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Measuring Cache and TLB Performance
and Their Effect on Benchmark Runtimes

Rafael H. Saavedra, Member, IEEE, and Alan Jay Smith, Fellow, IEEE

Abstract—In previous research, we have developed and pre-
sented a model for measuring machines and analyzing programs,
and for accurately predicting the running time of any analyzed
program on any measured machine. That work is extended here
by: 1) developing a high level program to measure the design and
performance of the cache and TLB units; 2) using those meas-
urements, along with published miss ratio data, to improve the
accuracy of our runtime predictions; 3) using our analysis tools
and measurements to study and compare the design of several
machines, with particular reference to their cache and TLB per-
formance. As part of this work, we describe the design and per-
formance of the cache and TLB for ten machines. The work pre-
sented in this paper extends a powerful technique for the evalua-
tion and analysis of both computer systems and their workloads;
this methodology is valuable both to computer users and com-
puter system designers.

Index Terms—Performance evaluation, execution time predic-
tion, memory hierarchy, processor caches, table lookaside buffers.

1. INTRODUCTION

T HE performance of a computer system is a function of the
speed of the individual functional units, such as the inte-
ger, branch, floating-point units, caches, bus, memory system,
I/O units, and of the workload presented to the system. In our
previous research [11], [13], [14], described briefly below, we
have measured the performance of the parts of the CPU on
corresponding portions of various workloads, but this work has
not explicitly considered the behavior and performance of the
cache memory. It is well known (see, e.g., [15]) that caches are
a critical component of any high performance computer sys-
tem, and that access time to the cache and the associated
misses are frequently the single factor most constraining per-
formance. In this paper we extend our work on machine char-
acterization and performance prediction to include the effect of
cache memories and cache memory misses.

Our research in the area of performance evaluation has fo-
cused on developing a uniprocessor machine-independent
model (the Abstract Machine Model) of program execution to
characterize machine, application performance, and the effec-
tiveness of compiler optimization. In previous papers we have
shown that we can measure the performance of a CPU on vari-
ous abstract operations, and can separately measure the fre-
quency of these operations in various workloads. By combin-
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ing these separate measurements, we can make fairly accurate
estimates of execution times for arbitrary machine/program
combinations [11], [12], [13], [14]. Our technique allows us to
identify those operations, either on the machine or in the pro-
grams, which dominate the benchmark results. This informa-
tion helps designers to improve the performance of future ma-
chines, and users to tune their applications to better utilize the
performance of existing machines. Recently, the abstract ma-
chine concept was used by Culler et al. to evaluate the mecha-
nisms for fine-grained parallelism in the J-machine and CM-5
[21].

The model presented in the previous papers omitted any
consideration of TLB and cache misses, i.e., program locality.
Our measurement technique involves the timing of operations
executed repeatedly within small loops; in such cases, few
cache and TLB misses are encountered. Thus for workloads
with high miss ratios, that technique will underestimate run-
times. Our results on the SPEC and Perfect benchmarks as
reported in [12] do not show large errors because the locality
on most of these programs is relatively high [9], [5].

In this paper we deal with the issue of locality and incorpo-
rate this factor in our performance model. We straightfor-
wardly extend our basic model to include a term which ac-
counts for the time delay experienced by a program as a result
of bringing data to the processor from different levels and
components of the memory hierarchy. We focus on character-
izing cache and TLB units by running experiments which
measure their most important parameters, such as cache and
TLB size, miss penalty, associativity and line (page) size; we
then present cache and TLB measurements for a variety of
machines. These measurements are then combined with pub-
lished cache and TLB miss ratios for the SPEC benchmarks to
compute the delay experienced by these programs as a result
of the cache and TLB misses. These new results are then used
to evaluate how much our execution time predictions for the
SPEC benchmarks improve when we incorporate these mem-
ory delays. We find that the prediction errors decrease in most
of the programs, although the improvement is modest. The
SPEC (Fortran) benchmark workload is then used to evaluate
the effect of memory delay in the overall performance of vari-
ous machines.

Finally, we discuss in some detail the performance differ-
ences between the caches and TLBs of four machines based on
the same family of processors. We find that the relative
benchmark results on these machines is explained by their
clock rates and memory systems.

This paper is organized as follows: Section II contains a
brief discussion of the Abstract Machine Performance model.
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Section III presents our approach to characterizing the memory
hierarchy and the experimental methodology followed
throughout the paper. The experimental results are presented
in Section IV. The effect of locality in the SPEC benchmarks
is contained in Section V, followed by a discussion of the re-
sults in Section VL

1. BACKGROUND MATERIAL

We have developed a performance model based on the con-
cept of the abstract machine that allows us to characterize the
performance of the CPU, predict the execution time of uni-
processor applications, and evaluate the effectiveness of
compiler optimizations. In this section we briefly discuss and
explain this model.

A. The Abstract Machine Performance Model

We call the approach we have used for performance
evaluation the abstract machine performance model. The idea
is that every machine is modeled as a high level language ma-
chine that executes the primitive operations of Fortran. We
have used Fortran for three reasons:

1) Most standard benchmarks and large scientific programs
are written in Fortran;

2) Fortran is relatively simple to work with;

3) Our work is funded by NASA, which is principally con-
cerned with the performance of high end machines run-
ning large scientific programs written in Fortran.

Our methodology applies as well to other similar high level
languages such as C, Ada, or Modula-3.

There are three basic parts to our methodology. In the first
part, we analyze each physical machine by measuring the exe-
cution time of each primitive Fortran operation on that ma-
chine. Primitive operations include things like add-real-single-
precision, store-single-precision, etc; the full set of operations
is presented in [11], [12]. Measurements are made by using
timing loops with and without the operation being measured.
Such measurements are complicated by the fact that some op-
erations are not separable from other operations (e.g., store) at
the source (Fortran) language level, and that it is very difficult
to get precise values in the presence of noise (e.8., cache
misses, task switching) and low resolution clocks [11}, [12].
We have also called this machine analysis phase narrow spec-
trum benchmarking. This approach, of using the abstract ma-
chine model, is extremely powerful, since it saves us from
considering the peculiarities of each machine, as would be
done in an analysis at the machine instruction level [8].

The second part of our methodology is to analyze Fortran
programs. This analysis has two parts. In the first, we do a
static parsing of the source program and count the number of
primitive operations per line. In the second, we execute the
program and count the number of times each line is executed.
From those two sets of measurements, we can determine the
number of times each primitive operation is executed in an
execution of the entire program.

The third part of our methodology is to combine the opera-

tion times and the operation frequencies to predict the running-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 10, OCTOBER 1995

time of a given program on a given machine without having
run that program on that machine. As part of this process, we
can determine which operations account for most of the run-
ning time, which parts of the program account for most of the
running time, etc. In general, we have found our runtime pre-
dictions to be remarkably accurate [12], [13). We can also
easily estimate the performance of hypothetical machines (or
modifications of existing machines) on a variety of real or
proposed workloads by replacing measured parameters in our
models with proposed or hypothetical ones.

It is very important to note and explain that we separately
measure machines and programs, and then combine the two as
a linear model. We do not do any curve fitting to improve our
predictions. The feedback between prediction errors and
model improvements is limited to improvements in the accu-
racy of measurements of specific parameters, and to the crea-
tion of new parameters when the lumping of different opera-
tions as one parameter were found to cause unacceptable er-
rors. The curve fitting approach has been used and has been
observed to be of limited accuracy [10]. The main problems
with curve-fitting are that the parameters produced by the fit
have no relation to the machine and program characteristics,
and they tend to vary widely with changes in the input data.

In [11] we presented a CPU Fortran abstract machine model
consisting of approximately 100 abstract operations and
showed that it was possible to use it to characterize the raw
performance of a wide range of machines ranging from work-
stations to supercomputers. These abstract operations were
also combined into a set of reduced parameters, each of which
was associated with the performance of a specific CPU func-
tional unit. The use of such reduced parameters permitted
straightforward machine to machine comparisons.

In [12], [13] we studied the characteristics of the SPEC,
Perfect Club, and other common benchmarks using the same
abstract machine model and showed that it is possible to pre-
dict the execution time of arbitrary programs on a large num-
ber of machines. Our results were successful in accurately
predicting ‘inconsistent’ machine performance, i.e., that ma-
chine A is faster than B for program X, but slower for program
y. Both of these studies assumed that programs were compiled
and executed without optimization.

In [14] we extended our model to include the effect of
(scalar) compiler optimization. It is very difficult to predict
which optimizations will be performed by a compiler and also t©©
predict their performance impact. We found, surprisingly, that
we could model the performance improvement due to optimiza-
tion as an improvement in the implementation of the abstract
machine (an “optimized” machine) while assuming that the be-
havior of the program remains unchanged. We showed that it 1s
possible to accurately predict the execution time of optimized
programs in the large majority of cases, with accuracy that was
only slightly less than that for unoptimized code.

B. Adding Locality to the Abstract Machine Model

The variations in execution time due to changes in locality are
not captured by our performance model, which ignores how the
stream of references affects the content of both the cache and the:
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TLB. This is a direct consequence of using a linear model, and it
is clearly expressed in the following equation

n
Tym = ZCLAB,M

i=1

(1

where T4 u is the total execution time of the program, Ciy4 is
the number of times operation i is executed by program A, and
P; » is the execution time of parameter i on machine M.

Equation (1) does not include a term to account for cache
and TLB misses. Nevertheless, we have found that with a few
exceptions (e.g., MATRIX300 without use of a blocking pre-
processor), our predictions have been quite good. This has
been the case because most of the programs that have been
analyzed (almost all of which are standard benchmarks) have
relatively low miss ratios.

It is straightforward to extend (1) to include cache and TLB
misses (and/or misses at any other level of the memory hierar-

chy):

n m

Tam = Z CaPy+ 2 FaDi s (2)

i=1 i=]
where F; 4 (faults) is the number of misses at the level i of the
memory hierarchy, and D,y (delay) is the penalty paid by the
respective miss. How many levels of the memory hierarchy
exist varies between machines, but in most machines there are
one or two levels of caches, a TLB!, main memory, and disk.
In order to use (2) we need:

1) to measure the number of misses at each level of hierar-
chy, or at least on those levels which significantly affect
the execution time, and

2) to measure the set of penalties due to different types of
misses.

Measurement of the number of misses by a given program for
a given memory hierarchy can be done either by trace driven
simulation (see e.g., [15], [16]) or by hardware measurement.
The former can be extremely time consuming for any but the
shortest programs ([1], [5]), and the latter requires both meas-
urement tools (a hardware monitor or logical analyzer) and ac-
cess to the necessary electrical signals. This measurement of
miss ratios, however, is beyond the scope of this paper; we are
principally concerned here with analysis of the memory hierar-
chy and performance prediction. We rely on measurements taken
by others [5] for the miss ratios used in this paper.

III. CHARACTERIZING THE PERFORMANCE
OF THE CACHE AND TLB

We have written a set of experiments (narrow spectrum
benchmarks or micro benchmarks) to measure the physical
and performance characteristics of the memory hierarchy in
uniprocessors, in particular, the primary and secondary (data)

1. The TLB is not a level in the memory hierarchy, but it is a high-speed
buffer which maintains recently used virtual and real memory address pairs
[15]. This functional unit, however, is an essential component of the memory
hierarchy, so to simplify our discussion in the rest of the paper we refer to it
as part of the memory hierarchy. Doing this does not affect in any way our
methodology or conclusions.
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caches and the TLB. Each experiment measures the average
time per iteration required to read, modify, and write a subset
of the elements belonging to an array of a known size. The
number of misses will be a function of the size of the array and
the stride between consecutive addresses referenced. From the
number of misses and the number of references, as we vary the
stride and array size, we can compute the relevant memory
hierarchy parameters, including the size of the data cache and
the TLB, the size of a cache line and the granularity of a TLB
entry, the time needed to satisfy a cache or TLB miss, and the
cache and TLB associativity. Other parameters such as the
number of sets in the cache or entries in the TLB are obtained
easily from the above parameters. Note that this technique only
permits us to measure the characteristics of the data (or uni-
fied) cache; measuring the performance of an instruction cache
would suggest the use of jump tables and/or self-modifying
code. The results in {S] show that instruction misses account
for very little performance loss for the SPEC benchmarks, and
we do not further consider that issue here.

At least one previous study used a similar, but much simpler
technique to measure the cache miss penalty, although the
measurement was made at the machine instruction level, not
using a high level language program. Peuto and Shustek [8]
wrote an assembly language loop which generated a predict-
able number of cache misses; from this, they were able to cal-
culate the cache miss penalty for the IBM 3033 and the Am-
dahl 470V/6. They also determined the effectiveness of the
write buffers in the 3033. For both machines, however, they
knew the cache design parameters (e.g., cache size) and so
didn’t need to deduce them.

A. Experimental Methodology

We explain how we measure data cache parameters by assum-
ing that there is only one level of the memory hierarchy to meas-
ure; to the extent that the characteristics of two levels (e.g.,
cache and TLB) are sufficiently different, it is straightforward to
calculate the parameters of each from these measurements. In
what follows we assume the existence of separate instruction and
data caches, although this is done only to simplify the discus-
sion; the instruction loop that we use is so small that the meas-
urements are virtually identical for a unitied cache.

We also assume that the data cache is virtually addressable,
i.e,, that an array which occupies a contiguous region of virtual
memory also occupies a contiguous region of cache memory
(with possible wraparound). By making this assumption, it is
possible to identify from the array access pattern which cache
set, relative to the start of the array, is referenced. For ma-
chines with real address caches, however, it is possible that the
virtual to real mapping is actually random and that there are
mapping conflicts in the cache that would not be present in a
virtually addressed cache. Our experience has been that the
results we obtain are generally consistent with our original
assumption.? To the extent that the data we present later seems

2. In practice, we can minimize this problem by running the experiments in
a machine that has been recently booted, when the physical memory has not
suffered fragmentation. Furthermore, it is always possible, from the measure-
ments, to detect when the results are unreliable due to memory mapping
conflicts.
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a little “‘noisy,” we believe that it is due to minor failures of
this assumption.

Assume that a machine has a cache capable of holding
C k-byte words, a line size of b words, and an associativity a.
The number of sets in the cache is given by C/ab. We also
assume that the replacement algorithm is LRU, and that the
lowest available address bits are used to select the cache set.
For a machine that did not use LRU replacement (e.g., the
IBM 3033 [15]) in the cache, this technique would not work
without modifications.

Each of our experiments consists of computing a simple
floating-point function on each subset of elements taken from a
one-dimensional array of N k-byte elements. We run each ex-
periment several times to eliminate experimental noise [11].
The reason for the (arbitrary) floating point computation is to
avoid having a measurement loop which actually does nothing
and is therefore eliminated by the compiler. The subset in-
cludes the following elements (by sequence number): 1, s + 1,
25+ 1,.., N—s+ 1. Thus, each experiment is characterized by
a particular value of N and s. The stride s allows us to change
the rate at which misses are generated by controlling the num-
ber of consecutive accesses to the same cache line, page, etc.
The magnitude of s varies from 1 to N/2 in powers of two.

Computing a new value on a particular element involves
first reading the element into the CPU, computing the new
value using a simple recursive equation, and writing the result
back into the cache. Thus, on each iteration the cache gets two
consecutive requests, one read and one write, both having the
same addréss. Of these two requests only the read can generate
a cache miss, and it is the time needed to fetch the value for
the read that our experiments measure. Note that we are im-
plicitly assuming a blocking cache; i.e., one which halts on a
cache miss even if the target of the miss is not immediately
used. In the case of nonblocking caches, we would have to run
two experiments, one in which the data was used immediately
(to determine the miss penalty) and one in which the data was
not used immediately (to show the nonblocking nature of the
cache).

Depending on the values of N and s and the size of the cache
(C), the line size (b), and the associativity (a), there are four
possible regimes of operation; each of these is characterized by
the rate at which misses occur in the cache. A summary of the
characteristics of the four regimes is given in Table I.

TABLE
CACHE MISS PATTERNS AS A FUNCTION OF N AND §
Regime | Size of Array Smge Frequency of Misses Time per Iteration
1 1SNsSC 1SsSN2 10 misses Too—miss
2a C<N 18s5sb one miss every b/s elements | Topomus + D5/t
2.b C<N bSs<N/a one miss every element Tac—miss + D
2.c C<N N/a < s SN2 nO misses T o miss

No misses are generated when N < C. When N > C, the rate of misses is deter-
mined by the stride between consecutive elements. D is the delay penalty.

REGIME 1: N £ C. The complete array fits into the cache and
thus, for all values of the stride s, once the array is loaded
for the first time, there are no more misses. The execution
time per iteration (T,, ;) includes the time to read one
element from the cache, compute its new value, and store
the result back into the cache. Note that in a cache where
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the update policy is write-through, T,, »;,, may also include
the time that the processor is forced to wait if the write
buffer backs up.

REGIME 2.a: N> C and 1 < 5 < b. The array is bigger than the
cache, and there are b/s consecutive accesses to the same
cache line. The first access to the line always generates a
miss, because every cache line is displaced from the cache
before it can be re-used in subsequent computations of the
function. This follows from condition N > C. Therefore, the
execution time per iteration is T, n;,, + Ds/b, where D is the
delay penalty and represents the time that it takes to read the
data from main memory and resume execution.

REGIME 2.b: N> Cand b < 5 < N/a (a > 1). The array is bigger
than the cache and there is a cache miss every iteration, as
each element of the array maps to a different line. Again.
every cache line is displaced from the cache before it can be
re-used. The execution time per iteration i8S 7, + D.

REGIME 2.c: N> C and N/a < s < N/2. The array is bigger than
the cache, but the number of addresses mapping to a single
set is less than the set associativity; thus, once the array is
loaded, there are no more misses. Even when the array has
N elements, only N/s < a of these are touched by the ex-
periment, and all of them can fit in a single set. This follows
from the fact that N/a < 5. The execution time per iteration
is Tno—mi.\'.v-

C=32x4bytes
N=32
s=4

Pl

=
9

o
=~
oo
kS o
1

. read & miss

1 miss every clement
. poeps

$=8

b=4x4bytes
a=2

C=32x4bytes
N=64

Fig. I. The figure illustrates the four different regimes of cache accesses pro-
duced by a particular combination of N and s. Each diagram shows the map-
ping of elements to cache entries, assuming that the first element of the array
maps to the first entry of the first line in the cache. The replacement policy 1s
LRU. The four diagrams in the upper part of the figure correspond to regime
1. For the diagram in the lower half of the figure, the leftmost diagram corre-
spond to regime 2.a, the two in the middle to regime 2.b, and the rightmost to
regime 2.c. The sequence of elements referenced by the experiment is: 1. s +
IL2s+1,..,N-s+ 1
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Fig. 1 illustrates the state of the cache in each of the four
regimes. In these examples we assume that the cache size is
large enough to hold 32 4-byte elements, the cache line is 4
elements long, and the (set) associativity is 2. We also assume
that the replacement policy is LRU, and that the first element
of the array maps to the first element of the first line of the
cache. On each of the cache configurations we highlight those
elements that are read and generate a miss, those that are read
but do not generate a miss, and those that are loaded into the
cache as a result of accessing other elements in the same line,
but are not touched by the experiment. The four diagrams in
upper part of the figure corresponds to regime 1. Here the size
of the array is equal to the cache size, so, independently of the
value of s, no misses occur. If we double N, which is repre-
sented by the lower half of the figure, then cache misses will
occur at a rate which depends on the value of 5. The leftmost
diagram represents regime 2.a, the middle two diagrams re-
gime 2.b, and the rightmost diagram regime 2.c.

B. Measuring the Characteristics of the Cache

By making a plot of the value of the execution time per it-
eration as a function of N and s, we can identify where our
experiments make a transition from one regime to the next, and
using this information we can obtain the values of the parame-
ters that affect the performance of the cache and the TLB. In
what follows we explain how these parameters are obtained.

B.1. Cache Size

Measuring the size of the cache is achieved by increasing
the value of N until cache misses start to occur. When this
happens the time per iteration becomes significantly larger
than T,,_n;,,. The cache size is given by the largest N such that
the average time iteration is equal to Tpy_pmiss-

B.2. Average Miss Delay

An experiment executing in regime 2.b generates a miss
every iteration, while one in regime 1 generates no misses, so
the difference between their respective times gives the memory
delay per miss. An alternative technique is to measure the dif-
ference in the iteration time between regime 2.a and regime 1,
and then multiply this difference by b/s, the number of refer-
€nces per miss.

B.3. Cache Line Size

In regime 2.a, the rate at which misses occur is one every
bls iterations. This rate increases with s, and achieves its
maximum when s 2 b, when there is a miss on every iteration
(regime 2.b). The value of s when the transition between re-
gimes 2.a and 2.b gives the cache line size.

B.4. Associativity

The associativity of the cache (for a > 2) is obtained in the
following way. Assume that our experiments cover a region of
memory N which is larger than the cache size C, and that the
stride s equals the cache line size b. It is clear that under these
assumptions a cache miss occurs on every reference and that
the number of elements mapping to a set is larger than the as-
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sociativity. If we start increasing the stride, as long as its value
is less than C/a (the number of different sets in the cache), the
number of data elements mapping to a particular set in the
cache remains the same, while the number of sets touched de-
creases. Once the stride crosses the C/a boundary only a single
set is referenced, and the number of elements mapping to this
set starts to decrease. When the stride is maximum N/2 only
two elements are being map to the surviving set. Therefore, if
at some point the effect of cache misses disappears, then the
point where this occurs using the formula a = N/s gives us the
associativity. Otherwise, it is obvious that the cache has to be
direct mapped.

C. Measuring Parameters of the TLB

The phenomena observed when we consider the TLB is the
same as for the cache; the only difference is in the particular
values of N and s where the changes in behavior occur. The
measurements we present in the next section show the behav-
ior of both the cache and the TLB when both are active, and in
some regions their effects overlap. In all cases. however. it is
relatively straightforward to isolate the effects of one from the
other.

IV. EXPERIMENTAL RESULTS FOR CACHES AND TLBs

We ran our cache evaluation benchmark on several comput-
ers, and we present the results in Figs. 2-4 and in Table II. The
graphs depicted in the figures show the average time per itera-
tion as a function of the size of the array and the stride, while
Table II summarizes the cache and TLB parameters extracted
from the profiles. The units used in the graphs are: bytes for
measures of size, and nanoseconds for time related magni-
tudes. Each curve on each of the graphs corresponds to a par-
ticular array size (N), while the horizontal axis represents dif-
ferent stride values (s). We only show curves for array sizes
that are greater or equal to the size of the cache.

The four basic regimes for the different cache and TLB miss
patterns can be seen clearly in most of the figures. A very good
example is the results for the IBM RS/6000 530 (Fig. 2, lower-
right graph). On this machine, regime 1 is represented by the
curve labeled 64K. The other three regimes of cache misses
are in the three curves with labels 128K, 256K, and 512K. The
first segment on each curve, where the value of the average
time per iteration increases in proportion to s, corresponds to
regime 2.a. The next segment of the curve, where the time per
iteration is almost constant, corresponds to regime 2.b, and the
sudden drop in the time per iteration at the end is where re-
gime 2.c starts. In the same graph, curves for array sizes of
IM, 2M, and 4M show the same regimes for both the cache
and TLB.

The results in Table II for the DEC 3100, DEC 5400, MIPS
M/2000, and DEC 5500 show the differences in their cache
organizations. These four machines use the R2000/R2001 or
R3000/R3001 processors from MIPS Corporation (now part of
Silicon Graphics Inc.). All have a 64KB direct mapped cache
and a fully-associative TLB with 64 entries with an entry
granularity of 4,096 bytes. The main ditference between their
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Fig. 2. Profile of the performance of the memory hierarchy (cache and TLB)
on the DECstation 3100, MIPS M/2000, DECstation 5400, and IBM RS/6000
530, respectively. Each curve indicates the amount of address space touched
by the experiment and the stride represents the distance between two consecut-
ive addresses.
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Fig. 3. Profile of the performance of the memory hieraschy (caches and TLB)
on the DECstation 1, Sparcstation 1+, HP 9000/720, and VAX 9000. respec-
tively. Each curve indicates the amount of address space touched by the ex-
periment and the stride represents the distance between two consecutive ad-
dresses.
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Fig. 4. Profile of the performance of the memory hierarchy (cache and TLB)
on the DECstation 5500 and DEC Alpha 3000/800, respectively, running at
250 MHz. Each curve indicates the amount of address space touched by the
experiment and the stride represents the distance between two consecutive
addresses.

respective caches are the line size and the miss penalty. The
DEC 3100 has the smallest line size, only 4 bytes [3]; the
DEC 5400 and 5500 have line sizes of 16 bytes, and the
MIPS M/2000 has the largest line size of 64 bytes. The miss
penalty per line also shows a wide range of values, from 540
ns for the DEC 3100 to 1680 ns for the DEC 5400.

It is interesting to compare the ratios between the cache and
TLB miss penalties and the execution time of a single iteration
with no misses (Tpomiss), Which are given in Table II. Although
the no-miss time of the test is not a good measure of the true
speed of the processor, it at least gives an indication of the
basic floating-point performance (add and multiply) and helps
to put in perspective the miss penalties. The results show a
large variation in the ratio of the cache penalty to the no-miss
iteration time, ranging from 0.45 on the DEC Alpha 3000/800
to 4.00 on the VAX 9000. With respect to TLB misses, the
range of values goes from 0.53 to 6.35, with the highest value
corresponding to the IBM RS/6000 530.

Note that a high miss penalty does not necessarily reflect a
bad cache design. The miss penalty may be high as a tradeoff
for a low miss ratio, as the result of cost/performance trade-
offs, as the result of an optimization for low miss ratio work-
loads, or as a result of a deliberate slowing down of a design in
order to hit a specific product price/performance point, as dis-
cussed below in Section VI.
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TABLE II
CACHE AND TLB PARAMETERS MEASURED
USING THE MEMORY HIERARCHY BENCHMARK
Cache Parameters
DEC 3100 | DEC 5400 | DEC 5500 | MIPS M/2000 | VAX 9000
e e
cache size 64 KB 64 KB 64 KB 64 KB 128 KB
associativity 1-way 1-way f-way t-way 2-way
line size 4 bytes 16 bytes 16 bytes 64 bytes 64 bytes
miss penalty {(word) 540 ns 1680 ns 750 ns 800 ns 740 ns
nonnalized penalty 0.6490 2.2400 1.875 1.2389 4.0000
miss penalty (line) 540 ns 1680 ns 750 ns 1440 ns 980 ns
normalized penalty 0.6490 2.2400 1.875 2.5477 52973
miss penalty / word 540 ns 420 ns 188 ns 90 ns 6ins
normalized penaity 0.64%0 0.5600 0.4700 0.1592 0.3297
virtual ing no no no no no
TLB Parameters
DEC3100 | DEC 5400 | DEC 5500 | MIPS M/2000 | VAX 9000
e
region covered 256 KB 256 KB 256 KB 256 KB 8 MB
sum. of entries 64 64 64 64 1024
associativity 64-way 64-way 64-way 64-way 2-way
entry granularity 4096 bytes | 4096 bytes | 4096 bytes 4096 bytes 8192 bytes
miss penalty (entry) 480 ns 400 ns 260 ns 350 ns 280 ns
normalized penalty 0.5769 0.5333 0.6500 0.6194 1.5135
page size 4096 bytes | 4096 bytes | 4096 bytes 4096 bytes 8192 bytes
Cache Parameters
RS/6000530 | HP 90007720 | Sparc1 | Sparc1+ | 1st- DEC 3000/800 - 2nd
cache size 64 KB 256 KB 128 KB 64 KB 8 KB 2MB
associativity 4-way {-way 1-way 1-way 1-way 1-way
line size 128 bytes 32 bytes 16 bytes | 16 bytes 32 bytes 32 bytes
miss penalty (word) 350 ns 360 ns 780 ns 560 ns 40 ns 285ns
lized penalty 2.0588 1.6744 0.5652 0.5091 0.4444 3.1666
miss penalty (line) 700 ns 480 ns 780 ns 560 ns 40 ns 285ns
normalized penalty 4.1176 22326 0.5652 0.5091 0.4444 3.1666
miss penalty / word 22ns 60 ns 195 ns 140 ns 10ns 72ns
lized penalty 0.1294 0.2791 0.1413 0.1273 0.1111 0.8000
virtual prefetching yes no no no no 0o
TLB P,

RS/6000530 | HP 9000/720 | _Sparc 1 Sparc 1+ | DEC 3000/800
region covered 512KB 512KB 8§ MB 1 GB 256 KB
num. of entries 128 64 64 64 32
associativity 2-way 64-way 64-way 64-way 32-way
entry granularity 4096 bytes 8192 bytes 128 Kbytes | 16 Mbytes 8192 bytes
miss penalty (entry) 1080 ns 940 ns 880 ns n.a. 150 ns
normalized penaity 6.3529 4.3721 0.6377 na. 1.6666
page size 4096 bytes 8192 bytes 4096 bytes | 4096 bytes 8192 bytes

The normalized penalty is the ratio between the cache penalty time and the
no-miss execution time per iteration (all accesses hit in the cache). We define
virtual prefetching as the ability of the machine to satisfy cache misses be-
fore the subunit that consumes the data needs the values, which is manifested
in the execution time as a zero-cycle miss delay. The miss penalty per line is
the delay that the program will experience on each uccess if it traverses a
data structure in such way that each reference touches a different line. The
miss penalty (word) is the average miss penalty if the data is traversed se-
quentially. The DEC Alpha 3000/800 results are reported for both the first
(on chip) level and second level caches.

A. Effective Prefetching

An interesting characteristic of the IBM RS/6000 which can
be observed in our measurements is what we call effective
prefetching. The cache does not have hardware support to do
prefetching [7], but it can produce the same effect, that is,
fetching cache lines before they are needed by the computa-
tion, thus preventing the processor from stalling. This is ac-
complished in the RS/6000 by its independent integer, branch,
and floating-point units. In this respect the IBM RS/6000 be-
haves like a decoupled architecture [16], [6], [22]. The integer
and branch units can execute several instructions ahead of the
floating-point unit in floating-point intensive code and gener-
ate loads to the cache that even in the presence of misses arrive
before the floating-point unit requires the values [7]. Because
the execution time of our test is dominated by floating-point
operations, the illusion of prefetching is present in our meas-
urements. This is evident on the left side of the RS/6000
curves (regime 2.a), independent of the address space region;
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as long as the stride is less or equal to 16 bytes (four words),
there is no miss penalty. The extent to which this type of pre-
fetching is effective depends on the amount of computation per
memory access.

B. TLB Entries with Multiple Granularities

The results for the Sparcstation 1 and 1+ show that their re-
spective TLB entry granularities are 128 Kbytes and more than
2 Mbytes, respectively. The reason for these large numbers is
that the TLB entries can map memory regions using four dif-
ferent levels of granularity. Furthermore, entries with different
granularities can coexist in the TLB. The page tables for these
machines supports up to four levels [2]. At each level, there
can be either a page table entry (PTE) or a page table pointer
(PTP) which points to another page table. A PTE can thus
point to a region of 4GB (level 0), 16MB (level 1), 256KB
(level 2), or 4KB (level 3). Each PTE in the TLB is tagged to
indicate the size of the region it covers, and translation is done
accordingly. The operating system determines the coverage of
a PTE at the time the region is mapped. The availability of
variable granularity PTEs has a number of advantages; in par-
ticular, it allows very large memories to be referenced by small
TLBs. Note that the multiple granularity of the TLB entries in
the Sparcstation 1+ cannot be deduced from the data presented
here; if needed, however, experiments could be designed to
make such measurements.

V. THE EFFECT OF LOCALITY IN THE SPEC
BENCHMARKS

In this section we combine the experimental cache and TLB
results obtained in the last section with the cache and TLB miss
ratios for the Fortran SPEC benchmarks to compute the memory
delay caused by misses. We then use these results to evaluate:

1) whether our execution time predictions improve when we
incorporate the memory delay experience by the pro-
grams; and

2) how much impact does each cache and TLB configura-
tion have on the overall performance of their respective
machines.

A. The SPEC Benchmarks Cache and TLB Miss Ratios

The experimental cache and TLB measurements of the
memory hierarchy obtained in the last section can be combined
with previously computed miss ratios on SPEC Fortran
benchmarks to compute the specific miss ratios that each ma-
chine experiences.

Gee et al. [4], [5] measured the cache and TLB miss ratios
for the entire suite of SPEC benchmarks and have compared
their results against other measurements based on hardware
monitors, very long address traces, and/or including operating
system and multiprogramming behavior. It was found that the
instruction cache miss ratios for the SPEC benchmarks, and
the data cache miss ratios for the scalar SPEC benchmarks,
were quite low relative to published workload measurements;
the data cache miss ratios for the floating point measurements
were closer to previously observed results.
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In this section we use their results for the Fortran SPEC
benchmarks to obtain the approximate miss ratios for the dif-
ferent cache and TLB configurations characterized in the pre-
vious sections. We note that the miss ratios reported in [5], [4]
were obtained for a specific system, and that measurements for
different systems might be different. Their measurements were
obtained in the following way:

1) by using memory reference streams taken from the
DECstation 3100, which contains the MIPS 2000 micro-
processor;

2) by using specific Fortran and C compilers; and

3) by running each program in a uniprogramming mode, to
completion, without consideration of any operating sys-
tem activity (of which there was very little).

For these reasons, their miss ratios only approximate the actual
miss ratios on machines other than the DECstation 3100.
While we are aware of no cross-architectural comparisons
showing that data miss frequencies on different machines are
similar, we believe that the total number of data misses should
be reasonably close on different machines, based on our un-
derstanding of the issue, and the remainder of this paper relies
on that assumption.

TABLE I
CACHE AND TLB Miss RATIOS, FOR CACHES OF THE APPROPRIATE
S1ZE AND CONFIGURATION, FROM GEE ET AL. [4], {5]

Cache Miss Ratios

wachine DODUC | FPPPP | TOMCATV | MATRIX300 | NASA7 | SPICE2G6 | A
DECstation 3100 || 0.0280 | 0.0814 | 02218 01860 | 02470 | 01758 | 01566
DECstation 5400 | 0.0140 | 0.0407 | 0.1108 00930 | 01235 | 008m™ | 00783
DECsiation 5500 || 0.0140 | 00407 | 01108 00930 | 01235 | 0087 | 00783
MIPS M2000 00107 | 00277 | 00501 00763 | 00977 | 00648 || 00346
VAX 9000 00004 | 00001 | 00188 o202 | eosss | 09317 | om3
[BMRS/6000530 || 00003 | 8.0001 |  0.0004 00670 | 00703 | 00380 | 00309
HP 90007720 ocoer | 00342 | 0061 0067 | 00703 | 00371 | 0048
Sparcsiatios 1 00071 | 00405 | 0.1101 00881 | 01100 | 00698 | 00709
Sparcstatioa 1+ il 0.0140 | 00407 | 0,110 00930 | 04235 | 0087 | 00783

wenge || 00098 | 00340 | 0.052 00882 | 01139 | 00757 | 00686

TLB Miss Ratios

mackine SODUC | ForPP | TOMCATV | MATRIX300 | NASAT | SPICE2GC | Average
oo 310 | 00000 | 0.0000 | 0.0003 00003 | 0049 | 0008 [ 00242
DECsation $400 || 0.0000 | 0.0000 |  0.0003 00093 | 00409 | 00043 | 00242
DECstation $500 || 0.0000 | 00000 |  0.0003 00093 | 00409 | 0004s | 00242
MIPS M72000 00000 | 00000 | 00003 00993 | 00409 | 00048 | 00242
VAX 9000 0.0000 | 00000 |  0.0000 00000 | 00000 | 00000 | 00000
BM RS/6000530 || 0.0000 | 00000 |  0.0019 0019 | 00410 | o003 | oot
HP 90007720 00000 | 0.0000 |  0.0001 00503 | 00266 | ogol0 } 00130
Sparcsmiion 1 00000 | 0.0000 |  0.0000 00000 | 00000 | 00000 | 00000
$ 1o || 00000 { 00000 | 0.0000 00000 | 00000 | 00000 1 00000

avengo 30000 | 00000 | 00004 | 00s% | 00257 | 00077 | 00148

In Table I we present the cache and TLB miss ratios for
the different machines. All the results, except those for the
DECstation 3100, were obtained by using the parameters
shown in Table II and using the results published in {5], [4].
The cache miss ratios for the DECstation 3100 were not ob-
tained directly from their tables; the block size on this machine
is only 4 bytes, while the cache miss ratios published in [5]
were computed for block sizes ranging from 16 to 256 bytes.
However, we have made a rough approximation of the miss
ratios on the DECstation 3100 by doubling the results com-
puted for a line size of 16 bytes. We did this based on the ob-
servation that the precision of floating-point numbers used in
the Fortran SPEC benchmarks is 8 bytes, and hence on a ma-
chine with a 32-bit memory interface, reading or writing the
second part of a floating-point number never generates a miss,
if the line size is at least 8 bytes long. On the other hand, when
the line size is only 4 bytes long, if the first part of the float-
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ing-point number misses, then the second part also generates a
miss. (An alternate approach would be to use the “ratio of ra-
tios” from [17], which would suggest increasing the data miss
ratios by around a factor of 2.5.)

In Table III, the smallest cache miss ratios for each of the
programs are highlighted. The effect of associativity and a
large block size can be seen in the miss ratios of the IBM
RS/6000 530. The average miss ratio on this machine, which
has a 64KB, 4-way set associative cache with a 128-byte block
size, is 0.0309. Even though the RS/6000 has a very high miss
penalty, the absolute loss of performance from cache misses
can be seen from Table IV to be the smallest of all of the ma-
chines shown. It is also interesting to note that the VAX 9000
has the lowest average cache miss ratio of all machines, al-
though it also has the highest normalized miss penalty (the
ratio between the cache miss penalty and the no-miss execu-
tion time per iteration). This machine has a 128KB, 2-way set
associative cache with a 64-byte line. Hence, at least with re-
spect to this particular workload, it is not the machine having
the largest cache size, longest cache line, highest degree of
associativity, or the smallest miss ratio, that gives the best per-
formance, but the one which combines the four factors in the
most effective way.

TABLE IV
ToTAL EXECUTION TIME PENALTY (IN SECONDS)
DUE TO CACHE MISSES AND TLB MISSES

Exseution Timoe Penalty: Cache
machime DODUC FPPPP. TOMCATY | MATRDOX NASA? SPICE2G6 Total
Py e o

DECstaucs 3100 441(127) | 3329 (5.28) | 465 (B.3) 65.39 (5.94) | 31481 (8.31) | 293.41(1061) ¥
DECaation S400 || 6.36 (2.12) | 5178 (9.03) | §5.07(15.93) | 10249 (11.21) | 489.70 (15.28) | 611.97 (13.09) || 1347.37 (15.09)
DECaustion $500 | 3.06 (1.71) | 23.12 (7.30) | 3798 (1076) | 4578 (7.21) | 218.61 (9.83) | 27320(1227) || 601.73 (10.14)
MIPS M/2000 250(136) | 1678 (1.29) | 1330 (3.49) | 40.04 (S5.16) | 184.47 (873) | 21483 (493) [i 476.93 (5.42)

VAX 9000 0.09(017) | 006 (0.14) | 635 (7.33) | 1417 (RO1) | 10287Q0.73) | 9721 (63%) || 22075 Q28
IBM RSA000 530 J{ 0.03 (0.02) | 003 (0.03) | 150 @77 | 1538 @50) | $8.07 (3.76) | SS.12 (231) {| 13003 (262)
HP 000720 001 (©01) | 932(13.57) | 1136 (666) | 1603 79 | $9.73 (5.02) | 5535 (.61) | 15181 (4.19)
SPARCatation | 162(047) | 2392 (7.10) | 3921 (7.37) | 45.00 (3.99) | 20251 (4.12) | 22562 (6.70) || 537.96 (5.00)
SPARCatation 1+ |l 229 1726 28.36_(5.09) 34.16 163.23 Q.1 203.99 (4.54) || 44929
avenge 232085 | 19.51 (5.86) | 31.42(7.36) 4211 (544) | 19933 ®35) | 236740.7) $31.44 (7.05)

Execution Time Penalty: TLB
machise DODUC FPPPP TOMCATY | MATRIX300 NASA? SPICE2G6 Toul
DECaation 3100 | 0.00 (0.00) 0.00 (0.00) 0.07 @.01) 127T2M) 46.34 (1.14) 9.55 (027 2723 (0.7%)
DECaation 400 [ 0.00(0.00) [ ©.00(000) | ©00S@OI) | 2505(263) | 3861 (1.06) 796 (0.20) 726701
DECamion 3500 || 000 0.00) [ 0.00(0.00) | 004(DO1) | 1654 RS | 25.100.04) 517 021) 4725073

MIPS M2000 00(000) | 000(000) | 00S@ON | 20N | 3BMIN 6615 || 63.60(069)
VAX 9000 000(0.00) [ Q00(0.00) |  0.00®00) 0.00@00) | .00 @.00) .00 (0.00) 0.00 (0.00)
M RSA000530 (| 000 (000) | 000(000) | 094 (048) | 65.11(1153) | 10451 (698) | 1701070 || 1875708
HP 9000720 Q00(0.00) | 0.00(000) | 004Q02) | 302(S4D |  $5.02(4.56) 3.90(0.29) 9198 Q39
Sparcation | €000.00) | 0.00(000) | 000 @00) 0.00 (8.00) 000 0.00) 0.00(0.00) 0.00 0.00)
Spuresaicn 1+ |l 000(000) | 000(000) | 000 @00) 0,00 (0.00) .00 (0.00) 0,00 (0.00) 0.00 (0.
average 000(0.00) | GO00(0.00) | O.A3(0.065) | 21.4703.09) | 3415 (1.82) 52015 6137 (1.03)

The numbers in parentheses represent the percentage of the no-miss execu-
tion consumed by cache (TLB) misses. The delay for each program and ma-
chine combination is computed from the miss ratios and the average memory
delay measurements.

With respect to the TLB, only three of the six programs
exhibit TLB miss ratios that measurably affect the execution
time of the programs on the DECstations, MIPS M/2000, IBM
RS/6000 530, and HP 9000/720. On these machines, the TLB
miss ratio for MATRIX300 is almost 0.10, and for NASA7 it is
close to 0.04. Furthermore, the degree of associativity appears
not to affect the TLB miss ratios on these two programs. The
results in [4], however, indicate that a TLB with 256 entries,
2-way set associative, and with an entry granularity of 8KB
will have miss ratios of less than 0.0001 on all SPEC bench-
marks. Thus, we expect that on future machines, the current
SPEC suite will not be effective in testing TLB performance.

B. Execution Time Delay Due to Cache and TLB Misses

In Table IV we combine the cache and TLB miss ratios of
the SPEC Fortran programs with the memory delays measured

on each of the machines to compute the execution time penalty
due to cache and TLB misses. The results show that the delays
due to TLB misses on benchmarks MATRIX300 and NASA7
are comparable to the delays due to cache misses on the IBM
RS/6000 530 and HP 9000/720. Moreover, on the IBM
RS/6000 530 the total delay due to TLB misses (187.57 sec) is
larger than the delay due to cache misses (130.13). The reason
for this is that in both machines the delay penalties due to TLB
misses are significantly larger than the cache miss penalties
(1080 ns vs. 350 ns on the IBM and 940 ns vs. 360 ns on the
HP). For the others, the gaps between the cache and TLB
penalties are much smaller.

C. Execution Prediction with Locality Delay

We now have estimates of the execution time delays due to
cache and TLB misses and in this section we determine
whether including that factor improves our execution time
predictions. We do this analysis twice, once with the
SPICE2G6 benchmark and once without; this is because our
original prediction (see [12], [13]] and Table VI) for that pro-
gram was significantly high, and thus adding additional delays
will not only make that prediction worse, but could obscure an
otherwise general improvement. A summary of the prediction
errors is given in Tables V and VI. The complete results, in-
cluding the individual execution time predictions and predic-
tion errors are given in [12]. In the tables, a negative
(alternatively positive) average error means that our prediction
was lower (greater) than the actual execution time.

TABLE V
SUMMARY OF PREDICTION ERRORS BY MACHINE
Ex Spioe2g6 Included
Without Latsacy With Latency Without Latescy With Latency

machioe aversge | rootmean | aversge | rootmean f aversge | rootmean | aversge | root mean
b | e | wuee | emx | sgous | emox | aquwe | evor | sguwe |

DECstation 3100 -956% | 1434% ~330% 1H47% || -147% | 2062% 539% | 2252%

DECstation 5400 -3 % | 12T % 1% 1HO01% || -090% 19.00 % 1021% | 2359%

DECsation 5500 | -1834% | 2281% | -~1136% | 17.02% § -7.29% | 2029% 079% | 2955%

MIPS M22000 $91% | 1665% ~451% 1324% §-339% 1520% | ~3.08% 1220%

VAX 9000 644 % | 2400% ~024% | 2057% § -807% | 2296% | -191% | 194 %

IBM R$/6000 530 064% | 2095% 542% | 1935% 700% | 24384% 1148% | 2456 %

HP 9000720 ~11.40% | 2248% —441% | 2032% | -635% | 21.76% | 0.11% | 2051 %

Sparcstation | -6T3% | 2284% ~243% | BOI% 050% | 2566 % S.13% | 2741%

Sﬂoﬂ i+ ~1556% | 2326% | -1283% | 2178% 8§ 657% | 2231% | -957% | 2281 %

overall -5958% | 042% -354% | 18.06% || -3.86% | 2293 % 237% | 278 %

The prediction errors under the label “Spice2g6 Excluded” are computed on
five of the six Fortran SPEC benchmarks, while those under the lubel
“Spice2g6 Included” are computed over the six benchmarks.

The results in Table V indicate that if the results for bench-
mark SPICE2GG6 are not considered, then the average error
decreases in magnitude for all but one machine (the IBM
RS/6000), and the root mean square (rms) error also decreases
for all but one machine (the Sparcstation I). The overall aver-
age error decreases from ~9.58% to —3.54%?3, while the rms
error decreases from 20.42% to 18.06%. The rms error on the
Sparcstation 1 increases because our predictions on FPPPP
and TOMCATV have a positive error even when locality ef-
fects are ignored. Likewise, the average positive error for the
RS/6000 increases. The skewness in the distribution of average
errors appears to decrease when locality is taken into account.
When locality is ignored, the average errors range from ~18.84

3. Averaging positive and negative errors can be misleading, because they
tend to cancel each other. For this reason we also report the root mean square
errors (rms) which quantify the absolute deviation.

v
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to +0.64, but with the delay factor the errors range from
-12.83 t0 +5.42.

If we include SPICE2G6, then we see that the overall rms er-
ror decreases very little, from 22.92% to 22.78%, while the av-
erage error changes from -3.86 to +2.37. The distribution of
average errors, however, is less skewed. In fact, when locality is
ignored, the number of machines with negative and positive av-
erage errors are 7 and 2, respectively. The corresponding num-
bers when our predictions take into account locality are 4 and 5.

With respect to the programs (Table VI), the results show
that the overall rms errors improve for four out of the six
benchmarks. The only benchmarks for which the rms error
increases are DODUC and SPICE2G6. Although the overall
rms error on DODUC increases, the individual predictions
show that on eight of the nine machines the prediction error
decreases or remains constant [12]. The reason why the overall
error increases is because the error on the MIPS M/2000,
which is the one that increases, is much larger than the other
eight errors.* Of all the programs, the one which experiences
the largest improvement is MATRIX300, where the average
error decreases from -31.77% to -23.80% (from 33.21% to
26.55% rms error).

TABLE VI
SUMMARY OF PREDICTION ERRORS BY PROGRAM
Withowt Lateacy ‘With Latency
program average | rootmean | average | rootmean
[-100. 9 gum eImor uare
DODUC 026% | 530% 0358% | S471%
FPPPP -382% | 2% 151% | 2251%
TOMCATV || -367% | 1420% 300% | 1327%
MATRIX300 || -31.77% | 3321% | -2380% | 2655%
NASA7 839% | 1462% 1.00% | 1458%
e =S o
overall (1) | —9.58% | 2041% | -354% | 1806%
SPICE2G6 2837% | 3598% | 3568% | 4281%
overall @) || —386% | 22.78% 237% | 2902%

Even when the rms error of DODUC increases when the cache and TLB miss
delay is included, on eight of the nine machines the prediction error decreases.

D. The Effect of the Memory System on Performance

In this section we use our earlier results to evaluate the ef-
fect of the different memory systems on the overall perform-
ance of the machines. We do this by computing, for each of the
Fortran SPEC benchmarks, a new SPECratio which is our es-
timate of the performance of that program on that machine,
given zero cache and TLB misses.

The baseline SPECratios we use here have been taken from
the original SPEC reports [18], [19], [20], except for the VAX
9000, which we benchmarked ourselves. We also changed a few
of the original SPEC numbers, in particular, we ignored the last-
est SPECratios for MATRIX300 on the HP-9000/720, the IBM
RS/6000 series, and the Sparcstations. Here we decided to use
older results or re-executed the benchmark without using the
machines’ optimizing preprocessors. The reason for this is that
these preprocessors change the original matrix multiply algo-
rithm, which is based on the SAXPY routine, and replace it by a
blocking algorithm. These blocking algorithms exhibit signifi-
cantly lower miss ratios than the ones computed by Gee et al.
[5], and would thus make our analysis meaningless.

4. The rms error is a nonlinear function and assigns more weight to the largest
values.
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TABLE VII
THE EFFECT OF MEMORY DELAY ON THE OVERALL MACHINE PERFORMANCE

SPECratios: With and Without Locality Effects

‘machine DODUC | _FPPPP_| TOMCATV | MATRIX300 | NASA7 | SPICE2G6
DECatation 3100 | onig. || 1131 1251 988 9.34 138 9.45 1095
modi. || 11.62 1449 1242 1248 1726 | 1130 13.11
an. | 268% | 1371% | 00% NB% | 068K | 155 % || 1654%
DBCatation 5400 | orig. || 1280 1337 938 1043 1281 9.10 uon
modi. || 1343 1732 1447 1481 1931 11.50 B0 |
N | 471% | 279% | 3174% S62% | 3368% | DSS% | uo%
DBCatation 5500 | orig. || 2115 2872 1959 19.61 2605 641 2014
modi. || 2191 3199 7126 2693 08 | 27 711
S | 347% | 1958% | 2il% 7% | 3L60% | D07 % || 201%
MIFS M72000 ocig. | 1758 | 2039 1766 1331 1837 120 163
modi. {| 1800 | 2208 2.3 1633 2294 1359 18.67
af | 236% | 1126% | 12n% Baa% | 1995% | ILIE% || 1276%
VAX 9000 orig. | 4681 ©32 w32 Y7 600 | 4600 [ 12
modl || 4692 | o962 “5 50.54 6017 | 3656 | 5410
En [ on% | ou%| o61% Dok | DS5% | 1B61% || 142%
TEM RS/6000 530 | orig. || 21.68 | 5474 7569 2080 3848 | 1139 3671
modi | 2169 | 4T 8136 35.60 15 | 3009 Py
an || 005% | 00S% | 697% WT% | 2870% | 83l% | 150%
HP 90007720 oris. | 4117 | 7810 134 2581 sies | 1522 || sies
modi fi 4718 | 1027 65.90 3528 482 | 04 8535
AN || 003% | B96% | 20O% Z68A% | 066% | 1861% | 092%
Sparceation s | 505 782 396 1104 1021 822 776
! i :.01 833 653 1240 1138 851 838
& || 044% | 616% | 8m% 100% | 1029% | 774% | 141%
- e | 8 Tie2 %17 1635 1560 | 102 N
Spertaton§ et | sa 1221 10.16 18.66 1786 | 1126 1249
&, | 099% | 6% | 9m% 125% | 1267% | 875% || 859%
aversge [ 213% | 1488% | 2141% HO% [ 08% ]| BRE DTS ]

The results labeled orig. include the memory delay due to cache and TLB
misses, from the measured runtime, while those labeled modi. are determined by
subtracting the computed respective memory delay penalty. The SPECfp is
obtained by taking the geometric mean of the individual SPECratios.

Table VII presents for each machine and program combina-
tion the original SPECratios (orig.), the modified SPECratios
assuming a memory delay of zero cycles (modi.), and their
respective difference. The modified figure is computed by
subtracting our computed delay for cache and TLB misses
from the measured runtime. The rightmost column shows the
SPECfp ratio (the geometric average of the six SPECratios)
computed for original and modified results. As expected, the
impact of the cache and TLB misses varies significantly from
program to program. For example, DODUC exhibits the
smallest effect with the maximum performance degradation of
less than 5% (DEC 5400), and an average of only 2.13%.
Conversely, the largest average impact is observed for the
MATRIX300 and NASA7 benchmarks with 28.43% and
30.68%, respectively.

Considering the machines, we find that the largest change in
performance is for the DEC 5400 and 5500, for which per-
formance improves by 24.91% and 22.01%, respectively,
when delays for cache and TLB misses are eliminated. The
lowest impact is observed for the Sparcstation 1 which shows
an improvement of only 7.47%. It is important to note that the
performance differences that we are reporting are functions of
three factors:

1) the miss ratios of the benchmarks,

2) the delays in loading the cache and TL.B when misses oc-
cur, and

3) the raw performance of the CPU.

Since the Sparcstations are among the slowest of the machines
measured, the proportional effect of cache and TLB miss delays
is less. This is despite the fact that, as shown in Table III, the
Sparcstations have relatively high miss ratios, and that the total
delay due to misses (from Table VII) is also relatively high.
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VI. DISCUSSION

The data we have gathered and our performance estimation
technique allow us to study the performance of several differ-
ent machines based on the same instruction set architecture,
but with significantly different memory systems. In Table VIII
we show the main machine characteristics of four different
machines based on MIPS processors: DEC 3100, DEC 5400,
MIPS M/2000, and DEC 5500. Note that the main difference
between the machines is their clock rates. Although the
DEC 3100 uses the R2000/R2010 processor pair instead of the
R3000/R3010, the performance difference between them,
other than the clock rate, is too small to have a significant ef-
fect. In the same table we give the SPECratios of the machines
on the SPEC programs as quoted in the SPEC Newsletter {18],
[19], [20]. Alongside each SPECratio we indicate, in parenthe-
ses, the relative performance with respect to the DEC 5400.

The most interesting observation here is that the SPEC re-
sults on the DEC 5400 compared to the other machines cannot
be explained only by the relative differences in their clock
rates. The SPEC results indicate that, with respect to the DEC
5400, the DEC 3100 is 15% (0.958 vs. 0.834) faster than we
would expect it to be. Similarly, the MIPS M/2000 is around
19% faster (1.492 vs. 1.250), while the DEC 5500 is 21%
faster (1.822 vs. 1.500) than what their clock rate ratios indi-
cate. Notwithstanding the small statistical variation, this situa-
tion appears to be consistent across all benchmarks.

TABLE VIII
THE TOP PORTION OF THIS TABLE SHOWS THE CHARACTERISTICS OF FOUR
MACHINES BASED ON EITHER THE MIPS R2000 OrR R3000. BELOW ARE THE
SPEC BENCHMARK RESULTS, EACH SHOWN AS A SPECRATIO.

Machioe Ch
Chanacteristics || DEC 3100 DEC $400 | MIPS M/2000 { DEC 5500
CPU R2000 R3000 R3000 R3000
FPU R2010 R3010 R3010 R3010
Frequency 16.67 MHz 20 MHz 25 MHz 30 MHz
Freq. ratio 0.834 1,000 1.250 1.500
Cache (instr) 64 KB 64 KB 64 KB 64 KB
Cache (data) 64 KB 64 KB 64 KB 64 KB
Maln memory 24MB 64 MB 64 MB 32MB
CC compiler MIPS 1.31 MIPS 2.1 MIPS 2.1 MIPS 2.1
F77 compiler MIPS 2.1 MIPS 2.1 MIPS 2.1 MIPS 2.1
SPEC Benchmark Resul
program DEC 3100 DEC 5400 | MIPS M/2000 | DEC 5500
Gee 109 (0991) | 11.0 (1.000) | 190 (1.727) | 20.3 (1.845)
Espresso 120 (0.851) | 14.1 (1.000) | 18.3 (1.298) | 21.7 (1.539)
Spice 2g6 95 (1.044) | 9.1 (1.000) | 12.1 (1.330) | 164 (1.802)
Doduc 113 (0.883) | 12.8 (1.000) | 17.6 (1.375) | 21.1 (1.648)
Nasg? 132 (1.031) | 12.8 (1.000) | 184 (1.438) | 26.1 (2.039)
L 13.1 (1.073) | 122 (1.000) { 238 (1.951) | 234 (1.918)
Egntott 112 (0.824) | 13.6 (1.000) | 184 (1.353) | 22.4 (1.647)
Matrix300 9.8 (0.942) | 104 (1.000) | 133 (1.279) | 19.6 (1.885)
Fpppp 125 (0.933) | 134 (1.000) | 204 (1.522) | 25.7 (1.918)
Tomcaty 99 (1.000) | 9.9 (1.000) | 17.7 (1.788) | 19.6 (1.980)
SPECint 11.8 (0.929) | 12.7 (1.000) | 19.8 (1.555)) | 21.9 (1.724)
SPECfp 109 (0.965) | 11.3 (1.000) | 163 (1.443) | 21.1 (1.867)
SPECMark 113 (0.958) | 11.8 (1.000) | 17.6 (1.492) | 21.5 (1.822)

The numbers inside parentheses are normalized with respect to the DEC 5400.

Table VIII provides only aggregate performance numbers,
but doesn’t allow us to understand the reasons for the perform-
ance differences; our measurement and analysis technique
permits us to understand the reasons for the performance
variations between machines. We have taken the 109 machine
performance parameters [12], [13] that we measure, and have
combined them into 13 parameters, each reflecting some spe-
cific component of the machine implementation. (See also
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[12}, [13] for the use of the same 13 parameters for machine
analysis.) In Fig. 5, we show the value of each of those pa-
rameters, normalized to the performance of the DEC 5400, for
each of the DEC 5500, DEC 3100, and MIPS M/2000.

We see in Fig. 5 that the ratios of 12 of the 13 parameters
are close to the ratios of the clock rates. Specifically, the aver-
age relative ratios of these parameters is 1.500 for the
DEC 5500, 1.262 for the MIPS M/2000, and 0.803 for the
DEC 3100. These numbers are close to the expected values.
The performance of memory operations, however, is signifi-
cantly higher in the three machines than it is for the DEC
5400. This performance limitation is what explains the lower
performance observed of the SPEC suite on the DEC 5400.

Relative speed of reduced operations with respect to the DECstation 5400

3 B DECsuation 5500
» % [JMIPS 2000
e I DECstation 3100
b
15
i
Iy
v
D
ecl
[

aatiply call

Fig. 5. Normalized performance of the abstract reduced parameters. The results
are normalized with respect to those of the DEC 5400. The ratio of all dimen-
sions, except memory operations, is close to the relative clock rate ratios.

We can proceed even further by comparing the memory hi-
erarchies of the machines. In Table II, we see that the basic
structure of their caches and TLBs are similar, i.e., the four
machines have direct-mapped caches of 64 KB and fully as-
sociative TLBs with 64 entries with an entry granularity of
4,096 bytes. Furthermore, the ratios between the TLB miss
delays (0.8333, 1.1429, and 1.5385) correspond almost exactly
with the clock rate ratios (0.8333, 1.143, and 1.538). The main
configuration difference between the caches is that the line
size of the DEC 3100 is only 4 bytes, instead of 16 bytes on
the DEC 5400 and DEC 5500, and 64 bytes on the MIPS
M/2000. However, this difference is not the source of the dis-
crepancy. The reason behind the DEC 5400’s worse-than-
expected performance is the excessive penalty of cache misses.
A cache miss on the DEC 5400 takes approximately 1680 ns
compared to 750 ns on the DEC 5500, even though both ma-
chines have a 16-byte line size. Thus, the DEC 5400 cache
miss penalty is 2.24 times higher than that for the 5500, al-
though their clock ratio is 1.5.

Comparing the miss penalties of the DEC 3100 and MIPS
M/2000 with the DEC 5400 is not as straightforward, because
of the difference in line sizes. Here the line size, from the 3100
to the 5400, increases by a factor of 4, at the same time the
miss penalty increases only by a factor of 3.111. However, the
reduction in miss ratios due to a larger line size is for most
programs smaller than the corresponding line size increase.
For example, an acceptable rule of thumb for caches with pa-
rameters similar to the DECstations, and over a large sample
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of programs, is that doubling the line size will not decrease the
miss ratio by more than a factor of 1.5 [17]. Therefore, the
decrease in the miss ratio when we increase the line size by a
factor of four should be only around 2.25, which is much lower
than the 3.111 increase in the miss penalty of the DEC 5400. (In
Section V.A, we used a factor of two to estimate the miss ratio
for a 4-byte line relative to that for a 16-byte line.)

Now, if we look at the cache parameters of the MIPS
M/2000, we see that the line size is a factor of 4 larger with
respect to the DEC 5500 and a factor of 16 with respect to the
DEC 3100, but the respective increases in the miss penalties
are only 2.667 and 1.920. Even if we assume that the decrease
in miss ratio is only 1.4 as a result of doubling the line size, the
corresponding decreases in miss ratios should be 3.842 and
1.960, which are larger than the corresponding line miss pen-
alty increases. The more aggressive cache design on the MIPS
M/2000 is effectively reducing the miss ratio without overly
increasing the penalty as is the case with the DEC 5400. This
complemented with wraparound loads (see the corresponding
entries in Table II for rows “miss penalty (word)” and “‘miss
penalty (line)”) are the main reasons why the performance of
the MIPS M/2000 on the SPEC benchmarks is higher than for
other machines based on the R3000/R3010 chips and with
comparable clock rates.

It is worth pointing out that the low performance of the DEC
5400 memory system does not necessarily indicate poor design.
Most vendors need a series of different machines, with different
levels of performance and different prices. Unfortunately, the
engineering cost of such separate developments is usually pro-
hibitive, even were the people available to do the work. There-
fore, a typical solution to this problem is to design and build the
fastest possible machine, for sale at the highest
price/performance point. That machine is then deliberately
slowed down by techniques such as slower memories, slower
clocks, disabled functional unit bypasses, smaller and slower
caches and TLBs, etc., to allow the vendor to sell lower
price/performance machines. These slower machines are usually
not significantly cheaper to manufacture than the fast machines,
but the savings in engineering costs, time, and personnle more
than compensate for the lower margins.

VII. CONCLUSIONS

In this paper we have shown that we can extend our basic
abstract machine model to incorporate the effects of program
locality and the characteristics of the memory hierarchy to
compute the delay due to the misses that occur at some level of
the memory hierarchy. We have been able to measure and
analyze the design and performance of the caches and TLBs
for a variety of machines using only a high level analysis pro-
gram and without the need to refer to machine manuals or ob-
tain information from the manufacturer. Using previously pub-
lished miss ratio data, we have been able to improve our pre-
dictions of program runtimes by combining our memory per-
formance measurements with those miss ratios.

An important aspect of our methodology, which we illustrate
in this paper, is that we can construct relatively simple machine-
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independent tools for making good observations about the be-
havior of different units on many machines using programs
written in a high-level language. These measurements are accu-
rate enough to make predictions and at the same time can be
used to compare machines with different instructions sets or
memory structures. In Section V we showed how our cache and
TLB measurements can be used to explain, in conjunction with
the machine characterizations, the performance differences ob-
served on machines with similar characteristics.

ACKNOWLEDGMENTS

We would like to thank Ken Stevens and NASA for funding
this work, Alan Karp from IBM for suggesting measuring the
characteristics of the memory hierarchy, Ken Stanley for
pointing out the real vs. virtual address issue, and David E.
Culler and Luis Miguel from UC Berkeley who let us run our
programs on their machines.

The material presented here is based on research supported
principally by NASA under grant NCC2-550, and also in part
by the National Science Foundation under grants MIP-
8713274, MIP-9116578, and CCR-9117028, by the state of
California under the MICRO program, and by Sun Microsys-
tems, Mitsubishi Electric Research Laboratories, Philips Labo-
ratories/Signetics, Apple Computer Corporation, Intel Corpo-
ration, Digital Equipment Corporation, and IBM.

REFERENCES

[1] A. Borg, R.E. Kesslet, and D.W. Wall, “Generation and analysis of very
long address traces.” Proc. 17th Int’l Symp. Computer Architecture,
pp. 270-279, Seattle, May 1990.

[2] Cypress Semiconductors, SPARC Reference Manual, Cypress Semicon-
ductors, 1990.

[3] TC. Furong, M.JK. Nielsen, and N.C. Wilhelm, “Development of the
DECstation 3100, Digital Technical J., vol. 2, no. 2, pp. 84-88, spring 1990.

[4] J. Gee and A.J. Smith, “TLB performance of the SPEC benchmark
suite,” paper in preparation, draft of Jan. 1992.

{S] J. Gee, M.D. Hill, D.N. Pnevmatikatos, and AJ. Smith, “Cache per-
formance of the SPEC benchmark suite.” JEEE Micro, vol. 13, no. 4,
pp. 17-27, Aug. 1993.

[6] J.R. Goodman, J. Hsieh, K. Kiou, A.R. Pleszkun, P.B. Scheuchter, and
H.C. Young, “PIPE: A VLSI decoupled architecture,” Proc. 12th Int'l
Symp. Computer Architecture, pp. 20-27, Boston, June 1985.

[7] K. O’Brien, B. Hay, J. Minisk. H. Schaffer, B. Schloss, A. Shepherd,
and M. Zaleski, “Advanced compiler technology for the RISC sys-
tem/6000 architecture,” IBM RISC System/6000 Technology, SA23-
2619, pp. 154-161, IBM Corp., 1990.

[8] B.L. Peuto and L.J. Shustek, “An instruction timing model of CPU
performance,” Fourth Int’l Symp. Computer Architecture, Computer
Architecture News, vol. 5, no. 7, pp. 165-178, Mar. 1977.

{91 D.N. Pnevmatikatos and M.D. Hill, “Cache performance on the integer
SPEC benchmarks,” Computer Architecture News, vol. 18, no. 2, pp. 53-
68, June 1990.

[10] C.G. Ponder, **An analytical look at linear performance models,” Tech-
nical Report UCRL-JC-106105, Lawrence Livermore Nat’l Laboratory,
Sept. 1990.

[11] R.H. Saavedra-Barrera, A.J. Smith, and E. Miya, “Machine characteri-
zation based on an abstract high-level language machine,” IEEE Trans.
Computers, vol. 38, no. 12, pp. 1,659-1.679, Dec. 1989.

[12] R.H. Saavedra-Barrera. “CPU performance evaluation and execution
time prediction using narrow spectrum benchmarking.” PhD thesis, UC
Berkeley, Tech. Report No. UCB/CSD 92/684, Feb. 1992.




[13] R.H. Saavedra and A.J. Smith, “Analysis of benchmark characteristics
and benchmark performance prediction,” submitted for publication,
USC Tech. Report No. USC-CS-92-524, Oct. 1992.

(14) R.H. Saavedra and A.J. Smith, “Performance characterization of opti-
mizing compilers,” [EEE Trans. Softwrae Engineering, vol. 21, no. 7,
pp. 615-628, July 1995

(15] AJ. Smith, “Cache memories,” ACM Computing Surveys, vol. 14,
no. 3, pp. 473-530, Sept. 1982.

[16] J.E. Smith, “Decoupled access/execute architectures,” ACM Trans.
Computer Systems, vol. 2, no. 4, pp. 289-308, Nov. 1984.

{17} A.J. Smith, “Line (block) size choice for CPU caches,” IEEE Trans.
Computers, vol. 36, no. 9, pp. 1,063-1,075, Sept. 1987.

(18] SPEC, SPEC Newsletter: Benchmark Results, vol. 2, issue 2, spring

1990.

[19] SPEC, SPEC Newsletter: Benchmark Results, vol. 2, issue 3, summer
1990.

[20] SPEC, SPEC Newsletter: Benchmark Results, vol. 3, issue 1, winter
1991.

[21] E. Spertus, S.C. Goldstein, K.E. Schauser, T. von Eicken, D.E. Culler,
and W.J. Dally, “Evaluation of mechanisms for fine-grained parallel
programs in the J-Machine and the CM-5,” Proc. 20th int'l Symp.
Computer Architecture, pp. 302-313, San Diego, May 16-19 1993.

[22] W.A. Wolf, “The WM computer architecture,” Computer Architecture
News, vol. 16, no. 1, pp. 70-84, Mar. 1988.

1235

Rafael H. Saavedra (S°87-M’'92) received his PhD
in computer science from UC Berkeley in 1992. He
is an assistant professor in the Computer Sciences
Department at the University of Southern California.

Alan Jay Smith received the BS degree in electrical
engineering from the Massachusetts Institute of
Technology, Cambridge, Massachusetts, in 1971,
and the MS and PhD degrees in computer science
from Stanford University, Stanford, California, the
latter in 1974. He was a National Science Founda-
tion Graduate Fellow.

Dr. Smith is currently a professor in the Com-
puter Science Divsion of the Department of Electri-
cal Engineering and Computer Sciences, University
of California, Berkeley. He has been a member of
the faculty at UC Berkeley since 1974 and was vice chairman of the EECS
department from July 1982 to June 1984. His research interests include the
analysis and modeling of computer systems and devices, computer architec-
ture, and operating systems. He has published a large number of research
papers, including one which won the [EEE Best Paper award for /EEE Trans-
actions on Computers in 1979. He also consults widely with computer and
electronics companies.

Dr. Smith is a fetlow of the [EEE, and is a member of ACM, IFIP Working
Group 7.3, the Computer Measurement Group, Eta Kappa Nu, Tau Beta Pi,
and Sigma Xi. He is the Board of Directors (1993-1997) and was chairman
(1991-1993) of the ACM Special Interest Group on Computer Architecture
(SIGARCH), was chairman (1983-1987) of the ACM Sepcial interest Group
on Operating Systems (SIGOPS), was on the Board of Directors (1985-1989)
of the ACM Special Interest Group on Measurement and Evaluation
(SIGMETRICS), was an ACM National Lecturer (1985-1986) and an IEEE
Distinguished Visitor (1986-1987), was an associate editor of ACM Transac-
tions on Computer Systems (TOCS) (1982-1993), is a subject area editor of
the Journal of Parallel and Distributed Computing, and is a member of the
editorial board of the Journal of Microprocessors and Microsystems. He was
program chairman for the Sigmetrics '89/Performance '89 conference, pro-
gram co-chair for the Second (1990) and Sixth (1994) Hot Chips conferences,
and has served on numerous program committees.




