to be different implementations of the same
high level language abstract machine; in previous research, the
model has been used as a basis to analyze machine and bench-
mark performance. In this paper, we show that our model can be
extended to characterize the performance improvement provided
by optimizers and to predict the run time of optimized programs,
and measure the effectiveness of several compilers in implement-
ing different optimization techniques.

Index Terms—Performance evaluation, optimizing compilers,
benchmarking, execution time prediction, CPU performance
characterization. '

I. INTRODUCTION

RECENT work in machine performance evaluation has fo-
cused on assembling large suites of realistic applications
to be used as benchmarks, and in developing a more formal
and systematic approach to benchmarking [9], [26]. Computer
manufacturers are using these suites to evaluate the overall
performance and improve the designs of future machines and
compilers. By concentrating on whole systems, however, it is
not possible to explain why machines perform well on some
benchmarks but badly on others, or to predict the behavior on
programs not included in the suites. Observed CPU perform-
ance is the result of the interactions between many hardware
and software components, i.e., integer, floating point, and
branch units, memory system, applications, libraries and op-
timizing compilers, and a comprehensive performance evalua-
tion should characterize their respective contributions [13].
Our research has focused on developing a methodology that
addresses two problems: how to compare machines with dif-
ferent architectures in a meaningful way, and how to explain in
detail performance results in terms of the different components
of the system [20], [21], [22].

The basis for our research has been to model all computers
as machines that execute Fortran. We refer to this as our ab-

Manuscript received September 1992; revised July 1994.

R.H. Saavedra is with the Computer Science Department, Henry Salvatori
Computer Science Center, University of Southern California, Los Angeles,
CA 90089-0781. e-mail: saavedra@cs.usc.edu.

A.J. Smith is with the Computer Science Division, EECS Department, Uni-
versity of California, Berkeley, CA 94720-1776.

IEEECS Log Number $95019.

stract machine model. By measuring the execution time for
primitive Fortran operations, and by counting the frequency of
occurrence of the various operations in programs of interest,
we have been able to accurately predict the execution time.

In this paper we focus on two problems, characterizing the
performance improvement due to compiler optimization and
extending our performance methodology to include the effects
of optimization. We do this by addressing three different sub-
problems:

1) extending the abstract machine model to include optimi-
zation and using this new model to quantify and predict
the execution time of optimized programs;

2) evaluating the effectiveness of different optimizing
compilers in their ability to apply standard optimizations;
and

3) evaluating the amount of optimization found in the SPEC
suite and identifying distinctive features in the bench-
marks which can be exploited by good optimizing
compilers.

For brevity 3) is not presented here but appears in [23].

In Section II we begin by discussing the relevant work done
with respect to evaluating the effectiveness of optimizing
compilers. We then give a brief description of our methodol-
ogy for CPU performance characterization, summarize our
previous work, and discuss the inherent limitations of our
model with respect to compiler optimization.

We then proceed in Section III by extending our methodol-
ogy to account for the performance improvements due to op-
timization by using the concept of invariant optimizations. An
optimization is invariant with respect to our abstract machine
model if it is still possible to abstract from the optimized se-
quence of machine instructions the original operations embod-
ied in the source code. This approach avoids the extremely
difficult problem of having to predict how an arbitrary pro-
gram will be modified by different optimizers. It assumes that
the effect of optimization is now to cause the execution time of
a given primitive operation to be reduced; in effect, optimiza-
tion modifies the machine performance, not the program. We
have found this approach to be quite successful in allowing us
to predict the running times of optimized code.

Finally, in Section IV we address the problem of character-
izing and comparing different optimizing compilers in their
ability to apply standard optimizations. We use a special
benchmark consisting of a set of small kernels, each containing
a single optimization, which detect the set of optimizations that
optimizers can apply and the context in which they are de-
tected. We show that even ‘when most optimizers attempt to

0098-5589/95 04.00 © 1995 IEEE

616

apply the same set of optimizations, there are some differences
in their relative effectiveness, and these differences can sig-
nificantly affect the performance improvement obtained on
some programs.

II. PREVIOUS WORK AND BACKGROUND MATERIAL

In this section we review some of the work done in evaluat-
ing the effectiveness of optimizing compilers, and then give a
brief description of our methodology for CPU performance
evaluation. The second part of this section introduces our
methodology for performance evaluation, in particular it re-
views the abstract machine execution model and discusses
some of our previous results.

A. Previous Performance Studies in
Compiler Optimization

Knuth, in 1971, was the first to quantify the potential im-
provement due to optimization [12]. He statically and dynami-
cally analyzed a number of Fortran programs and measured the
speedup that could be obtained by hand-optimizing them.

Papers reporting on the effectiveness of real optimizers
were not published until the beginning of the eighties [2], [6],
[8], [10], [11], [14], [27]. Most of these studies describe the
set of optimizations that can be detected by the optimizers, but
without specifying if they are detected on all basic types or
only on a small subset. As we will see in Section IV.B, very
few optimizers in commercially available compilers are able to
detect optimizations on all basic types; this can result in a sig-
nificant loss of potential improvement when the precision
and/or type is changed. "

The performance of IBM’s PL/1L experimental compiler is
evaluated in [8]. The compiler has three levels of optimization.
Although the paper describes which optimizations are carried
out at each level, only the aggregate speedup is reported. On
four programs, the amount of speedup obtained at the maxi-
mum level of optimization was 1.312.! Chow [5], who wrote
the Uopt portable global optimizer at Stanford, gives statistics

about the number of times that each optimization was detected:

and for some optimizations he reports the amount of improve-
ment produced. On 13 small Pascal programs the average
speedup observed was 1.705. He also found that the most ef-
fective optimizations were register allocation and backward
code motion with speedups of 1.423 and 1.431, respectively.2
Bal and Tanenbaum [2] found using the Amsterdam Compiler
Kit optimizer that the speedup on toy programs was 1.851,
while the speedup on larger programs was only 1.220. Because
the larger programs consisted of modules taken from a single
application and were all written by the same people, it is not
clear whether the difference in speedups can be attributed to

1. We quantify the improvement produced by an optimizer in terms of the
speedup, i.e., the ratio between the unoptimized execution time to the opti-
mized time. The overall speedup on all benchmarks is computed by taking the
geometric mean of the individual speedups. For consistency, we also follow
these rules when describing work done by others.

2. The product of the individual speedups can be larger than the overall
speedup because in some cases one optimization prevents the application of
the other.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

the complexity of the programs or the ability of the program-
mers. A performance study based on the HP Precision Archi-
tecture global optimizer [11] found that on the same programs
used by Chow the average speedup was 1.381.

There have been other studies dealing with other aspects of
optimization. Richardson and Ganapathi [19] have shown that
certain types of interprocedural data flow analysis provide
only marginal improvement on most of the programs in their
suite. Callahan, Dongarra, and Levine have collected a large
suite of tests for vectorizing compilers and have evaluated a
large number of compilers [4]. Most commercial vectorizing
compilers are based either on the VAST or KAP precompilers
developed at Pacific Sierra Research and Kuck and Associates,
which are compared in [3]. Singh and Hennessy [25] are
studying the potential and limitations of automatic paralleliza-
tion.

B. The Abstract Machine Performance Model

We call the approach we have used for performance
evaluation the abstract machine performance model. The idea
is that every machine is modeled as and is considered to be a

- high level language machine that executes the primitive opera-

tions of Fortran. We have used Fortran for three reasons:

1) Most standard benchmarks and large scientific programs
are written in Fortran;

2) Fortran is relatively simple to work with;

3) Our work is funded by NASA, which is principally con-
cemned with the performance of high-end machines run-
ning large scientific programs written in Fortran.

Our methodology also applies to other similar high level lan-
guages such as C, Ada, or Modula-3.

There are three basic parts to our methodology. In the first
part, we analyze each physical machine by measuring the exe-
cution time of each primitive Fortran operation on that ma-
chine. Primitive operations include things like add-real-single-
precision, store-single-precision, etc; the full set of operations
is defined in [20], [21]. Measurements are made by using tim-
ing loops with and without the operation to be measured. Such
measurements are complicated by the fact that some operations
are not separable from other operations (e.g., store), and that it
is very difficult to get precise values in the presence of noise
(e.g., cache misses, task switching) and low resolution clocks
[20], [21]. We have also called this machine analysis phase
narrow spectrum benchmarking or micro benchmarking. This
approach, of using the abstract machine model, is extremely
powerful, since it saves us from considering the peculiarities of
each machine, as would have to be done in an analysis at the
machine instruction level [17].

The second part of our methodology is to analyze Fortran
programs. This analysis has two parts. In the first, we do a
static parsing of the source program, and count the number of
primitive operations per line. In the second, we instrument and
execute the program to count the number of times each line is
executed. From these two sets of measurements, we can com-
pute the number of times each primitive operation is executed.

The third part of our methodology is to combine the opera-
tion execution times and frequencies to predict the running

SAAVEDRA AND SMITH: PERFORMANCE CHARACTERIZATION OF OPTIMIZING COMPILERS

time of a given program on a given machine without having to
run that program on that machine. As part of this process, we
can determine which operations account for most of the run-
ning time, which parts of the program account for most of the
running time, etc. In general, we have found our run time pre-
dictions to be remarkably accurate [21], [22]. We can also
easily estimate the performance of hypothetical machines (or
modifications of existing machines) on a variety of real or
proposed workloads by replacing measured parameters in our
models with proposed or hypothetical ones.

It is very important to note that we separately measure ma-
chines and programs, and then combine the two as a linear
model. We do not do any curve fitting to improve our predic-
tions. The feedback between prediction errors and model im-
provements is -limited to improvements in the accuracy of
measurements of specific parameters, and to the creation of
new parameters when the lumping of different operations as
one parameter was found to cause unacceptable errors. The
curve fitting approach has been used and has been observed to
be of very limited value [18]. The main problems with curve-
fitting is that the parameters produced by the fit have no rela-
tion to the machine and program characteristics, and they tend
to vary widely with changes in the input data and exhibit al-
most no predictive power.

In [20] we presented a CPU Fortran abstract machine model
consisting of approximately 100 abstract operations and
showed that it was possible to use it to characterize the raw
performance of a wide range of machines ranging from work-
stations to supercomputers. These abstract operations were
also combined into a set of reduced parameters, each of which
was associated with the performance of a specific CPU func-
tional unit. The use of such reduced parameters permitted
straightforward machine to machine comparisons.

In [21], [22] we studied the characteristics of the SPEC,
Perfect Club and other common benchmarks using the same
abstract machine model and showed that it is possible to pre-
dict the execution time of arbitrary programs on a large num-
ber of machines. Our results were successful in accurately
predicting “inconsistent' machine performance, i.e., that ma-
chine 4 is faster than B on program x, but slower on program
y. Both of these studies assumed that programs were compiled
and executed without optimization. In the next section we dis-
cuss how optimization can invalidate some of our assumptions
and how it is possible to extend the model to remedy this
situation.

C. Limitation of Our Model in the Presence
of Optimization

An apparent limitation of our linear model is that it does not
account for the program transformations induced by optimiza-
tion. To state this formally, we describe our methodology with
this equation

n
Tysr=2,Cia Pay=Ca-Py. (D

i=1

Here C; , is the number of abstract operations of type i that

617

program 4 executes, and 7, ,, is the execution time of opera-
tion / on machine M. In general, when we include optimiza-
tion, both the decomposition of the program in terms of the
abstract model (C,) and the performance of the abstract op-

erations (Py) may change. C, changes when the optimizer

eliminates some part of the computation. The raw performance
measurements represented by P,; change, because the com-
piler generates different sequences of machine instructions at
different levels of optimization. Therefore, in general, the exe-
cution time equation when using an optimizing compiler
should be

n
Tymo =2 Cia0

i=1

Our problem here is to obtain C, ¢ and Py o by only mak-

@

Fimo=Cao0-Pmo-

ing an analysis of the (source) program and running experi-
ments with optimization enabled. The above scheme is general
and accounts for different classes of optimizations, including
those performed at the source, intermediate, or object code
level representations of the program. In the next section, we
presented a detailed example of how optimizations affect the
distribution and performance of abstract operations.

1. EXTENDING THE ABSTRACT MODEL
TO INCLUDE OPTIMIZATION

From the discussion of the preceding subsection we can
proceed to classify the effect of optimizations according to
how they affect (1). Basically, we identify two types of optimi-
zations: those that modify C, (Type I), and those that only
affect Py (Type II). Optimizations of Type I change the pro-
gram's distribution of abstract operations, either by removing
or replacing some amount of code. In addition, these optimi-
zations may or may not affect the performance of individual
abstract operations (P; js). What is relevant in Type I optimi-
zations is that they affect the number of abstract operations
present in the original program. Hence, the difficulty in charac-
terizing the performance improvement due to these optimiza-
tions is that we need to know how C, changes, but without
having detailed information about how an arbitrary optimizer
works internally.

In the second class (Type II) we have optimizations which
only improve the sequence of machine instructions generated
by the compiler to implement an abstract operation, but do not
remove any abstract operations. This class not only includes
simple low-level optimizations that improve machine code
sequences, but also other high-level optimizations, like
strength reduction, as explained below. Here one or several
slow operations are replaced by a faster but equivalent se-
quence of operations. Type II optimizations change Py, while
leaving C, unchanged. We call these optimizations invariant
with respect to the abstract decomposition of the program. The
advantage to us of invariant optimizations over Type I optimi-
zations is that we can characterize the performance improve-
ment of the former by just running our machine characterizer

618 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

with optimization enabled. If the optimizer changes the code it
generates when it encounters an abstract operation in a pro-
gram, it does the same action when it encounters it in the ma-
chine characterizer; thus the performance effect of this change
can be quantified.

Whether an optimization is of Type I or II depends mainly
on the level at which we define the abstract machine. If the
abstract machine is defined at the level of the machine's in-
struction set, then all optimizations would be of Type I, since
every machine instruction eliminated affects the decomposi-
tion of the program. If, on the other hand, the abstract opera-
tions consist of different algorithms, then almost all optimiza-
tions are of Type II. As long as the algorithm is not eliminated,
changes to it are considered only as different implementations
of the same abstract operation. Given the level of abstraction
of our model, it happens that most source to source transfor-
mation are optimizations of Type I, and low level transforma-
tions are optimizations of Type II.

To illustrate the difference between invariant and non-
invariant optimizations, consider the following code excerpt:

DO2I=1, N
DO 1J =
X(I)

1 CONTINUE

2 CONTINUE :
During program analysis we identify the different abstract op-
erations, e.g., a floating point add (ARSL), floating point mul-
tiply (MRSL), computing the addresses of a 1D and 2D array
elements (ARR1 and ARR2), DO loop initialization and over-
head (LOIN and LOOV), floating point store (SRSL). Com-
bining this static decomposition with information on how
many times each basic block is executed we can then obtain
the contribution of this code to the total execution time:

1, N
= X(I) + Y(J,K) * Z2(J,L) (3)

_ 2
Time=(Pogs; +2- Pygra +2- Pagas + Pasrst, + Pagsy, + Prooy) N
+(Prow + Proov) N+ Proy -

In Table I we show the sequence of assembler instructions
generated by the MIPS Co. f77 compiler version 1.21 for the
innermost loop for each abstract operation (left column) with-
out (-O0) and with maximum optimization (-O2).> (We have
made inconsequential changes to the syntax of the machine
instructions to make the code more readable.)

A. Optimization Viewed as an Optimized Implementation
of the Abstract Machine

The above example shows that even when the two se-
quences of machine instructions, one unoptimized and the
other optimized, are very different, we can still identify in both
cases, the sequence of machine instructions corresponding to
the abstract operations. Thus in this case the optimizer has
reduced the execution time, but the characterization of the
program excerpt, in terms of our abstract machine, has not
changed. We refer to these type of optimizations, which im-
prove the execution time of a program but do not change the
distribution of abstract operations, as being invariant with re-

3. The meaning of minimum and maximum optimization level is a function
of the options offered by each compiler.

spect to the abstract machine model.

TABLE I
NONOPTIMIZED AND OPTIMIZED ASSEMBLER CODE FOR THE INNERMOST
Loop. (ON THE LEFT SIDE WE SHOW THE ABSTRACT MACHINE OPERATIONS
REPRESENTED BY THE ASSEMBLER CODE.)

abstract assembler code assembler code
operation without optimization with optimization

loadf f£4, 24708(x3)
add-4i r3, r3, 4

arr2 loadi r14, 80444 (sp)
loadi r1S5, 40036 (sp)
mul-1 r24, ri5, 100
add-i r3s, rid4, rad
sub-4 r8, ra5, 101
mul-1 r9, rs, 4

add-i ri0, r9, -40424
add-i rll, sp, 80464
ada-i ri2, rio, rii
loadf £6, 0(rl2)

arr2 loadi ri3, 32(sp) loadf f£6, 17472(r4)
mul-i ri5, ri3, 100 add-i rd, rd, &
add-1 r24, rid, ri1s
sub-i r25, rad, 101
mul-i r8, ras5, 4
add-1i r9, r8, -80428
add-i r1io, r9, rii
loadf £8, 0(x10)
mrsl mul-£ £10, £6, £8 mul-£f £8, f£4, £6
arrl sub-i r12, ri4, 1 loadf £16, -428(r2)
mul-f ri3, riz, 4
add-i ri5, ri3, -424
add-1i r24, sp, 80464
add-i r25, ri15, r24
loadf £16, 0(x25)

arsl ada-f £18, £16, £10 add-f £10, £16, £8
arsl storf £18, 0(r2s5) storf £10, -428(r2)
loov loadi r8, 80444 (sp) add-i r2, r2, 4

add-i r9, r8, 1 br_ne r2, r6, r3i5
storf r9, 80444 (sp)
loadi r1l, 80440(sp)

br_ne r9, rll, r3d

It is important to note that the optimizations applied to the
program excerpt in Table I are not only simple low-level op-
timizations. The compiler here has to apply strength reduction,
backward code motion, and address collapsing in order to
eliminate the two loads, two multiplies, and four add/sub op-
erations in the sequence associated with ARR2. This requires
determining that some part of the address computation is in-
variant with respect to the loop induction variable so it can be
moved out of the loop; and that the sequence of array ad-
dresses is generated by a linear recurrence (affine function), so
future values can be computed from previous ones using only
adds. However, from our perspective, the optimized program
still executes operation ARR2, even though the new version
consumes fewer cycles. Therefore we consider the above op-
timizations invariant with respect to parameter ARR2, which
now has a new “optimized” execution time. We can do this as
long as 2D array references can be optimized in a similar way
by the compiler in most programs and in our program charac-
terizer. For some optimizations this assumption is reasonable,
but on others it is not. Overall, as we will observe, this as-
sumption works well. »

In the case that all optimizations are invariant, predicting
the execution of the optimized version requires only taking the
dot product between the unchanged abstract characterization
of the program excerpt and the “optimized” set of machine
parameters. This “optimized” machine characterization is ob-
tained by using the optimized version of the machine charac-

SAAVEDRA AND SMITH: PERFORMANCE CHARACTERIZATION OF OPTIMIZING COMPILERS

terizer to measure the parameter values.

The relevance of viewing optimization not as an attempt to
improve the object code which executes on the same machine
but as running the same abstract set of instructions on an
“optimized” machine, is that we effectively avoid having to
predict how an arbitrary optimizer would transform the pro-
gram.

Although it is not always possible to know how optimiza-
tion will affect a program, it is possible, for many programs, to
obtain reasonable predictions by assuming that most of the
optimization improvement comes from applying invariant op-
timizations. Under this assumption the execution time of an
optimized program is

n
TA,M,O =ZC1‘,A Pi,M,o =C, ’PM,O .
i=1
There are three main reasons why this approach works.
First, optimizations are applied at a low level when most of the
program structure is not present any more, so most of the im-
provement is derived from optimizing sequences of machine
instructions and not from eliminating abstract operations. Sec-
ond, optimizers are consistent in detecting optimizations. If an
optimizer is capable of improving the code emitted by the
compiler in the expansion of a particular abstract operation,
then it can also do it in most of the other instances where the
same sequence appears, such as in the machine characterizer.
Third, the execution time of programs is normally determined
by a small number of basic blocks, and it appears that for the
programs we’ve studied, programmers try to eliminate obvious
machine-independent optimizations on these blocks to guaran-
tee that the programs will execute efficiently.
The second argument in the previous paragraph is worth
discussing in more detail. Even when a Type 1 optimization
changes the distribution of abstract operations of programs by
eliminating some operations, it can be considered an invariant
optimization as long as the same operations are eliminated
from all occurrences in all programs, including our machine
characterizer. For example, suppose that a very good compiler
is capable of eliminating at compile time all multiply opera-
tions. As long as the optimizer is always successful, we can
include this optimization in our predictions, because our meas-
urements with the machine characterizer will indicate that the
execution time of the multiply operation is zero or close to
zero. The corresponding execution time computed using this
value will correspond to the actual execution time. Our focus
in this subsection is in quantifying the performance effect of
optimization and not in finding out which optimizations are
applied. In Section IV we characterize the particular optimiza-
tions that compilers can apply.

@

B. Limitations of Invariant Optimizations

The above approach to optimization works as long as the
optimizer attempts to reduce the execution time of the pro-
grams without changing the original computations embodied in
the source code. This, however, is not always the case. For
example, a sophisticated vectorizing compiler can apply loop
interchange, code motion, and loop unrolling [16] to the code

619

excerpt given in (3) to dramatically reduce the number of op-
erations and consequently the execution time.* These source to
source transformations produce the following version

T™MP = 0.0
pDO1I=1, N
TMP = TMP + Y(I,K) * 2(I,L)
1 CONTINUE
po21I=1, N
X(I) = TMP
2 CONTINUE

The contribution of this code to the total execution time is
Time=N(Pyns, + Pazs. 2 Prsgz + Pass * Paase + Pras +2- Proor)
+2- Py + Prag -

This equation is now linear with respect to the number of it-
erations instead of quadratic. This example shows that, in gen-
eral, without detailed knowledge of which transformations are
applied by the optimizer, it is not possible to always predict
the execution time after optimization.

C. Machine Characterizations Results With Optimization

In the previous section we argued that we can easily extend
our model to include invariant optimizations, if we consider
them as defining a faster machine rather than optimizing the
object code. This “optimized machine” has its own machine
performance vector which is obtained by executing the system
characterizer with optimization enabled. Furthermore we can
apply to the performance vector the same metrics as in the
unoptimized case. In this section we compare different ma-
chine characterizations under various levels of compiler opti-
mization.

‘We ran the system characterizer using different optimization
levels on three high performance workstations. The complete
results, including those without optimization, can be found in
[23]. Table II shows a set of 13 parameters which were syn-
thesized from the basic measurements.

The vector of reduced parameters can be used to character-
ize a machine and to compute the degree of similarity between
machines. We can also use a graphical representation of per-
formance called the performance shape (pershape [20]), a type
of Kiviat graph, as shown in Fig. 1. There we plot the (inverse
of the) performance of each machine, at each level of optimi-
zation, normalized to the MIPS M/2000 with no optimization;
each bar is on a logarithmic scale.

The results in Table II clearly show that some abstract and
reduced parameters benefit more from optimization than oth-
ers. The parameters that benefit most are memory bandwidth,
integer addition, floating point arithmetic operations, address
computation, branching and iteration. Conversely, intrinsic
functions show little if any improvement. This is because nor-
mally the same libraries are used at all optimization levels. In
fact, the average execution time for intrinsic functions on the
Sparcstation 1+ increases with the level of optimization, and

4. Loop interchange transposes the order of the loops. This allows the
compiler to detect that the expression ¥ (J, K) * 2Z(J, L) is invariant
with respect to the induction variable I and hence can be moved out from the
loop. The compiler can then identify that all elements of array X get the same
value, which can be computed only once and the result added to all elements.

620

TABLE I

Normalized Optimization Performance Results in Terms of the Reduced Parameters

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

reduced HP 720 MIPS M/2000 Sparcstation 1+
parameters -00 -01 -02 -00 -Ot 02 -00 -02 -03
memory latency 1.000 (108) 0.963 | 0.565 || 1.000(173) | 0.780 | 0.301 || 1.000 (545) 0.938 | 0.526
integer add 1.000 (95) 0.632 | 0.305 || 1.000(165) | 0539 | 0.418 || 1.000(247) | 0.761 | 0.218
integer multiply 1.000 (442) 0.948 | 0.385 {| 1.000(574) | 0.807 | 0.852 || 1.000(1132) | 1.117 | 0.751
logical operations 1.000 (193) 0.720 | 0.492 }| 1.000(229) 1.070 | 0.629 || 1.000 (586) 1.020 | 0.640
single prec. add 1.000 (99) 0.535 | 0.455 || 1.000(175) | 0.794 | 0.543 || 1.000-(319) 0.937 | 0.779
single prec. multiply || 1.000 (128) 0.750 | 0.273 || 1.000(260) | 0.773 | 0.769 || 1.000(406) | 0.845 | 0388
double prec. add 1.000(100) | 0.730 | 0.450 || 1.000(223) | 0.749 | 0.525 || 1.000 (488) 0.875 | 0.546
double prec. multiply || 1.000 (129) 0907 | 0.271 || 1.000(348) | 0.802 | 0.793 || 1.000(799) | 0.748 | 0.425
division 1.000 (300) 0.780 | 0.627 | 1.000 (780) 0.858 | 0.737 || 1.000(2648) | 0.979 | 0.746
procedure calls 1.000 (99) 0970 | 0.727 || 1.000(328) | 0.726 { 0.491 || 1.000(215) | 0.353 | 1.013
address 1.000 (136) 0.559 | 0.309 || 1.000(462) | 0567 | 0.318 || 1.000(426) | 0.627 | 0.622
branches & iteration 1.000 (151) 0.642 | 0.272 || 1.000 (286) 0.573 | 0.332 || 1.000(318) | 0.425 | 0.778
intrinsic functions 1.000 (2561) | 0.972 | 0.967 || 1.000(3306) | 0982 | 1.030 || 1.000(7442) | 1.041 | 1.106

(Each parameter represents a particular characteristic of the machine and is computed from a subset of basic abstract machine parameters. The results of an
individual machine have been normalized with respect to the unoptimized case. Times inside parenthesis are in nanoseconds. On the Sparcstation 1+ the
results for optimization levels 0 and 1 were almost identical, so we only report results for level 0,)

MIPS M/2000 (-02)

Sparcstation I+ (-03)

Fig. 1. Performance shapes (pershapes) of different optimization levels. The 13 dimensions correspond to the same parameters used in Table I. Here all dimen-
sions are normalized with respect to the MIPS M/2000 with optimization level 0 (no optimization).

on the MIPS M/2000 the average time at the maximum level
of optimization is larger than the other two cases. This is be-
cause the call to an intrinsic function can inhibit optimizations
that would otherwise occur to the surrounding code; our meth-
odology attributes that loss of performance to (the presence of)
the intrinsic function.

D. Execution Time Prediction for Optimized Code

In this section we show that we can predict, reasonably well,
the execution time of optimized programs when most of the
optimization improvement comes from the application of in-

variant transformations. The experiments were done using a
large set of Fortran programs taken from the SPEC and Perfect
Club suites, and also some popular benchmarks. A description
of the programs and their dynamic statistics can be found in
[22]. First, we compiled the programs using different levels of
optimization and measured their respective execution times. At
the same time we collected machine characterizations for the
different levels of optimization. Using machine characteriza-
tions and the dynamic statistics of the programs, we predicted
the expected execution times.

In Fig. 2 we show the comparison between the real and

SAAVEDRA AND SMITH: PERFORMANCE CHARACTERIZATION OF OPTIMIZING COMPILERS

T r . —m 10000
' '] -
| T
]] j.’,./i
K
! ADM !,)ﬁ" g ARC !
focn RO \aT ! _-~ 10000
B
e ! "+ ARC
N -y 7.
TRP- T
. 3‘ ﬁf"l[;;pADMMr
' '-IK) ! -~ 10000
ITRAF"SMI e
AN Mas Ao
) ,/"+l : 0CB-§;,/‘|+ARC
Vo TREABDN
1.] HPP. 1
pi o
H# i el 1 sP1_] 10000
1 ALATSML | ' NAS,_ st
.00) ' uv i ! MDG_ ARC
\‘ -) -y : :g_ - Tocs
-~ 1 LN ' Wro\q
0.01 ¢ ' 1 ' SMig - ‘*‘BYF
) d | BAS TN ' ALK OB 1
'SHE - g Vv R | s 7] 1000
1L~ [by ' S
MIPS M/2000 (-02) ,.-"i +ERA ' f,»'-"u [ocga:’,p:; C
T P 1 o I —
R e NG JADM 3 MAT,
i . ' rfA-‘FhAs ' QC?*];;DOE-M: sp1
m : l.l-'ziElb{ : TRAM, sm1 y MDG -3 10000
e T e AR
& -~ 1 M 1
e m?sww\o‘(Ogg H ! /_.JIFUN ! W%HONMAT 4 1000
e ' L i t DOI;_B oyF E
001 | : MA'.!'*/ : A :SPP j 1
I| Bf_s/#"s"_i% WHE : uv.*,.-": sM1 : E 100
L 4 ERA ! :/.»4'1’1:4 ' !]
Specel (03 L ! A L
..... G MAN, +EAS ! ' ! 3
001 F h S_HE:E-’}'WHE ' , , 41
e N) E
v T ERA ' ' ' 3
[] []] 1 401
sp.w.-{:(-oo‘)/ ,./} ! ' ! ! R
001 ke . . : : oo
"0.01 0.1 1 10 100 1000 10000
(sec)

Real Execution Timne

Fig. 2. Each broken diagonal line, which corresponds to a particular machine and optimization level combination, shows the accuracy of the predictions com-
pared to the real execution times. The left end point of each diagonal line maps to (0.01, 0.01) and the right end point to (10000, 10000). Points along the di-

agonal are of the form (7, 7). All scales are in seconds.

predicted execution times for both optimized and unoptimized
programs; the abbreviations for the various programs are ex-
plained in [21]. For each graph the vertical distance to the di-
agonal represents the error of the prediction. Although the
scale is logarithmic and hence the errors appear smaller than
they are, it is clear from the figure that the predictions even at
the maximum optimization level are quite good. Summaries of
the predictive errors, by machine and program, are presented
in Tables III and IV. (The complete execution times and rela-
tive errors can be found in [23]). The RMS error, shown in
Tables III and 1V, is the square root of the average of the
square of the individual errors. As expected the magnitude of
the error increases with the optimization level, but this in-
crease is relatively small with an average error of less than
11%. Note that the average actual run time increases relative
to the predicted run time; that increase reflects optimizations
that are not invariant.

Fig. 2 clearly shows that some programs benefit more than
others from optimization. For example, the execution time
improvement of WHETSTONE on the four machines is only
20%; the smallest of all benchmarks. This is because of the

relatively large number of intrinsic functions executed, which
do not run faster when the program is optimized.

TABLE III
SUMMARY OF EXECUTION TIME ERRORS BY MACHINE AT THE MINIMUM AND
MAXIMUM LEVELS OF OPTIMIZATION. (RMS REPRESENTS THE ROOT MEAN
SQUARE ERROR. THE PLUS (NEGATIVE) SIGN FOR AVERAGE ERRORS INDICATE
THAT THE PREDICTIONS WERE ABOVE (BELOW) THE REAL EXECUTION TIMES.)

Minimum opt level Maximum opt level

Machine Average RMS Average RMS
HP-9000/720 -851% | 2184 % || +3.42% | 35.60%
MIPS M/2000 +195% | 1681% || +10.64% | 33.67%
Sparcstation 1+ || =7.52% | 22.87% || —6.03% | 2534 %

By modeling the execution time of a program using the ab-
stract machine model! in combination with the tools we have
developed, we can get an understanding of how much optimi-
zation really affects the execution time of a program across
many machines. We talk in more detail about this in Section

II1.G.

622

TABLE IV
SUMMARY OF EXECUTION TIME ERRORS BY PROGRAM AT THE MINIMUM AND
MAXIMUM LEVELS OF OPTIMIZATION FOR THE PROGRAMS ON FIG. 2. (RMS
REPRESENTS THE ROOT MEAN SQUARE ERROR. THE INDIVIDUAL REAL AND
PREDICTED EXECUTION TIMES ARE GIVEN IN [22].)

Minimum Opt. Level || Maximum Opt. Level
Program Average RMS Average RMS

Doduc +4.10 % 676 % || -14.06% | 1693 %
Fpppp +593% | 11.74% || -19.39% | 2997 %
Tomcatv -1192% { 13.54% || -18.44% | 21.60 %
Matrix300 -3787% | 39.00% || 46.00% | 51.33%
Nasa7 -1801% | 1998 % —4.14% | 1230%
Spice2g6 +1187% | 17.36% || +17.66% | 3587 %
ADM ~-18.17% | 2273 % =740 % 743 %
QCD +30.72% | 31.04% || +43.98% | 5411 %
MDG +12.15% | 1543 % +323% | 1343 %
TRACK +16.71% | 17.16% || -14.78% | 1554 %
BDNA -13.18% | 1427 % +0.32% | 15.19%
OCEAN +3.45 % 426% || +45.84 % | 48.85%
DYFESM -2576% | 28.62% || +1040% | 27.87%
ARC2D -3528% | 3563% || -26.715% | 3538%
TRFD -2204% | 2637 % 844 % | 1531%
FLOS2 -1950% | 2286 % || +34.12% | 4742 %
Alamos +2.71% | 1L15% || +27.69% | 3448%
Baskett +16.33% | 1658 % || +24.42% | 2528 %
Erathostenes || —14.58% | 18.54 % || 45.02% | 47.01 %
Linpack —625% | 1574 % | +23.01% | 31.54%
Livermore +1241% | 17.16 % || +21.98% | 3145 %
Mandelbrot +6.17 % 801% || +1.65% | 1048 %
Shell +6.21% | 21.60% || +33.60% | 39.38 %
Smith -18.14% | 1986% || +1.27% | 28.78%
Whetstone -1182% | 16.87% || -22.69% | 25.58 %
Totals —4.83% | 2059 % +2.48% | 31.89%

E. Accuracy in Predicting the Execution Time of
Optimized Programs

Our assumption that most of the performance improvement
obtained from optimization is due to invariant optimizations is
a simplification which is not necessarily valid on all programs.
Nevertheless, the results of the previous section show that for
most programs the assumption is reasonable. In Table V we
compare the distribution of errors for both nonoptimized and
optimized programs; we can see that for maximum optimiza-
tion the average error increases. For the results shown in Fig.
2, Table V shows that while 85% of the nonoptimized predic-
tions are within 30% of the real execution time, this value de-
creases to 68% for optimized programs. Moreover, almost
13% of the predictions have errors of more than 50%, while
none of the nonoptimized predictions has errors of that
magnitude.

If a program exhibits a significantly larger positive predic-
tion error at the maximum optimization level than it does with
no optimization, then it is probably the case that the error is
the result of ignoring noninvariant optimizations. In Table IV
we see several programs for which this is true. An analysis of
the source code shows that in these cases, optimizers are ap-
plying optimizations that are not invariant. For example, the
code excerpt below taken from QCD contributes significantly
to the total execution time. It contains many opportunities for
the compiler to apply common subexpression elimination

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

(3*I+P+1,3*J+Q+1,and3#K+
R + 1) and thus significantly reduce the execution time.

TABLE V
ERROR DISTRIBUTION FOR THE PREDICTED EXECUTION TIMES WiTH AND
WITHOUT OPTIMIZATION. (FOR EACH ERROR INTERVAL, WE INDICATE THE
NUMBER OF PROGRAMS HAVING ERRORS THAT FALL INSIDE THE INTERVAL
(PERCENTAGES INSIDE PARENTHESES). THE ERROR IS COMPUTED AS THE
RELATIVE DISTANCE TO THE REAL EXECUTION TIME.)

Error distribution for execution time predictions
level <5% <10% <15% <20% <30%
no optimization 15(.06) | 26(36.76) | 39 (54.41) | 46(64.71) | 61 (85.29)
max optimization || 11 (12.86) | 19(24.29) | 28 (37.14) | 36(48.57) | 47 (68.29)
level >30% >40% >50%
no optimization 11(1471) | 3 441) | 0 (0.00)
max optimization § 27(35.71) | 17 (22.86) | 10(12.86)

Common subexpression elimination in this context is not an
invariant optimization as defined in Section IILA. Replacing
an arithmetic expression by a reference to a previously com-
puted equivalent value eliminates the abstract operations in-
volved and thus distorts our predictions. This is what happens
on OCD, for which all of our predictions are greater than the
real time; on two of the machines the errors are as high as 47%
and 81% [23].

T=0
Do2Prs=0, 2
DO3J =0, 2
DO 2Q=0, 2
DO 2Xe0, 2
Ir (XPSILO(I+1,J+1,K+1) .NE. 0) THEN
DO3IR=9, 2
IF (EPSILO(P+1,0+1,R+1) .NR. 0) THEN
FAC = EPSILO(I+1,J+1,K+1) ¢ EPSILO(P+1,Q+1,Rel)
TOT(1) » TOT(1) + PAC * U1(1,3%1+P+1) * U2(21,3%7+Q+1) *
U3(1,3°K+Rel}
TOT(1) = TOT(1) - PAC * U1(2,3°I¢Pel) * U2(2,3%+Q+1) *
U3(1,3*°K+R41)
TOT(1) = TOT(1) - FAC * U1(1,3%I+Be1) ¢ TU2(2,3°T+Q+1) *
B U3(2,3*°K+R+1)
TOT(1) e TOT(1) - PAC * U1(2,3°I¢Pel) * U2{1,3%*3+Q+1) *
U3 (2,3%K+Rel)
TOT(2) = TOT(2) + PAC ® U1(1,3%I+P+l1) * U2(1,3%T+0¢1) *
U3(2,3°K+R+1)
TOT(2) = TOT(2) + PAC * U1(1,3%T+P+l) * U2(2,3%74Q+1) *
U3 (1,3%K¢R+1)
TOT(2) = TOT(2) + PAC * U1(2,3%I+P+1) T2(1,3%74Q+1) *
U3{1,3*K+R+1)
TOT(2) = TOT(2) - FAC * U1(2,3%°I+P+1) * U2(2,3°3+Q+1) *
U3(2,3*K+Re+1)
ENDIP
CONTINUER
ENDIP
2 CONTINUE

F. Improving Predictions in the Presence of
Noninvariant Optimizations

We can improve our predictions of run times by identifying
the applicable noninvariant optimizations and performing them
manually on the source code. By applying common subex-
pression elimination to the previous example, we obtain the
equivalent code shown below.

Here the values of common subexpressions are computed
once and stored in variables /3, J3, and K3.5 In a similar way,
we can eliminate other common subexpressions and in this
way reduce the number of integer operations from 60 to 15 and
the floating point operations from 37 to 23. After making the
above changes, we found that on all machines the prediction
errors were less than 30%.

5. Although 3 and J3 are invariant with respect to the induction variables
of the two innermost loops, it is not profitable to move the code outside the
loops because the two IFs eliminate a large fraction of the innermost itera-
tions.

SAAVEDRA AND SMITH: PERFORMANCE CHARACTERIZATION OF OPTIMIZING COMPILERS

o,
-0, 2
X0, 2
IF (BPRILO(I+1,J¢1,K+1) .NE. 0) THEN
DO3IR=0O, 2
IP (EPSILO(P+1.Q+1,R¢1) .NE. O) THEN

FAC » EPSILO(I¢1,J41,K+1) * RPSILO(P+1,0+1,R+1)

I3 =3 *XI+P+1

J3e3*Js04+1

K3 e 3 *K+R+ 1

T1l = U1(1,13) * U2(1,33)

Ti2 « U1{1,13) * U2(2,J3)

%31 = U1{2.X3) * U2(1,03)

T22 = U1(2,23} * U2¢2,73)

U3l = U3(1,X3}

U32 = U3(2,K3)

T1ill = T11 * ©U31

T1i2 = T11 * U32

Ti21 = T12 ¢ U31

‘T122 = T12 * U32

T211 = T21 * U1

T312 « T21 * U32

T221 = T22 * U3

T222 = T22 * U32

TOT(1) = TOT(1) ¢ FAC * (T111 - T221 - T122 - T212)

TOT(2) = TOT(2) ¢ PAC * (T112 ¢ T121 + T211 - T222)

ENDIP
CONTINUR
ENDIFP

2 CONTINUE

By distinguishing the invariant and noninvariant optimiza-
tions, we can assess the performance impact of each, because
the performance improvement due to noninvariant optimiza-
tions is equal to the difference between our predicted im-
provement, considering only invariant optimizations, and the
real execution time.

G. Amount of Optimization in Benchmarks

By comparing the execution times before and after optimi-
zation for several different compilers, we can measure how
much potential optimization exists in programs. In Table VI
we show the program speedup achieved by each optimization
level for the three machines previously discussed.

In Section I.LA we mentioned that previous studies on the
effectiveness of optimizing compilers for languages like C,
Pascal, and PL/1 reported speedups of less than a factor of 2.
The results in Table VI, however, show that at the maximum
level of optimization the speedups observed on Fortran pro-
grams are frequently larger than two, with some programs ex-
periencing speedups of more than a factor of five.

The results of Table VI show that speedups on FLOS2,
DYFESM, TRFD, ARC2D, and SHELL are the highest of all
programs, while those of DODUC, FPPPP, TRACK, MDG,
and WHETSTONE are the lowest. Our analysis of the source
code shows that the programs in each group share similar
characteristics. For example, the sizes of the most time-
consuming basic blocks of the programs with the highest
speedups are quite small. These consist of a few arithmetic
statements where most of the operands are elements of multi-
dimensional arrays. Our examination of those programs shows
that most of the optimization improvement comes from col-
lapsing the computation of the array addresses, good register
allocation, and eliminating loads and stores of temporary
values.

The programs with the smallest speedups are different. They
tend to have substantially larger basic blocks. For example, the
largest basic block on FPPPP has 590 lines of mostly scalar
code. Here register files having as many as 32 or 64 registers
cannot keep most of the variables in registers between their
definition and use. Furthermore, on these programs, most of

623

the operands are either scalars or 1D arrays, so address col-
lapsing, the elimination of time consuming address calcula-
tions in multidimensional arrays, does not produce very much
improvement. They also tend to execute a larger number of
intrinsic functions whose execution is mostly unaffected by
optimization. This is the case for MDG and WHETSTONE.
Further discussion of the optimizations possible in these pro-
grams appears in Section V.A.

TABLE VI
OPTIMIZATION SPEEDUPS UNDER DIFFERENT OPTIMIZATION LEVELS. (EACH
SPEEDUP IS COMPUTED BY TAKING THE RATIO BETWEEN THE NONOPTIMIZED
AND OPTIMIZED EXECUTION TIMES. THE LAST COLUMN GIVES THE GEO-
METRIC MEAN OF THE MACHINE SPEEDUPS OBTAINED AT THE MAXIMUM
LEVEL OF OPTIMIZATION. THE SMALL NUMBER ON THE RIGHT OF EACH
SPEEDUP INDICATES ITS RELATIVE MAGNITUDE, WITH THE NUMERAL |
REPRESENTING THE LARGEST SPEEDUP. PROGRAM ADM DID NOT EXECUTE
CORRECTLY ON THE MIPS M/2000 AT THE MAXIMUM OPTIMIZATION.)

prog! HP 720 MIPS M/2000 Sparcstation 1+ || Geom. Mean

-O1 -02 Ot -02 02 -03 Max. Opt.
Doduc 1307 | 2123 21 || 1.255 | 1.701 21 || 1.439 | 1.468 20 1.744
Fpppp 1344 | 2.000 22 || 1.222 | 1.437 2 }| 1.479 | 1541 1o 1.642 2
Tomcaty 1.504 | 3.497 10 || 1.445 | 2.994 10 {{ 1.866 | 1.927 16 2.722 1
Matrix300 1377 | 3413 u || 1.263 | 2.475 1 |} 3.788 | 4.854 2 3.448 1
Nasa7 1.477 | 3318 w || 1300 | 2817 un || 3.759 | 3953 » 3331
Spice2g6 1.345 | 2.560 19 || 1.250 | 1.739 19 || 1.231 | 1.462 21 1.867 2
ADM 1.305 | 4.000 s || 1.372 - 2.506 | 2.646 10 3.253 10
QCD 1374 | 2.793 15 || 1.351 | 1957 1s || 1.443 | 1.621 1 2.069 1
MDG 1.215 | 1.698 2 || 1.250 | 1.701 20 || 1.208 | 1.238 25 1.529 x
TRACK 1.316 | 1.786 23 || 1.377 | 1.700 22 {f 1.318 | 1403 1.621 »
BDNA 1.414 | 2.890 1s }| 1.381 | 2.088 1s || 1.237 | 1.440 22 2.056 19
OCEAN 1.370 | 3.891 7 {] 1.408 | 3344 s || 2.066 | 2.924 s 3363 s
DYFESM 1.468 | 6.993 3 || 1.335 | 4.525 3 || 4.367 | 5.263 1 5.502 2
ARC2D 1340 | 4878 s || 1.368 | 3417 17 || 2.118 | 3.606 & 3917 s
TRFD 1.664 | 7.143 2 || 1.361 | 4338 « || 3.690 { 3.891 s 4.940 3
FLOS2 1.460 | 8333 1 || 1.360 | 6.008 2 || 3.610 | 3.937 « 5.820
Alamos 1397 | 3.344 12 || 1311 | 3571 s || 1.362 | 2558 1 3.126 u
Baskett 1.316 | 3.333 i3 | 1.370 | 2.564 13 §i 2.331 | 2.801 s 2.882 13
Erathostenes || 1.300 | 2.597 s || 1.305 | 2.237 1s || 1.667 | 1.667 12 2132 n
Linpack 1600 | 3.831 s i 1.410 | 3344 o | 2.584 | 3.268 7 3472 ¢
Livermore 1.473 | 2703 17 || 1.570 | 2.725 12 || 2.045 | 2326 12 2.578 1s
Mandelbrot 1348 | 2545 20 || 1.429 | 2.083 17 || 2.000 | 2.000 1s 2.197 16
Shelt 1.634 | 4902 « || 1.592 | 6.289 1.357 | 2.093 14 4.0!1 4
Smith 1350 | 3.597 9 || 1.282 | 3.472 ¢ || 2.000 | 2.105 13 2973 12
Whetstone 1.218 | 1.647 25 || 1.200 | 1372 2 || 1.300 | 1.300 % 1.432 25
Geom.-Mean || 1392 | 3.27t 1.348 | 2.665 1.973 | 2.296 2.722

It is dangerous to draw conclusions about the effectiveness
of the different optimizers from the speedup results of Table
VI. The overall speedup is as much a function of the quality of
the nonoptimized object code as it is of the optimizer, since it
is always possible to improve the overall speedup by generat-
ing worse nonoptimized code. This is particularly true for the
HP 720, for which the overall speedup is significantly higher
because the compiler generates native code for the 700 series
only at the maximum level of optimization. For compatibility
reasons, the object code at low levels of optimization is for the
800 series, which is emulated on the 720 in software.

Program SHELL is a good example of how the quality of
nonoptimized code affects the amount of speedup observed on
different programs. This benchmark is one of the few integer
programs in our suite and implements shellsort. As Table VI
shows, SHELL is the program with the largest speedup on the
MIPS M/2000 (6.289), and is one of the top four for the HP
720 (4.902). On the other hand, the speedup on the Sparcsta-
tion 1+ is significantly lower (2.093), even lower than the
overall improvement for all programs (2.296). The reason for
this is not because the Sun’s optimizer fails to improve the

PTTTIT " ._.,

624

code, but is due to the fact that with no optimization, the MIPS
M/2000 and HP 720 generate especially poor code. This is
evident in the number of machine instructions generated by
each compiler. On the Sparcstation 1+, the number of instruc-
tions changes from 41 without optimization to 23 with optimi-
zation. The corresponding numbers for the MIPS M/2000 are
74 and 16, with speedups of 1.873 and 4.625. This discrep-
ancy is clearly present in the actual execution times. Bench-
mark results normally rate the MIPS M/2000 as being at least
50% faster than the Sparcstation 1+. The results for SHELL,
however, indicate that at low levels of optimization the Sparc-
station 1+ is faster than the MIPS M/2000 (0.95 sec vs. 1.64
sec and 0.70 sec vs. 1.03 sec). It is only at the maximum op-
timization level that the MIPS M/2000 exhibits a smaller exe-
cution time (0.43 sec vs. 0.26 sec) [23].

We can test if there is positive correlation between the
amount of speedup produced by pairs of optimizers on these
benchmarks, by computing either the coefficient of correlation
or the Spearman’s rank correlation coefficient. Table VII gives
the value of the coefficients and the level of significance for
the three combinations. As is evident, there are substantial but
not perfect correlations in the speedup produced by the three
compilers.

TABLE VII
COEFFICIENT OF CORRELATION AND SPEARMAN’S RANK CORRELATION OF
PAIRWISE OPTIMIZATION SPEEDUP RESULTS. (THE STATISTICAL SIGNIFICANCE
LEVEL GIVES THE PROBABILITY THAT THERE IS NOT A POSITIVE CORRE-

LATION INVOLVED.)
Coefficient of levet of Spearman’s Rank level of
machines Correlation significance Correlation - Significance
HP 720 and MIPS M/2000 0.8677 0002 0.9417 ©.0003
HP 720 and Sparc 1+ 0.7390 0009 0.7954 0012
MIPS M/2000 and Sparc 1+ 0.5656 .0070 0.7652 ..0020

IV. THE CHARACTERIZATION OF COMPILER
OPTIMIZATIONS

In the last section we discussed how to measure and predict
the performance improvement produced by optimizers. In this
section we characterize the set of optimizations that compilers
actually apply, and in which contexts. The context indicates
whether a particular optimization can be performed on all data
types or only on a subset of them. We are also interested in
knowing if the optimization is detected when it is present in-
side a basic block and/or across basic blocks. In what follows,
we refer to a local optimization as one that is detected inside a
basic block and a global optimization when it spans more than
one basic block.

Our approach to detecting optimizations is similar in some
respects to the way we characterize basic machine perform-
ance [20]. We have developed a Fortran program consisting of
a number of micro benchmarks which detect individual op-
timizations; each test is made separately for integers, floating
point or mixed mode expressions. When appropriate, we also
test for the local and global cases.

We detect whether a particular optimization is applied or
not by running experiments which show a difference in their
execution time only when the optimization is performed. In

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

this way we can avoid having to analyze the assembler code.
Each optimization test consists of two almost identical meas-
urements where the only difference between them is that the
second measurement contains a potential optimization. The
running time of the two cases differs significantly only if the
optimization is performed. Each experiment is repeated 20
times to collect a large statistic and a post-processor computes

the average execution times of each experiment (i, and i)

and the significance level of the following statistical test:
iy < 1. If there is sufficient evidence to reject the null hy-

pothesis, then we can assume that the optimization was per-
formed. The level of significance represents the probability
that random variations in our measurements would appear as
supporting the conclusion that the optimization was detected
when in fact it was not. Nevertheless, in all cases we have
double checked that the optimizations were applied by analyz-
ing the assembler code.

Fig. 3 illustrates the basic structure of our experiments. This
example is one of the tests for detecting local dead code elimi-
nation. The two corresponding innermost loops are almost
identical with only one difference: in the right-hand side, the
first set of definitions of variables W1, W2, and W3 are not
used subsequently by any other statement. F urthermore, these
definitions are killed by the second set of definitions to the
same variables. Formally, we say that there are no forward
dependencies having as source the first definitions. Hence, if
the compiler can detect this, it can eliminate their computation.
In contrast, this does not occur on the left side where every
definition is the source of a forward dependency. Eliminating
the first three statements on the second experiment reduces the
execution time between 25% and 50% on most machines.

D03 I =1, 30 DO4 T =1, 20
TO = SECOND (P) T0 = sxcoud (P)
DO1Is 1, ITER DO3II=1l, ITER
Wi=X*WL+ (A*{B*C)) WleX*Wls(A*(B*C)
W2 =X*W2+((A*B) *C) W2 uX*W2e ((A* B)*C)
W3 =Y *wWI e ({C*"A)*B) W3 =Y *W3e ((C*A)*B)
A=XA -2 A=XA~A
PDeXR -3 BeXE -3
CeXC-C CeXC-C
Wi=Y*Wl+ (A" (D)) M=X*A +(A*(B"C))
NWaY*Me(A*3 *0) MY "W+ ((A*3) *0)
WaX*W s {{Cva) " WX "W ((C*A)*B)
A=IXA-A AsXA-A
B=XB -3 B=X3 -3
CmXC-C CasXC-¢C
1 COMNTINUR 3 CONTINUR
T{J) = SECOMD (P) - TO T(J) = sECOMD (P) - TO
3 CONTINUE 4 CONTINUR

Fig. 3. A particular experiment to detect dead code elimination. On the left-
hand experiment all definitions inside the innermost loop are used at least
once, while on the other experiment the topmost definitions of W1, W2, and
W3 are not used. The three definitions can be eliminated by the optimizer.

A. Standard Optimizations Detected

The types of optimizations that we are interesting in detect-
ing are machine-independent. This is consistent with our
methodology which permits comparing different machines,
and in this case their compilers, by providing a unified repre-
sentation of the execution while ignoring machine-level de-
tails. Machine-dependent optimizations, like those performed
by peephole optimizers, are invariant with respect to our
model. Most machine-independent optimizations detected by
current optimizers have been known for many years. A good
reference describing these optimizations and the general

SAAVEDRA AND SMITH: PERFORMANCE CHARACTERIZATION OF OPTIMIZING COMPILERS 625

problem of compiler optimization is [1]. [5] and [2] describe
how optimizations are implemented in a real compiler. The
following are the optimizations that we currently detect:

¢ Constant Folding: Replace symbolic constants by their
actual values and evaluate the resulting expressions at
compile time. If during this process other variables get a
recently computed constant value, then their values are
again propagated until no more constant expressions re-
main. The current emphasis on program modularity and
portability has increased the use of symbolic constants
and correspondingly the importance of applying this
optimization.

e Common Subexpression Elimination: Identify two or
more identical subexpressions in a region without an in-
tervening definition of any of the relevant variables.
Compute the subexpression at the beginning and replace
subsequent computations by a reference to a temporary
variable holding the result of the computation.

¢ Code Motion: Identify expressions or statements which
are invariant with respect to the induction variable of the
loop and are computed unnecessarily on every iteration,
and to move them out of the loop. The performance im-
provement obtained is proportional to the number of
times the loop is executed. In scientific programs this is
one of the most important optimizations along with ad-
dress collapsing. Both of them are used in conjunction in
the optimization of array references. A

® Dead Code Elimination: In some programs there are
pieces of code which can be statically proved never to be
executed or whose execution does not have any semantic
effect on the final computation. This code can be safely
eliminated by the compiler to reduce the execution time
and/or the object code size. Although this optimization
does not appear very promising, as most programmers do
not deliberately write needless code, occasionally some
statements become dead as the result of applying other
optimizations, or as the result of revisions to the
program,

e Copy Propagation: Some optimizations like common
subexpression elimination, code motion, and address
collapsing create large number of copy instructions, e.g.,
x = y. By replacing uses of the copy with the original
variable it is possible to simplify the code and expose
new optimizations. Optimizations that benefit from copy
propagations are common subexpression elimination and
register allocation. ,

¢ Address Collapsing: Eliminate slow address computa-
tions for multidimensional array elements in innermost
loops by precomputing outside the loop the addresses of
the elements referenced in the first iteration and updating
their values by adding a constant in subsequent iterations.
This optimization is based on the observation that in the
majority of nested loops the sequence of machine ad-
dresses associated with a specific array reference form an
arithmetic progression, which is completely determined
by the first value and the increment.

¢ Strength Reduction: This optimization is a generaliza-

tion of address collapsing as it attempts to replace a time-
consuming computation with an equivalent but faster
one. One example is replacing an exponentiation having
a small integer exponent which is known at compile time
with a series of multiplications. Similarly, multiplies can
often be replaced by additions. On array references, the
combination of strength reduction and code motion
makes it possible to collapse address computations.

¢ Subroutine Inlining: Substitute for a call to a subroutine
the actual subroutine code. This avoids the overhead of
the call, and exposes optimizations present at the site of
the call. Although most optimizers claim that they do
subroutine inlining, they tend to differ substantially in the
amount of integration they perform.

e Loop Unrolling: Expand several iterations of the loop
into a single basic block and hence expose new optimi-
zation opportunities. This also reduces the impact of the
loop overhead.

In this paper we have concentrated on scalar optimizations.
But in addition to the above optimizations, there are other pro-
gram transformations which have been designed to exploit
vector and parallel hardware. A description of a large test suite
and evaluation of vectorizing Fortran compilers can be found
in [4].

B. Optimization Results

We have run our experiments on several optimizing compil-
ers and for different levels of optimization. In Table VIII we
give the list of machines along with their corresponding com-
pilers. The complete results are presented [23], while Tables
IX-XI summarize the same information. In our experiments
we make a distinction between local and global optimizations.
A local optimization (Tables IX-X) is one in which the opti-
mization and all the information needed for its detection are
found within a single basic block. A global optimization
(Table XI) requires the propagation of control and data flow
information across basic block boundaries. In these tables, a
“yes” or “no” entry indicates that the optimizer was able to
detect all or none of the optimizations in the tests. The other
two alternatives, two out of three and one out of three, corre-
spond to entries “partial” and “marginal,” for the three cases of
real, integer and mixed mode computations. The results show
that some compilers are only able to apply optimizations under
certain conditions and not on all cases.

TABLE VIHI
LIST OF MACHINES WITH THEIR RESPECTIVE FORTRAN COMPILERS.
Machine Compiler Name/Location

VAX-11/785 BSD Unix F77 1.0 arpa.berkeley.edu
MIPS M/2000 MIPS F77 2.0 mammoth.berkeley.edu
Sparcstation 1+ SunF77 1.3 heffal.berkeley.edu
VAX-11/785 Ultrix Fort 4.5 pioneer.arc.nasa.gov
Amdahl 5860 Amdahl F77 2.0 prandtl.nas.nasa.gov
CRAY Y-MP/8128 | CRAY CFT774.0.1 | reynolds.arc.nasa.gov
IBM RS/6000 530 | IBM XL Fortran 1.1 | coyote.berkeley.edu
Motorola M8SK Motorola F77 2.0b3 | rumble.berkeley.edu

626

TABLE IX
SUMMARY OF LOCAL OPTIMIZATIONS. (EACH ENTRY SUMMARIZES How
WELL THE OPTIMIZER DETECTS THE OPTIMIZATION USING INTEGER,
FLOATING POINT, AND MIXED DATA TYPES IN ARITHMETIC EXPRESSIONS.
THESE OPTIMIZATIONS DO NOT EXTEND BEYOND A SINGLE BASIC BLOCK.)

p code copy dead code
folding | subexprelim | motion | propagation elimination
BSD Unix F77 1.0 no partial marginal partial no
Mips F772.0-02 partial yes yes partial yes
Mips F772.0-01 marginal yes no marginal no
SunF7713-03 marginal yes yes no yes
SunF7713-02 marginal yes yes no partial
Sun F77 1.3 -01 no no no no no
Ultrix Fort 4.5 yes yes yes yes yes
Amdahl F77 2.0 no no no no no
CRAY CFT774.0.1 yes yes yes yes yes
IBM XL Fortran 1.1 yes partial yes partial yes
M la F772.0b3 || marginal yes yes no no

The optimization results for constant folding illustrate the
difficulties in evaluating the effectiveness of an optimizer.
While almost all the compilers are able to propagate integer
constants inside a basic block, with the exception of the f77
BSD Unix and Amdahl compilers, the situation is less clear for
floating point constant and global constant propagation. The
Sun Fortran compiler does not apply constant propagation for
floating point or across basic blocks, while the fort Ultrix
compiler from DEC implements constant propagation on all
data types but only inside a basic block.

TABLE X
SUMMARY OF GLOBAL OPTIMIZATIONS. (EACH ENTRY SUMMARIZES HOow
WELL THE OPTIMIZER DETECTS THE OPTIMIZATION USING INTEGER,
FLOATING POINT, AND MIXED EXPRESSIONS. THESE OPTIMIZATIONS COVER
MORE THAN ONE BASIC BLOCK.)

p code copy dead code
folding | subexpr elim | motion ; propagation elimination
BSD Unix F77 1.0 o no marginal no no
Mips F772.0-02 partial yes yes marginal yes
Mips F772.0-01 no no no no no
SunF1713-03 no yes partial no yes
SunF7713-02 no yes partial no partial
SunF7713-01 no no no no no
Ultrix Fort 4.5 no yes yes partial yes
Amdahl F77 2.0 no no no no no
CRAY CFT774.0.1 yes partial partial no yes
IBM XL Fortran 1.1 || partial partial yes marginal yes
Motorola F77 2.0b3 no partial no no no

For the MIPS compiler, constant propagation is applied in
the local and global context only for integers. For floating
point, the value of a variable known at compile time is propa-
gated only if the variable is assigned a constant value, but not
if it gets the constant as a result of evaluating an expression.

Common subexpression elimination is successfully detected
by most compilers in all contexts. Although the IBM XLF
compiler identified almost all common subexpressions, it
missed a couple which involved floating point adds and mul-
tiplies. The reason is that the RS/6000 series provides, in ad-
dition to the normal add and multiply operations, a combined
multiply-add instruction. In our experiments the compiler gen-
erated for two occurrences of the same subexpression, a mul-
tiply followed by an add in one case, but a single multiply-add
for the other case. As a result of this, it did not recognize that
the two expressions were identical. Missing an optimization as
a result of applying another, however, is in many cases accept-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

able if the first optimization provides a better improvement.

Table XI shows that our tests detected that three compilers
have some ability to inline procedures, but only the Cray
CFT77 compiler takes full advantage of it. In the case of MIPS
f77 2.0, the compiler does not perform an actual inline substi-
tution. The only transformation done is that the compiler does
not use a new stack frame for the leaf procedure, but instead
execution is carried out on the caller’s frame [6]. In contrast, a
real inline substitution is done by the IBM XLF 1.1 compiler
[15], but here the insertion of unnecessary extra code obscures
optimizations that inlining should have exposed. Only the
Cray’s CFT77 compiler was abled to detect all optimizations
present after proper inlining.

TABLE XI
ADDITIONAL OPTIMIZATIONS. (THESE OPTIMIZATIONS ARE TESTED USING A
SINGLE DATA TYPE, AS THEIR APPLICATION IS NOT AFFECTED BY THIS KIND
OF CONTEXT. HERE PARTIAL AND MARGINAL HAVE A DIFFERENT MEANING
THAN IN TABLES VIII AND IX. INSTEAD OF SUMMARIZING THE RESULTS OF
EXPERIMENTS ON DIFFERENT DATA TYPES, THEY REPRESENT THE AMOUNT
OF IMPROVEMENT THAT EACH OPTIMIZER PRODUCED ON A SINGLE TEST.)

compiler strength address inline loop
reduction | calculation | substitution | unrolling

BSD Unix F77 1.0 partial marginal no no
Mips F772.0-02 yes yes marginal yes
Mips F77 2.0 -O1 no yes no no
SunF771.3-03 partial marginal no yes
Sun F771.3-02 partial no no yes
SunF77 1.3 -01 no no no yes
Ultrix Fort 4.5 yes yes no no
Amdahl F77 2.0 no no no no
CRAY CFT774.0.1 yes yes yes yes
IBM XL Fortran 1.1 yes yes partial yes
Motorola F77 2.0b3 partial no no no

V. CONCLUSIONS

Evaluating and explaining the performance of a machine re-
quires relating observed performance to the individual compo-
nents of the system. Machine designers are able to do this by
constructing detailed models and simulators of their machines
[17], [24], and [7]. These machine models, however, are ma-
chine-dependent and generally they can only be used for one
machine. Our research has concentrated on developing a sound
methodology for evaluating machines and compilers in a ma-
chine independent manner. We have created a machine inde-
pendent model for program execution, measured its parame-
ters, and demonstrated its ability to make accurate predictions.

In this paper we have discussed how optimization can be in-
corporated in our methodology and have shown that it is pos-
sible to evaluate different optimizing compilers, not only by
detecting the set of optimizations which they can perform, but
also by predicting and explaining how much improvement they
provide on large applications. In earlier work [20], we said
that we did not expect our methodology to extend naturally to
include optimization, because we believed that it would be
necessary for us to know how an arbitrary optimizer could
transform any possible program. Since that time, we have dis-
covered that our abstract machine paradigm extends reasona-

SAAVEDRA AND SMITH: PERFORMANCE CHARACTERIZATION OF OPTIMIZING COMPILERS

bly well to optimized code. By assuming that most of the op-
timizations are invariant with respect to the abstract decom-
position of the program, we change the nature of the problem
from one of detecting how a program could be changed by the
compiler to characterizing the performance of the “optimized”
machine defined by the optimizer. Using this approach we
showed that it is possible to measure the contribution of opti-
mization and predict the execution time of optimized pro-
grams, although not as well as in the nonoptimized case.

We have written programs to detect local and global ma-
chine-independent optimizations and measured several opti-
mizing compilers. We showed that optimizing compilers differ
in the effectiveness to which they can apply the same optimi-
zations. Finally, we also evaluated the optimization improve-
ment provided by several optimizers on the Fortran SPEC,
Perfect Club, and other popular benchmarks.

ACKNOWLEDGMENTS

The material presented here is based on research supported
principally by NASA under grant NCC2-550, and also in part
by the National Science Foundation under grants MIP-
8713274, MIP-9116578, and CCR-9117028, by the State of
California under the MICRO program, and by the International
Business Machines Corporation, Philips Laborato-
ries/Signetics, Apple Computer Corporation, Intel Corpora-
tion, Digital Equipment Corporation, Mitsubishi, and Sun
Microsystems.

We would like to thank Ken Stevens for providing access to
facilities at NASA Ames and funding for this work, and Jean
Gascon and Ruby Lee from HP, and David E. Culler and Os-
car Loureiro from U.C. Berkeley, who let us run our programs
on their machines.

REFERENCES

[11 A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Reading, Mass.: Addison-Wesley, 1986.

[2] H.E. Bal and A.S. Tanenbaum, “Language- and machine-independent
global optimization on intermediate code,” Computer Languages, vol.
11, no. 2, 1986, pp. 105-121.

{31 R.N. Braswell and M.S. Keech, “An evaluation of vector FORTRAN
200 generated by CYBER 205 and ETA-10 pre-compilation tools,”
Proc. Supercomputing '88 Conf., Orlando, Fla., Nov. 14-18, 1988, pp.
106-113.

{4] D. Callahan, J. Dongarra, and D. Levine, “Vectorizing compilers: A test
suite and results,” Proc. Supercomputing '88 Conf., Orlando, Fla., Nov.
14-18 1988, pp. 98-105.

[51 F. Chow, 4 Portable Machine-Independent Global Optimizer, PhD
dissertation and Technical Report No. 83-254, Computer Systems Labo-
ratory, Stanford Univ., Dec. 1983.

[6] F.Chow, M. Himelstein, E. Killian, and L. Weber, “Engineering a RISC
Compiler System,” Proc. Compcon '86 Conf., San Francisco, Calif.,
Mar. 4-6, 1986, pp. 132-137.

[71 R.F. Cmelik, S.I. Kong, D.R. Ditzel, and EJ. Kelly, “An analysis of
MIPS and SPARC instruction set utilization on the SPEC benchmarks,”
Proc. 2nd Int’l Conf. Arch. Support for Prog. Lang. and Oper. Sys.
(ASPLOS III), Santa Clara, Calif., Apr. 811, 1991, pp. 290-302.

[8] J. Cocke and P. Markstein, “Measurement of program improvement
algorithms,” Technical Report No. RC-8111 (#35193), IBM, Feb. 7,
1980.

[9] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck, Supercomputer Per-

627

Jormance Evaluation and the Perfect Benchmarks, Univ. of Illinois
Center for Supercomputing R&D Technical Report 965, Mar. 1990.

[10] M. Jazayeri and M. Haden, “Optimizing compilers are here (mostly),”
SIGPLAN Notices, vol. 21, no. 5, May 1986, pp. 61-63.

[11] M.S. Johnson and T.C. Miller, “Effectiveness of a machine-level, global
optimizer,” Proc. SIGPLAN '86 Symp. on Compiler Construction, Palo
Alto, Calif., June 25-27, 1986, pp. 99-108.

[12] D.E. Knuth, “An empirical study of Fortran programs,” Software—
Practice and Experience, vol. 1, 1971, pp. 105-133.

[13] D.S. Lindsay and T.E. Bell, “Directed benchmarks for CPU architecture
evaluation,” Proc. CMG ‘86 Conf., Las Vegas, Nev., Dec. 9-12, 1986,
pp. 379-385.

[14] S.S. Muchnick, “Here are (some of) the optimizing compilers,”
SIGPLAN Notices, vol. 21, no. 2, Feb. 1986, pp. 11-15.

[15] K. O’Brien, B. Hay, J. Minisk, H. Schaffer, B. Schloss, A. Shepherd,
and M. Zaleski, “Advanced compiler technology for the RISC sys-
tem/6000 architecture,” IBM RISC System/6000 Technology, SA23-
2619, IBM Corp., 1990, pp. 154-161.

{16] D.A. Pauda and M.J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Comm. ACM, vol. 29, no. 12, Dec. 1986, pp. 1,184~
1,201. i

[17] B.L. Peuto and L.J. Shustek, “An instruction timing model of CPU
performance,” 4th Ann. Symp. on Computer Architecture, vol. 5, no. 7,
Mar. 1977, pp. 165-178.

[18] C.G. Ponder, “An analytical look at linear performance models,” Law-
rence Livermore National Laboratory, Technical Report UCRL-JC-
106105, Sept. 1990.

[19] S. Richardson and M. Ganapathi, “Interprocedural optimization: Ex-
perimental results,” Software—Practice and Experience, vol. 19, no. 2,
Feb. 1989, pp. 149-170. :

[20] R.H. Saavedra-Barrera, A.J. Smith, and E. Miya, “Machine characteri-
zation based on an abstract high-level language machine,” IEEE Trans-
actions on Computers, vol. 38, no. 12, Dec. 1989, pp. 1,659-1,679.

[21] R.H. Saavedra-Barrera, CPU Performance Evaluation and Execution
Time Prediction Using Narrow Spectrum Benchmarking, PhD thesis,
Univ. of California, Berkeley, Technical Report No. UCB/CSD 92/684,
Feb. 1992.

[22] R.H. Saavedra and A.J. Smith, “Analysis of benchmark characteristics
and benchmark performance prediction,” paper in preparation, 1992.

[23] R.H. Saavedra and A.J Smith, Performance Characterization of Opti-
mizing Compilers, Univ. of Southern California Technical Report No.
USC-CS-92-525, Aug. 1992.

[24] L.J. Shustek, Analysis and Performance of Instruction Sets, PhD disser-
tation, Stanford Univ., May 1978.

[25] 1.P. Singh and J.L. Hennessy, “An empirical investigation of the effec-
tiveness and limitations of automatic parallelization,” Proc. Int’l Symp.
Shared Memory Multiprocessing, Tokyo, Japan, Apr. 1991, pp. 25-36.

[26] “SPEC,” SPEC Newsletter: Benchmark Results, vol. 1, no. 1, Fall 1989.

[27] M. Wolfe and T. Macke, “Where are the optimizing compilers,”
SIGPLAN Notices, vol. 20, no. 11, Nov. 1985, pp. 64-77.

Rafael H. Saavedra (S’87-M’92) received his PhD
from the University of California at Berkeley in
1992. He is assistant professor in the Computer
Science Department at the University of Southern
California.

628 > IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

Alan Jay Smith received the BS degree in electrical
engineering from the Massachusetts Institute of
Technology in 1971 and the MS and PhD degrees in
computer science from Stanford University, the last
degree in 1974. He was an NSF Graduate Fellow.

He is currently a professor in the Computer Sci-
ence Division of the Department of Electrical Engi-
neering and Computer Sciences at the University of
California at Berkeley, where he has been on the
faculty since 1974. His research interests include the
analysis and modeling of computer systems and
devices, computer architecture, and operating sys-
tems. He has published a large number of research
papers, including one that won the IEEE Best Paper Award for the best paper
in the IEEE Transactions on Computers in 1979.

Dr. Smith is a fellow of the IEEE and is a member of the Association for
Computing Machinery, the IFIP Working Group 7.3, the Computer Measure-
ment Group, Eta Kappa Nu, Tau Beta Pi,, and Sigma Xi. He is on the Board
of Directors (1993-1995) and was chairman (1991-1993) of the ACM Spe-
cial Interest Group on Computer Architecture (SIGARCH), was chairman
(1983-1987) of the ACM Special Interest Group on Operating Systems
(SIGOPS), was on the Board of Directors (1985-1989) of the ACM Special
Interest Group on Measurement and Evaluation (SIGMETRICS), was an
ACM national lecturer (1985-1986) and an IEEE distinguished visitor
(1986-1987), was an associate editor of the ACM Transactions on Computer
Systems (1982-1993), is a subject area editor of the Journal of Parallel and
Distributed Computing, and is on the editorial board of the Journal of Micro-
processors and Microsystems. He was program chairman for the
SIGMETRICS ’89/Performance '89 Conference, program cochair for the
Second (1990) and Sixth (1994) Hot Chips Conferences, and has served on
numerous program committees.

