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Abstract

Many microprocessor instruction sets include instructions for
accelerating multimedia applications such as DVD playback,
speech recognition and 3D graphics. Despite general agree-
ment on the need to support this emerging workload, there are
considerable differences between the instruction sets that have
been designed to do so. In this paper we study the performance
of five instruction sets on kernels extracted from a broad mul-
timedia workload. Fach kernel was recoded in the assembly
language of the five multimedia extensions. We compare the
performance of each extension against other architectures as
well as to the original compiled C performance. From our
analysis we determine how well multimedia workloads map
to current architectures, what was useful and what was not.
We also propose two enhancements to current architectures:
strided memory operations, and superwide registers.

1 Introduction

Specialized instructions have been introduced by microproces-
sor vendors to support the specialized computational demands
of multimedia applications. The mismatch between wide data
paths and the relatively short data types found in multimedia,
applications has lead the industry to embrace SIMD (single in-
struction, multiple data) style processing. Unlike traditional
forms of SIMD computing in which multiple individual pro-
cessors execute the same instruction, multimedia instructions
are executed by a single processor, and pack multiple short
data elements into a single wide (64 or 128-bit) register, with
all of the subelements being operated on in parallel.

The goal of this paper is to quantify how architectural dif-
ferences between multimedia instruction sets translate into
differences in performance. Prior studies have primarily fo-
cused on a single instruction set in isolation and have mea-
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sured the performance on sets of kernels taken from ven-
dor provided libraries [Nguy99], [Bhar98], [Allen99], [Chen96],
[Rice96], [Naka96], [Rang99]. Our contribution is unique as
we do not focus exclusively on a single architecture, and we
study the performance of kernels derived from a real measured
workload rather than those that have been established a pri-
ori. Our results are obtained from actual hardware measure-
ments rather than through simulation, instilling confidence in
our results.

Section 2 summarizes the multimedia workload we stud-
ied, and details the sixteen computationally important kernels
which we extracted from it. Our methodology for recoding the
kernels with multimedia instructions and their measurement
is described in Section 3. An overview of the five instructions
sets, and their implementations, is given in Section 4.

Our analysis is divided into two parts. Section 5 reflects
our experience in coding the kernels, and gives insight into the
useful and less than useful features of the multimedia instruc-
tion sets studied. In Section 6 we compare the performance
of the five instruction sets both against one another, as well
as their relative improvement over compiled (optimized) C
code. Finally, in Section 7 we propose two new directions for
multimedia architectures on general purpose microprocessors:
strided memory operations and superwide registers.

2 Workload

The lack of a standardized multimedia benchmark has meant
that workload selection is the most difficult aspect of any
study of multimedia. It was for this reason that we developed
the Berkeley multimedia workload [Sling00a]. In selecting the
component applications we strove to cover as many types
of media processing as possible: image compression (DjVu,
JPEG), 3D graphics (Mesa, POVray), document rendering
(Ghostscript), audio synthesis (Timidity), audio compression
(ADPCM, LAME, mpgl23), video compression (MPEG-2 at
DVD and HDTV resolutions), speech synthesis (Rsynth),
speech compression (GSM), speech recognition (Rasta) and
video game (Doom) applications. Open source software was
used both for its portability (allowing for cross platform com-
parisons) and the fact that we could analyze the source code




directly.

To evaluate the various multimedia instruction sets, we
hand coded kernels selected from the elements of the Berke-
ley multimedia workload. Those kernels were chosen based
on their computational significance and their suitability for
SIMD optimization. Table 1 lists the kernel codes examined.
Both Mesa kernels appear to take up a relatively small amount
of application CPU time, as software rendering (computing
all stages of a rendering pipeline) was used in the portable
version of these applications. It was for this reason that ras-
terization kernels were not included in the kernels studied due
to the ubiquity of 3D accelerator cards which offload this from
the CPU, and will continue to do so in the foreseeable future.
Although we expect that when enough CPU cycles become
available, much of the 3D rendering workload will be moved
back onto the CPU and done in software (for cost savings),
the current trend is moving in the opposite direction. First
generation 3D accelerator cards took care of the rasteriza-
tion stage, but not 3D geometry computations. Current 3D
accelerator cards have also taken on the burden of geometry
computations, indicating that the growth in complexity of 3D
environments is outpacing that of CPU performance, despite
the best efforts of multimedia extensions.

3 Methodology

3.1 Berkeley Multimedia Kernel Library

Our goal is to measure the performance of existing multimedia
instruction sets on our set of important multimedia kernels.
Our first step was to we distill from our Berkeley multimedia
workload [Sling00a] a set of computationally important ker-
nel functions, from which we formed the Berkeley multimedia
kernel library (BMKL). All of the parent applications in the
Berkeley multimedia workload were modified to make calls to
BMKL rather than internal functions. From a performance
standpoint, no piece of code can be realistically extracted and
studied in isolation. By measuring a piece of code from within
a real system we can realistically see how the shared resources
of a computer system, such as CPU, caches, TLB, memory,
and registers, affect the code and are affected by it.
Encapsulating the kernels within a library with a well de-
fined interface allowed for: 1) low overhead measurement code
to be placed around library functions to make measurements
as non-invasive as possible, 2) different versions of the library
to be quickly substituted to aid testing, 3) the addition of
new architectures to our study by starting with a copy of the
C reference library and then implementing and debugging re-
placement SIMD assembly functions one at a time.

3.2 Coding Process

As with DSPs, the most efficient way to program with mul-
timedia extensions is to have an expert programmer tune
software using assembly language [Kuro98]. Although this
is more tedious and error prone than other methods such as
hand coded standard shared libraries or automatic code gen-

eration by a compiler, it is a method that is available on every
platform, and allows for great flexibility and precision when
coding. We chose to code each kernel in assembly language
ourselves rather than measure vendor supplied optimized li-
braries to prevent differences in programmer ability and time
spent coding between the vendors’ from potentially skewing
our comparison.

All of the assembly codes in our study were written by the
same programmer (Slingerland) with an approximately equal
amount of time spent on each platform. Programming tools
for cycle-accurate instruction scheduling through simulation
were not used in order to equalize differences between the
tools available on each platform. Instructions were scheduled
sanely by keeping data consumption as far from data use as
possible, unrolling loops when of performance benefit, and
manually scheduling instructions so as to take advantage of
multiple functional units.

For reasons of practicability, we limited our optimizations
to the kernel level; we did not rewrite entire applications.
This had ramifications for data alignment and data structure
layout on some architectures. In some cases it was not prac-
tical to code a SIMD version of a kernel if an instruction set
lacked the requisite functionality. For example, Sun’s VIS
and DEC’s MVI do not support partitioned floating point, so
floating point kernels were not recoded for these platforms.
DEC’s MVI also does not contain any data communication
(e.g- permute, mix, merge) or partitioned integer multiply
instructions. If there was no compelling opportunity for per-
formance gain, kernels were not recoded from C. The C ver-
sion was considered to be a particular platform’s “solution”
to a kernel when the needed SIMD operations were not pro-
vided. It might be supposed that hand coding would be supe-
rior to compiler generated code anyway, even without SIMD
instructions. Although this may have been true at one time
when instruction set architectures were designed with assem-
bly language programmers in mind, modern instruction sets
are targeted at compilers [Lawl92], [Patt96].

3.3 Measurement

Performance Monitoring Counters All of the micro-
processors studied include performance monitoring counters
to allow for interesting architectural events to be counted in
real time during program execution. Although performance
counters were sometimes used to guide our optimizations,
their primary purpose was to be nearly cycle-accurate timers
with which to measure the very short execution times of the
kernels in the BMKL.

C Compilers and Optimization Flags The most ar-
chitecturally tuned compiler on each architecture was used to
compile the C reference version of the Berkeley Multimedia
Kernel library. The optimization flags used were those which
give the best general speedup and highest level of optimization
without resorting to tuning the compiler flags to a particu-
lar kernel. The specific compiler and associated optimization
flags used on each platform are listed given in [Sling00d].




Kernel Name Source Data Sat Native Src | Satic | %Static | % CPU

Application Type | Arith Width | Lines | Instr Instr Cycles
Add Block MPEG-2 Decode | 8-bit (U) v 64-bits 46 191 0.1% 13.7%
Block Match | MPEG-2 Encode | 8-bit (U) 128-bits 52 294 0.4% 59.8%
Clip Test and Project Mesa* FP limited 95 447 0.1% 0.8%
Color Space Conversion JPEG Encode 8-bit (U) limited 22 78 0.1% 9.8%
DCT MPEG-2 Encode | 16-bit (S) 128-bits 14 116 0.1% 12.3%
FFT LAME* FpP limited 208 981 4.4% 14.5%
Inverse DCT MPEG-2 Decode | 16-bit (S) v 128-bits 75 649 0.3% 29.7%
Max Value LAME* | 32-bit (S) unlimited 8 39 0.2% 12.0%
Mix Timidity | 16-bit (S) V| unlimited 143 829 1.0% 35.7%
Quantize LAME* FP unlimited 55 312 1.4% 15.3%
Short Term Analysis Filter GSM Encode | 16-bit (S) v 128-bits 15 79 0.1% 20.2%
Short Term Synthesis Filter GSM Decode | 16-bit (S) Vv 128-bits 15 114 0.2% 72.7%
Subsample Horizontal MPEG-2 Encode | 8-bit (U) iv4 88-bits 35 244 0.3% 2.6%
Subsample Vertical MPEG-2 Encode | 8-bit (U) v unlimited 76 478 0.6% 2.1%
Synthesis Filtering mpgl23* FP Vv 512-bits 67 348 0.4% 39.6%
Transform and Normalize Mesa* FP limited 51 354 0.1% 0.7%

Table 1: Multimedia Kernels Studied - from left to right, the colums list 1) primary data type specified as N-bit
({Unsigned,Signed}) integer or floating point (FP), 2) if saturating arithmetic is used, 3) native width; the longest width
which does not load/store/compute excess unused elements, 4) static C source line count (for those lines which are executed),
5) percentage of total static instructions, 6) percentage of total CPU time spent in the kernel. The later three statistics are
machine specific and are for the original C code on a Compaq DS20 (dual 500 MHz Alpha 21264, Tru64 Unix v5.0 Rev. 910)

machine, compiled with GCC v2.8.1 (*) or DEC C v5.6-075.

4 Instruction Sets

In this paper we study five architectures with different mul-
timedia instruction sets (Table 2 lists the parameters for the
exact parts we used). Most of the instruction sets (AMD’S
3DNow!, DEC’s MVI, Intel’s MMX, Sun’s VIS) use 64-bit
wide registers, while Motorola’s AltiVec and Intel’s SSE are
128-bits wide. The size of the register file available on each
architecture varied widely, ranging from 8 64-bit registers on
the x86 based AMD Athlon and Intel Pentium III to 32 128-
bit wide registers with Motorola’s AltiVec extension.

All of the multimedia extensions support integer opera-
tions, although the types and widths of available operations
vary greatly. The earliest multimedia instruction sets (e.g.
Sun’s VIS and DEC’s MVI) had design goals limited by the
immaturity of their target workload and unproven benefit to
performance. Because of this, any approach which greatly
modified the overall architecture or significantly affected die
size was out of the question. Leveraging as much function-
ality as possible from existing chip architectures was a high
priority. Thus, the Sun and DEC extensions do not imple-
ment partitioned floating point instructions. Witness also the
difference between Intel’s first multimedia extension, MMX
(1997), which had as one of its primary design goals to not
require any new operating system support, and Intel’s SSE
(1999) which added new operating system maintained state
(8 128-bit wide registers) for the first time since the introduc-
tion of the Intel386 instruction set (1985).

The processors studied vary in terms of instruction latency
as well as the throughput per cycle. Processor clock rates
were all 500 MHz, with the exception of the Sun UltraSPARC

ILi, for which only a 360 MHz system was available. Al-
though multimedia extensions primarily focus on extracting
data level parallelism, most modern microprocessors are also
superscalar, and thereby allow for multiple multimedia in-
structions to be issued every cycle. All of the architectures
we looked at are fully pipelined, so barring any data depen-
dencies, one new SIMD instruction can begin per functional
unit each clock cycle. Typically, there are separate functional
units for SIMD integer and SIMD floating point processing, al-
though on the x86 architectures they are combined. [Sling00c]
surveys existing multimedia instruction sets in more detail.

Sun Sun’s UltraSPARC IIi processor incorporates the
VIS multimedia extension, which implements a set of SIMD
integer instructions that share the existing UltraSPARC float-
ing point register file. Partitioned multiplication is done
through 8-bit multiplication primitive instructions. A graph-
ics status register (GSR) is used to support data alignment
and scaling for pack operations.

Intel Intel’s Pentium III processor includes their original
SIMD integer MMX extension, as well as the newer SIMD
floating point SSE instruction set. MMX is a 64-bit wide
SIMD integer extension, which is mapped onto the existing
x87 floating point architecture and registers and introduces
no new architectural state (registers or exceptions). SSE is a
follow on to MMX which is primarily a SIMD floating point
extension but also incorporates feedback on MMX from soft-
ware vendors in the form of new integer instructions. Unlike
MMX, the floating point side of SSE does add new architec-




AMD Athlon DEC Alpha 21264 | Intel Pentium III | Motorola G4 | Sun UltraSPARC IIi
Clock [Current] (MHz) 500 [1000] 500 [667] 500 [1000] 500 [500] 360 [480]
SIMD Extension(s) MMX/3DNow!+ MVI MMX/SSE AltiVec VIS
SIMD Instructions 57/24 13 57/70 162 121
First Shipped June 1999 February 1998 February 1999 August 1999 November 1998
Transistors (z10°%) 22.0 15.2 9.5 6.5 5.8
Process (um) [Die Size (mm?)] 0.25 [184.0] 0.25 [225.0] 0.20 [104.6] 0.20 [83.0] 0.25 [147.5]
L1 $I Cache, 8D Cache (Kbytes) 64, 64 64, 64 16, 16 32, 32 32, 64
L2 Cache (Mbytes) 0.5 4 0.5 1 2
Register File (# x width) FP(8x64b) /FP(8x64b) Int (31x64b) FP(8x64b)/8x128b 32x128b FP(32x64b)
Reorder Buffer Entries T2 35 40 6 12
Int, FP Multimedia Units 2 (combined) 2,0 2 (combined) 3,1 2,0
Int Add Latency 2 [64b/cycle] - 1 [64b/cycle] 1 [128b/cycle] 1 [64b/cycle]
Int Multiply Latency 3 [64b/cycle] - 3 [64b/cycle] 3 [128b/cycle] 3 [64b/cycle]
FP Add Latency 4 [64b/cycle] - 4 [64b/cycle] 4 [128b/cycle] -
FP Multiply Latency 4 [64b/cycle] - 5 [64b/cycle] 4 [128b/cycle] -
FP ~1/sqrt Latency 3 [32b/cycle] - 2 [64b/cycle] 4 [128b/cycle] -

Table 2: Microprocessors Studied - All parameters are for the actual chips used in this study. Clock lists the speed
for the specific part studied as well as the current (December 2000) maximum shipping clock speed. A SIMD register files
may be shared with existing integer (Int) or floating point (FP) registers, or be separate. Note that some of the processors
implement several multimedia extensions (e.g. Pentium III has MMX and SSE) - the corresponding parameters for each are
separated with “/”. A dash (-) indicates that a particular operation is not available on a given architecture, and so no latency
and throughput numbers are given. DEC’s MVI extension (on the 21264) does not include any of the listed operations, but
all MVI instructions have a latency of 3 cycles [64b/cycle].[Burd] [Noer] [AMD99] [AMD00] [AMDWP] [Carl97] [Comp00]
[Intel97] [Intel99a] [Kesh99] [Kohn95] [Moto00] [Norm98] [Sun97]

tural state to the Intel architecture with the addition of an 8 x
128-bit register file and exceptions to support IEEE compliant
floating point operations. Although the SSE instruction set
architecture and register file are defined to be 128-bits wide,
the Pentium-III SSE execution units are actually 64-bits (two
single precision floating point elements) wide in hardware.
The instruction decoder translates 4-wide (128-bit) SSE in-
structions into pairs of 2-wide (64-bit) internal micro-ops.

AMD The AMD Athlon processor implements MMX
(which was licensed from Intel), in addition to AMD’s own
3DNow! extension which utilizes the same x87 floating point
registers and basic instruction formats as MMX, but adds
a partitioned single precision floating point data type. The
Athlon processor actually extends 3DNow! with Enhanced
3DNow! that adds floating point and integer operations to
make 3DNow! functionally equivalent to Intel’s SSE exten-
sion.

DEC The DEC (now Compaq, but we will refer to it as
DEC for historical consistency) Alpha 21264A processor in-
cludes the SIMD integer Motion Video Instructions (MVI)
multimedia extension. It is the smallest of the multimedia
instruction sets, weighing in with only 13 instructions. MVI
shares the existing Alpha 32-register integer register file. No-
tably, no SIMD saturating addition/subtraction, multiplica-
tion, or shift instructions are included.

Motorola Motorola’s MPC7400 (also known as the G4)
processor utilizes their 128-bit wide SIMD AltiVec extension
which supports a wide variety of integer data types, as well
as partitioned single precision floating point. A dedicated 32
x 128-bit register file is implemented, along with four non-
identical parallel, pipelined vector execution units. Hard-
ware assisted software prefetching is implemented, where by
a prefetch stream is set up by software, and fetched into the
cache independently by hardware.

5 Analysis

In the next section we use our experience coding each of the
sixteen kernels with five different multimedia extensions to
determine: 1) existing architectural features that are useful,
2) features that have been implemented, but don’t appear to
be useful, and 3) significant bottlenecks in current multimedia
architectures. Illustrating our discussion are code fragments
both from the original C source code of each kernel algorithm,
as well as the different SIMD implementations. The code
fragments consist of a few of the key central lines of code
from a given kernel. This gives an idea about the types of
operations and data types used. The data types of all of
the variables in our sample C code are specified in a platform
independent way such that the prefix indicates the type: INT:
signed integer, UINT: unsigned integer, FP: floating point,
followed by N, the number of bits. The complete original
C source code for each kernel as well as for the assembly
language SIMD implementations of the BMKL are available




on the web at http://www.cs.berkeley.edu/ "slingn/research/.

5.1 Register File and Data Path

Multimedia instruction sets can be broadly categorized ac-
cording to the location and geometry of the register file upon
which SIMD instructions operate. Alternatives include the
reuse of the existing integer or floating point register files, or
implementing an entirely separate one. The type of register
file affects the width and therefore the number of packed ele-
ments that can be operated on simultaneously (vector length).

Integer Data Path Implementing multimedia instruc-
tions on the integer data path has the advantage that the
functional units for shift and logical operations need not be
replicated. Partitioned addition and subtraction are easily
created by blocking the appropriate carry bits. Modifications
to the integer data path to accommodate multimedia instruc-
tions can potentially adversely affect the critical path of the
integer data-path pipeline [Kuro98]. On the x86 (AMD, In-
tel) and PowerPC (Motorola) architectures the integer data
-path is 32-bits wide, making a shared integer data path ap-
proach less compelling due to the limited amount of data level
parallelism possible.

Floating Point Data Path The reuse of floating point
rather than integer registers has the advantage of not being
shared with pointers and loop and other control flow variables.
In addition, multimedia and floating point instructions are not
typically used simultaneously [Kuro98]. All of the architec-
tures examined have floating point data paths which support
at least double-precision (64-bit wide) operations, which for
many architectures is wider than the integer data path.

Separate Data Path A separate data path has the ad-
vantage of simplifying pipeline control and increasing the
overall number of registers. Disadvantages include the need
for saving and restoring the new registers on context switches,
as well as the relative difficulty and high overhead of moving
data between register files.

SIMD Register Width Perhaps one of the most crit-
ical factors in SIMD instruction set design is deciding how
long vectors will be. If an existing data path is to be reused,
there is little choice, but when a new data path is to be de-
signed it makes sense to ask how wide is wide enough. Too
short of a vector length limits the ability to exploit data par-
allelism, while an excessively long vector length can degrade
performance and increase the amount of clean up code over-
head. The “native width” column of Table 1 specifies how
each of the multimedia kernels fits into one of the following
three categories:

1. unlimited width - Kernels that operate on data elements
which are truly independent and are naturally arranged
so as to be amenable to SIMD processing. The inner
loops of these kernels can be strip mined at almost any

width, with the increase in performance of a longer vec-
tor being directly proportional to the increase in vector
length.

2. limited width - Although data elements are independent,
there is overhead involved in rearranging input data so
that it may be operated on in a SIMD manner with longer
vectors. Thus, the performance advantage of longer vec-
tors is limited by the overhead (which typically increases
with vector length) required to employ them.

3. exact width - A kernel which has a precise natural width
which can be considered to be the right match for the
kernel. This width is the longest width which does not
load, store, or compute excess unused elements.

Long vectors can be a problem when their length exceeds the
natural width of an algorithm. A good example of this prob-
lem is the add block kernel, which operates on MPEG sub-
blocks (8 x 8 arrays of pixels). One input array (bp) consists
of signed 16-bit integer values and the other (rfp) of unsigned
8-bit integer (Algorithm 1).

Algorithm 1 Add Block - computed for each pixel in a

subblock

INT16 *bp; UINTS #rfp; INT32 tmp;

tmp = *bp++ + *rfp; /* Add %/

*rfp = tmp>2656 7 255 : (tmp<0 ? O :

tmp); /* Clip */

During the block reconstruction phase of motion compen-
sation in the decoder, a block of pixels is reconstituted by
summing the pixels in different subblocks. Consider the Al-
tiVec implementation of the add block kernel (Algorithm 2).
Motorola’s AltiVec is the only SIMD integer extension exam-
ined which is 128-bits wide; Intel’s SSE is only 128-bits wide
for packed floating point operations. Each time a row of the
8x8 rfp subblock is loaded on a 128-bit wide architecture, one
half of the vector is useless data which will be thrown away
when the rfp values are expanded to 16-bits.

Algorithm 2 AltiVec Add Block Fragment

;; unaligned vector load

lvx v3, 0, r3 ; v3: vector MSQ for initial bp0..bp7 vector
lvx v4, rii, r3 ; v4: vector LSQ

;; unaligned vector load

1lvx v0, 0, r4 ; vO: vector MSQ

1vx vl, ri1, r4 ; vl: vector LSQ

1lvsl v2, 0, r4 ; v2: vector alignment mask for vperm

vxor vi0, v10, vi0 ; vi0: 0

vperm v0, vO, vi, v2 ; vO: rfp:101112(1314I51617IXIXIXIXIXIXIXIXI
vperm v3, v3, v4, v6 ; v3: | bp0 | bpl | bp2 | bp3 | bps | bpb |
bp6 | bp7 |

addi r3, r3, 16 ; r3: bp += 8 (pointer to INT16)

vmrghb vi, vi0, vO ; v0: | rfp0l rfpil rfp2| rfp3| rfp4| rfp5i
rfp6| rip7i|

vaddshs vi, v3, vi ; vl: bp + rfp [0..7]

vpkshus vi, vi, vi ; vi: rfp:10111213141616171011121314151617]
stvewx vi, 0, r4 ; store rfp [0..3]

stvewx vi, ri2, r4 ; store rfp [4..7]

add r4, r4, rb ; r4: rfp += (iincr + 8) (pointer to UINT8)
vmov v3, v4 ; move current LSQ to next MSQ

As we saw in Table 1, most multimedia kernels are either
unlimited/limited or have most often have an exact required
width of 128-bits. The remaining exact native widths (64-,
88- and 512-bits) came up only once each. Thus, we consider
a total vector length of 128-bits to be best.




Number of Registers Multimedia applications (and
their kernels) can generally take advantage of quite large reg-
ister files. Not coincidentally, MicroUnity’s dedicated media
processor chip has a 64 x 64-bit register file, which can also be
accessed as 128 x 32-bits [Hans96], while the Philips Trimedia
TM-1 has a 128 x 32-bit register file [Rath96].

As an example of where large numbers of registers are useful
in our workload, consider the DCT and IDCT kernels (frag-
ments of the original codes are given in Algorithms 3 and 4).
The discrete cosine transform {DCT) is the algorithmic cen-
terpiece to many lossy image compression methods. It is sim-
ilar to the discrete Fourier transform (DFT) in that it maps
values from the time domain to the frequency domain, produc-
ing an array of coefficients representing frequencies [Kien99).
The inverse DCT maps in the opposite direction, from the
frequency to the time domain.

Algorithm 3 DCT

extern FLOAT64 c[81[8]; /* transform coefficients %/
INT16 block[8][8]; FLOAT64 sum; FLOAT64 tmp[8][8];
for (INT32 i=0; i<8; i++)
for (int j=0; j<8; j++) {
sum = 0.0;
for (int k=0; k<8; k++)
sum += c[jJ[k] * block[i][kl;
tmp[il[j]1 = sum;
}

Algorithm 4 Inverse DCT - only row computation shown

INT32 x0,x1,x2,x3,x4,x5,x6,x7,x8
x7 = x8 + x3;

x8 -= x3;

x3 = x0 + x2;

x0 -= x2;

x2 = (181%(x4+x5)+128)>>8;

x4 = (181%(x4-x5)+128)>>8;

A 2D DCT or IDCT is efficiently computed as 1D trans-
forms on each row followed by 1D transforms on each column
and then scaling appropriately. A SIMD approach requires
that multiple data elements from several iterations be oper-
ated on in parallel for the greatest efficiency. This is straight-
forward for the 1D column DCT, since the corresponding el-
ements of each loop iteration are adjacent in memory (as-
suming a row-major storage format). A 1D row DCT is more
problematic since the corresponding elements of adjacent rows
are not. A matrix transposition (making corresponding "row"
elements adjacent in memory), then performing the desired
computation, and transposing the matrix back again (to put
the resulting data back in the correct configuration) can be an
effective way to compute the 1D row step of a 2D transform.
However, this was only of performance benefit for those archi-
tectures whose register files were able to hold the entire 16-bit
8x8 matrix at once. Since the DCT and IDCT both operate
on 8x8 2D matrices of 16-bit signed values, they require at
least 16 64-bit registers, or 8 128-bit registers.

5.2 Data Types

The data types supported by the different multimedia instruc-
tion sets include {signed, unsigned}{8, 16, 32, 64} bit values,

as well as single precision floating point. Most of the instruc-
tion sets do not support all of these types, and usually only a
subset of operations on each. To determine which data types
and operations are useful, we broke down the dynamic SIMD
instruction counts on each architecture in two ways: 1) data
type distribution per instruction class (e.g. add, multiply)
and 2) data type distribution per kernel. Tables of these cat-
egorizations are available in [Sling00d].

In general, the video and imaging kernels (add block, block
match, color space, DCT, IDCT, subsample horizontal, sub-
sample vertical) utilize 8- and 16-bit operations. Audio ker-
nels (FFT, max val, mix stereo, quantize, short term analysis
filtering, short term synthesis filtering, synthesis filtering) ei-
ther use 16-bit values or floating point, while the 3D kernels
(clip test, transform) are limited almost exclusively to floating
point.

Integer Although image and video data is typically
stored as packed unsigned 8-bit values, intermediate process-
ing usually requires precision greater than 8-bits. Other than
for width promotion, most 8-bit functionality is wasted on
our set of multimedia kernels. In general, storage data types
(how data is stored in memory or on disk), although narrow
and therefore potentially offering the greatest degrees of par-
allelism, are simply too narrow for intermediate computations
to occur without overflow. A few operations inherently pro-
duce results that can not overflow the input data type. For
example, although an N-bit average operation internally uti-
lizes N +1 bits of precision to sum its two operands, the result
is rounded and shifted back to N-bits before being stored to a
register. Other operations such as the sum of absolute differ-
ences (SAD) produce a scalar result which fits in a destination
register of the same width as the packed operands or a scalar
register.

The signed 16-bit data type is the most heavily used be-
cause it is both the native data type for audio and speech
data, as well as the typical intermediate data type for video
and imaging. On the wide end of the spectrum, 32-bit and
longer data types are typically only used for accumulation
and simple data communication operations such as alignment.
Operations tend to be limited to addition and subtraction
(for accumulation), width promotion and demotion (for con-
verting to a narrower output data type) and shifts (for data
alignment).

Floating Point Single precision floating point plays an
important role in many of the multimedia kernels such as the
geometry stage of 3D rendering (the clipping and transform
kernels) and the FFT, where the wide dynamic range of float-
ing point is required. Only Intel’s recently announced SSE2
extension will offer a packed double precision data type, to
be targeted at applications other than multimedia such as
scientific and engineering workloads, as well as advanced 3D
geometry such as is used in raytracing [Intel00a), {IntelO0b).




5.3 Operations

One of our primary goals is to separate useful SIMD opera-
tions from those that are not. The large differences in current
multimedia instruction sets for general purpose processors are
fertile ground for making such a determination because many
different design choices have been made. In [Sling00d] we
provide a table of SIMD instruction set functionality broken
down per kernel, the important points of which we discuss
here. Our analysis assumes that SIMD extensions are tar-
geted solely at the domain of multimedia applications. In
some cases, the targeted applications during the design of a
multimedia extension included DSP applications and others
which are not reflected in the Berkeley multimedia workload.

5.3.1 Arithmetic

Modulo/Saturation Modulo erithmetic “wraps around”
to the next representable value when overflow occurs, while
saturating arithmetic clamps the output value to the highest
or lowest representable value for positive and negative over-
flow respectively. Saturating arithmetic is useful both because
of its desirable aesthetic result in pixel based computations
(video and imaging) as well as the fact that it allows for over-
flow in multiple packed elements to be dealt with efficiently.
When adding pixels, modulo addition is undesirable since if
overflow occurs a small change in operand values may result in
a glaring visual difference (e.g. adding two white pixels results
in a black pixel). If overflow within packed elements were to
be handled similar to traditional scalar arithmetic, an over-
flowing SIMD operation would have to be repeated and tested
serially to determine which element overflowed. The added
cost of saturating arithmetic is that unlike modulo operations,
for which the same instruction works for both unsigned and
signed (2’s complement) values, saturating arithmetic neces-
sarily requires separate instructions since the values must be
interpreted by the hardware as a particular data type.

Modulo computations are important because they allow for
the results of SIMD optimized codes to be numerically identi-
cal to existing scalar algorithms. This is sometimes an impor-
tant consideration for the sake of compatibility and compa-
rability. The kernels in the BMKL which employ saturating
arithmetic are noted in Table 1. From this it is clear that the
most important types for saturating arithmetic are unsigned
8-bit and signed 16-bit integers. The IDCT kernel clamps to
a signed 9-bit range [-256..+255], which can be accomplished
through a pair of max/min operations; we discuss these in
more detail later. Saturating 32-bit operations are of little
value since overflow is usually not a concern for such a wide
data type.

Shift SIMD shift operations are extremely important for
supporting fixed point integer arithmetic. A common se-
quence of operations is the multiplication of an N-bit inte-
ger by an M-bit fixed point fractional constant, producing
an (N + M)-bit result, with a binary point at the M** most
significant bit. At the end of computation, the final result
is rounded by adding the fixed point fraction representing %,

and then shifting the sum right M-bits to eliminate the frac-
tional bits. Shifts are important operations for all data types,
and are critical for fixed point integer arithmetic, as well as
providing an inexpensive way to perform multiplication and
division by powers of two.

Min/Max Min and max output the minimum or maxi-
mum values of the corresponding elements in two partitioned
input registers, respectively. A max instruction is clearly
useful in the maximum value search kernel, which searches
through an array of signed 32-bit integers for the greatest
maximum absolute value in the array. Max and min instruc-
tions have other less obvious uses as well. Signed minimum
and maximum operations are often used with a constant sec-
ond operand to saturate results to arbitrary ranges. The
IDCT kernel clips its output value range to -256...+255 (9-
bit signed integer), which does not correspond to the data
types supported by any of the multimedia extensions. Algo-
rithm 5 demonstrates clamping to arbitrary boundaries for
the Intel implementation of the IDCT.

Algorithm 5 Intel MMX/SSE IDCT

[CLIP_MIN] ;; compute first element
[CLIP_MAX] ;; in order to free mm0
; store x0 [0..3]

; clip to -266

pmaxsw mmO,
pminsw =m0,
movq {egi + 0], mm0
movq  mm0, [CLIP_MIN]
pmaxs¥ mml, mm0
pmaxsv mm2, mm0
pmaxsw mm3, mm0
pmaxsw mm4, mm0
pmaxsw mm5, mmQ
pmaxsw mm6, mm0
pmaxsw mm7, mm0
movq mmQ, [CLIP_MAX]
pminsw mmi, mm0
pminsw mm2, mm0
pminsw mm3, mmO
pminsw mm4, mmO
pminsy mm5, mmQ
pminsw mm6, mm0
pminsw mm7, mm0

; clip to +255

Although max and min can be synthesized through simpler
operations (operations which are useful in their own right),
the additional execution cost is simply too great to be prac-
tical. Rather than a single independent instruction, three
dependent instructions are required. An arbitrary clamping
operation can also be simulated with packed signed saturat-
ing addition. The representable range of a signed fixed point
number (a bits to the left of the binary point, b bits to the
right) is —2° < x < 22 —27%. For example, if we need to limit
a value, X, to the range —j.. + k:

1. 2 -2%) -k — Tpos
2. X+ Tpos=—sXx

3. X —Tpos — X

These three steps limit X to +K. (A = represents satu-
rating overflow, where as a — symbolizes modulo overflow.)
Three more operations are required to limit X to the desired
floor value:

1. —2@ +] _— Tneg




2. X4 Tneg=>X

3 X =Tneg — X

Architecturally, the implementation’ cost of max and min in-
structions should be low since the necessary comparators must
already exist for saturating arithmetic. The only difference is
that instead of comparing to a constant, a register value is
used instead. An added advantage that we have found is that
in many cases where comparisons are required, max and min
instructions are sufficient.

Comparisons We have found that integer control flow
instructions (e.g. packed comparisons) are seldom needed, ex-
cept on architectures without max/min operations (e.g. Sun’s
VIS). We found one instance where a specialized floating point
comparison was useful. In the project and clip test kernel, 3D
objects are first mapped to 2D space through a matrix mul-
tiplication of 1x4 vectors and 4x4 matrices. Objects are then
clipped to the viewable area to avoid unnecessary rendering.
The code fragment listed in Algorithm 6 is computed for each
vertex in a 3D scene every time a frame is rendered.

Algorithm 6 Clip Test and Project

FLOAT32 ex = vEye[il[0], ey = vEye[il[1], ez = vEye[il[2], ew =
vEye[i] [3];

FLOAT32 cx =m0 * ex + m8 * ez, cy = m5 * ey + m9 * ez;
FLOAT32 cz = m10 * ez + mi4d * ew, cw = -ez;

UINT8 mask = 0;

vClip[i][0] = cx; vClip[il[1] = cy; vClip[il[2] = cz; vClip[i][3] = cw;
if (cx > cw) mask |= CLIP_RIGHT_BIT;

else if (cx < -cw) mask |= CLIP_LEFT_BIT;

if (cy > cw) mask |= CLIP_TOP_BIT;

else if (cy < -cw) mask |= CLIP_BOTTOM_BIT;

if (cz > cw) mask |= CLIP_FAR_BIT;

else if (cz < -cw) mask |{= CLIP_NEAR_BIT;

Motorola’s AltiVec includes a specialized comparison in-
struction, vempbfp, which deals with boundary testing. This
is done by testing all of the clip values in parallel to see if
any clipping is needed, and branching to act as a fast out if
no clipping is necessary. This technique is extremely effective
because no clipping is the common case, with most vertices
within the screen boundaries. An example of this is shown
in the clip test kernel from Mesa’s 3D rendering pipeline (Al-
gorithm 6). For the Mesa “gears” application, the fast out
case held true for 61946 of the 64560 (96.0%) clipping tests
performed in our application run of 30 frames rendered at
1024x768 resolution.

Sum of Absolute Differences A sum of absolute dif-
ferences (SAD) instruction operates on a pair of packed 8-bit
unsigned input registers, summing the absolute differences
between the respective packed elements in two registers and
placing (or accumulating) the scalar sum in another register.
The block match kernel is the only one in which sum of abso-
lute differences (SAD) instructions is used. Algorithm 8 lists
the core lines of the block match kernel utilized by MPEG-2
encoding. Block match sums the absolute differences between
the corresponding pixels of two 16x16 macroblocks. The orig-
inal application code also includes three other variations on

Algorithm 7 Motorola G4 Clip Test and Project

HH s vl: Jex | eyl cz | oew |
vspltw v2, v1, 3 3 v2: lew |l ewlcw | cw )
vempbfp. v3, vi, v2 3 v3: bit mask of clip comparisons

5; set cr6 to 0x2 if all test values are within boundaries
1i ri2, 0

merf crQ, cré

be COND_TRUE, 0x2, fast_out

vempgtsw v4, v0, v3 3 v4: > test, - mask if clipping
vempgtsw v6, v3, v0 ; v6: < test, + mask if clipping
vand vd, v4, v27

vand v5, v5, v28

vor v4, v4, v5 ; v4: | maskO| maskl| mask2| mask3|
vsldoi vb, v4, v4, 8

vor v4, v4, vb

vsldoi v5, v4, v4, 4

vor v4, v4, v5 5 v4: | mask | mask | mask | mask |
vspltb v4, v4, 15 ; va: | Ml Mi...| M] M} [0..15]
stvebx " v4, 0, rb ; store mask to mask_temp

1bz ri2, 0(r5) 3 r12: mask

1bz ri5, 0(c7) ; r16: clipMask[i]

or ri§5, ri5, ri2

stb ri6, 0(r7) ; r16: clipMask[i] |= mask

or r13, ri13, ri2 ; r13: tmpOrMask |= mask

fast_out:

addi r7, r7, 1 5 r7: clipMask++ (pointer to UINT8)
and r14, r14, ri2 ; ri4: tmpAndMask &= mask

addic. r3, r3, -1 ; n--

bc COND_FALSE, ZERO_RESULT, loop

block match which compute horizontal, vertical or both hor-
izontal and vertical interpolation before calculating the sum
of absolute differences.

Algorithm 8 Block Match

UINT8 blk_1[161[161; UINT8 blk_2[161[16]1; INT32 sad=0; INT32 diff;
for(j=0; j<h; j++)
for(i=0; i<16; i++) {
if ((diff = blk_1[j1[i] - blk_2[j][i]1)<0)
diff = -diff;
sad+=diff;
}

Although DEC’s MVI extension is quite small (only 13 in-
structions), one of the few operations that DEC did include
was SAD. DEC architects found (in agreement with our ex-
perience) that this operation provides the most performance
benefit of all multimedia extension operations [Rubi96]. In-
tel’s MMX, although a much richer set of instructions, did not
include this operation (it was later included in both AMD’s
3DNow!+ and Intel’s SSE extensions to MMX). Sun’s VIS
also includes a sum of absolute differences instruction.

The Motorola G4 microprocessor was the only CPU in our
survey which did not include some form of SAD operation,
forcing us to synthesize the SAD operation from other in-
structions (Algorithm 9). Although Intel’s SSE extension
(see Algorithm 10) includes the psadbw instruction, this of-
fers only a one cycle performance advantage when compared
to the AltiVec implementation. In some ways this compari-
son is misleading since Intel’s extension is 64-bits wide, while
Motorola’s is 128-bits; the question of performance should be
absolute, not relative to Intel. To estimate the latency of a
hypothetical SAD instruction for a 128-bit extension such as
AltiVec, we examine the latency of this instruction on the
other (64-bit) architectures:




Processor Instruction Latency:Throughput
Intel Pentium III PSADBW 5 cycles : 1 every 2 cycles
AMD Athlon PSADBW 3 cycles : 1 every 1 cycle
Sun UltraSPARC IIi PDIST - 3 cycles: 1 every 1 cycle
DEC Alpha 21264 PERR 2 cycles : 1 every 1 cycle

The latency of a 128-bit instruction would be higher than
the 64-bit instructions listed in the table because this in-
struction requires a cascade of adders to sum (reduce) the
differences between the elements. An N-bit SAD instruction
(M = N/8) can be broken down into steps: 1) calculate M
8-bit differences, 2) calculate the absolute value of the dif-
ferences, 3) perform logo M cascaded summations. The archi-
tects of the 64-bit DEC MVI extension comment that a 3-cycle
implementation of PERR would have been easily achievable,
but in the end the architects achieved a more aggressive 2-
cycle instruction [Carl97]. If a SAD operation were to be im-
plemented in Motorola’s AltiVec, we estimate it would have
a latency of 4 cycles. This would certainly be a superior so-
lution compared to the 9 cycle solution shown in Algorithm
9.

Algorithm 9 Motorola G4 Block Match - SAD portion
(starting with vmaxub instruction) takes 9 cycles

block #1, line #1, pixels [0..F]
block #1, line #2, pixels [0..F]

35 vi:
33 vé:

;3 v6: block #2, line #1i, pixels [0..F)
vavgub vi, vi, v4 vl: vertically interpolated p0..pF
vmaxub v7, vi, v4 v7: max [0..F]

v8: min [0..F]

H
H
vminub v8, vi, v4 H
H
H
3

vsububs v7, v7, v8 v7: abs_diffs [0..F]
vsumdubs v31, v7, v31 ; v31: | SAD_O | SAD_1 | SAD_2 | SAD_3 |
vsumsws v31, v31, vO ; v31: | O | O | 0 | sAap |

Algorithm 10 Intel Pentium IIT Block Match - SAD
portion (starting with first psadbw instruction) takes 8 cycles

block #1, line #1, pixels [0..7]
block #1, line #1, pixels [8..F]
block #1, line #2, pixels [0..7]
block #1, line #2, pixels [8..F]
block #2, line #1, pixels [0..7]
block #2, line #1, pixels [8..F)

; mml: vertically interpolated p0..p7
mm5: vertically interpolated p8..pF
mml: | O} O | O |SADO| Pixels 0..7
mm§: | 01 O | O ISAD1| Pixels 8..F
muai: ] O 1 01 01 SADI

53 mmi:
33 mmb:
i3 om3:
55 mmé:
33 mm2:
53 mm6:

pavgb mml, mm3 H
pavgb mm5, mm4 H
psadbw mmi, mm2 ;
psadbw mm5, mm6 H
paddd mmi, mmb ;

Average. In addition to compute the sum of absolute dif-
ferences, half-pixel interpolation, for which MPEG-2 encoding
offers three varieties, is also important; vertical interpolation
is shown in Algorithms 9 and 10. Interpolation is done by
averaging a set of pixel values with pixels offset by one hori-
zontally, vertically or both. The original C MPEG-2 code first
performs the interpolation, and then computes the sum of ab-
solute differences on the result. SIMD interpolation can be
performed through 8-bit unsigned average instructions (again
see Algorithms 9 and 10). DEC’s MVI extension does not in-
clude a packed average instruction, but a similar interpolation
operation can be done by averaging the result of several SAD
operations using scalar integer arithmetic (since the result of
a SAD instruction is a scalar value).

Integer average operations were only used in the block
match kernel. This kernel operates on 8-bit unsigned val-
ues, so this is the only type of “average” instruction that was
useful within our workload.

High Latency Function Approximation. Applica-
tions such as 3D rendering have kernels which use floating
point mathematical functions, such as reciprocal and square-
root, that are very high latency. On some architectures these
scalar functions are computed in software, while others have
hardware instructions. Full IEEE compliant operations re-
turn 24-bits of mantissa. The computation of these functions
is iterative, so the number of bits of precision returned is di-
rectly proportional to an operation’s latency. It is for this
reason that all of the SIMD floating point extensions (AMD’s
3DNow!, Intel’s SSE and Motorola’s AltiVec) include approx-
imation instructions for % and % These are typically im-
plemented as hardware lookup tables, returning k-bits of pre-
cision. In Intel’s SSE, for example, approximate reciprocal
(rep) and reciprocal square root (rsqrt) return 12-bits of
mantissa. Motorola’s AltiVec also returns 12-bits of precision
for both the reciprocal and reciprocal square root approxima-
tion instructions.

In the transform and normalize kernel, graphics primitives
are transformed to the viewer’s frame of reference through
matrix multiplications. The code shown in Algorithm 11 is
computed for each vertex in a 3D scene.

Algorithm 11 Transform and Normalize

FLOAT64 tx, ty, tz, lemn, scale;

FLOAT32 ux = u[il[0], wuy = u[il[1], uz = u[il[2];
tx = ux * m[0] + uy * m[1] + uz * m[2];

ty = ux * m[4] + uy * m[5] + uz * m[6];

tz = ux * m[8] + uy * m[9] + uz * m[10];

len = sqrt( tx*tx + tysty + tz*tz );

scale = (len>1E-30) ? (1.0 / len) : 1.0;

v[iJ[0] = tx * scale; v[i]J[1] = ty * scale;

v[il[2] = tz * scale;

The transform kernel has at its heart a floating point re-
ciprocal square root operation (71—;). One unique aspect of
Intel’s SSE instruction set is that not only does it include 22-
bit precise (mantissa) approximations of 1 and ﬁ, but it also
includes full precision (24-bits of mantissa) versions of divi-
sion and /. Of course, this added precision comes at a price
- namely much higher latency (their full precision instructions
are not pipelined) than the pipelined 22-bit approximations
derived from processor internal lookup tables. All of the float-
ing point multimedia extension vendors, including Intel, point
out the Newton-Raphson method for improving the accuracy
of approximations through specially derived functions. In the
case of —-‘}7 it is possible to iteratively increase the precision

of an initial approximation through the equation:

z1 =20~ (0.5 a 25 ~0.5.20) =0.5-2¢-(3.0—a-z2)

(€3]

Employing an approximation instruction in conjunction
with the Newton-Raphson method to achieve full precision
is actually faster than the full precision version of the in-
struction that Intel provides. Compare the code fragments in
Algorithms 12 and 13, which have execution times of 25 vs.




36 cycles. One iteration of the Newton-Raphson method is
enough to improve a 22-bit approximation to the full 24-bit
precision of IEEE single precision.

Algorithm 12 Intel Approximated Square Root - 25

cycles

3 xmm3:  tx~2+ty~2+tz~2 [0..3] (len=sqrt(tx~2+ty~2+tz"2))

; xmem7: 0.5 [0..3]

; xnm6: 3.0 [0..3]

rsqrtps xmm4, xmm3 ; xmm4: rsqrtps(a)

movaps  xmm6, xmm3

mulps xmm6, xmm4 ; xmm6: a*rsqrtps(a)

mulps xmm6, xmmé ; xmm6: a*rsqrtps(a)+*rsqrtps(a)
mulps xmm4, xmm7 ; xmm4: 0.5*rsqrtps(a)

subps xmm5, xmmé ; xmm6: 3.0 - asrsqrtps(a)#*rsqrtps(a)
mulps xmm4, xmmb5 ; xnm4: |1/leni|1/len2{1/len1|1/1len0|
;3 sqrt(a) = ax(1/sqrt(a))

mulps xmm3, xmmd ; xmm3: | len3 | len2 | leni | lenO |

Algorithm 13 Intel Full Precision Square Root - 36

cycles

; xmm3:  tx + ty + tz [0..3] (lenm=sqrt(tx+ty+tz))
; xmm3: a [0..3]

sqrtps xmm3, xmm3 ; xmm3: sqgrt(a)

The added cost, of the Newton-Raphson method is of the
additional register space needed to hold intermediate values
and constants. AMD’s 3DNow! extension circumvents this
by including instructions to internally perform the Newton-
Raphson method, rather than having the programmer imple-
ment it (Algorithm 14). The only odd thing about AMD’s
reciprocal square root instructions are that they are actually
scalar; they only produce one result value, based on the lower
packed element.

Algorithm 14 AMD Approximated Square Root - 20

cycles

3 mm3:  tx"2+ty~2+tz~2 [0] (len=sqrt(tx"2+ty~2+tz~2))
pfrsqrt mm4, mm7 ; mmd: |“1/len0 |~1/len0 |
movq mm5, mm4

pfmul mm4, mmé

pfrsqitl mm4, mm7

pfrcpit2 mm4, mm5 ; mmd: | 1/len0 | 1/len0 |
pfmul nm7, mmé ; mm7: | len0 | 1len0 |

5.3.2 Exceptions

Techniques for handling exceptions that occur during SIMD
processing are very similar to those employed when dealing
with packed overflow. Checking result flags or generating an
exception from a packed operation requires considerable time
to determine which packed element caused the problem. In
most cases where an exception might be raised it is possi-
ble to fill in a value which will give reasonable results for
most applications. This speeds execution because no error
condition checking need be done, and is is similar to satu-
rating integer arithmetic where maximum or minimum result
values are substituted rather than checking for and report-
ing positive or negative overflow. Both AMD’s 3DNow! and
Motorola’s AltiVec extensions do not implement IEEE com-
pliant floating point exceptions. Only Intel’s SSE implements

full IEEE compliant SIMD floating point exceptions, and in-
cludes a control/status register (MXCSR) to mask or unmask
packed floating point numerical exceptions.

5.3.3 Floating Point Rounding

Intel’s SSE offers two modes of rounding: IEEE compliant
and another, faster, flush to zero (FTZ) mode. Flush to zero
(FTZ) clamps to a minimum representable result in the event
of underflow (a number too small to be represented in sin-
gle precision floating point). Fully compliant IEEE floating
point supports four rounding modes. Most real time 3D appli-
cations use the FTZ rounding mode since they are not partic-
ularly sensitive to a slight loss in precision [Thak99]. 3DNow!
supports only truncated rounding (round to zero). All of Mo-
torola’s AltiVec floating point arithmetic instructions use the
IEEE default rounding mode of round to nearest. The IEEE
directed rounding modes are not provided.

5.3.4 Type Conversion

Width promotion is the expansion of an N-bit value to some
larger width. For unsigned fixed point numbers this requires
zero extension or filling any additional bits with zeros. Zero
extension is usually not specified as such in a multimedia ar-
chitecture because it overlaps in functionality with data re-
arrangement instructions such as unpack or merge. If packed
values are merged with another register which has been zeroed
prior to merging the result is zero extension. Signed element
unpacking is not as simple, but is rarely supported directly
by hardware; only the AltiVec instruction set includes it. It
can be synthesized with multiplication by one since a multi-
plication yields a result that is the overall width of both its
operands.

Video and imaging algorithms use an 8-bit unsigned data
type. Audio and speech algorithms, on the other hand, typi-
cally employ signed 16-bit values, but because multiplication
by a fractional fixed point constant is a common operation,
these values are often unpacked as a natural consequence of
computation. So, although a signed unpack operation would
likely be faster than multiplication by 1, it is seldom necessary
to resort to this in practice.

All data types that occur in multimedia should be sup-
ported for packing and unpacking even for those widths not
directly supported by arithmetic operations. It should always
be possible to convert to a width that is supported for compu-
tation. Although we do not otherwise examine HP’s MAX-
1/MAX-2 extensions, as no hardware employing them was
available to us at the time of this work, they are good exam-
ples of where not following this guidline can cause problems.
We have noted the importance of the 16-bit data width. HP’s
MAX-1/MAX-2 instruction sets only support operations on
16-bit wide values. Partitioned 8-bit operations were consid-
ered, but rejected due to insufficient precision. Wider packed
data types (e.g. 32-bit) were not included due to insufficient
parallelism. What this approach overlooks is that fact that
even though many intermediate computations require greater
precision than 8-bits, many types of video and imaging data
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are stored this way in existing multimedia file formats. Thus,
~ packing and unpacking to and from 8-bit precision is a very
common operation, which is not supported in hardware, mak-
ing HP’s extensions inefficient at processing this type of data.

5.3.5 Data Rearrangement

SIMD instructions perform the same operation on multiple
data elements. Because all of the data within a register must
be treated identically, the ability to efficiently rearrange data
bytes within and between registers is critical for performance.
We will refer to these types of operations as “data communica-
tion” instructions. Interleave instructions (also referred to as
mizing, unpacking or merging) merge alternate data elements
from the upper or lower half of the elements in each of two
source registers. Align or rotate operations allow for arbitrary
byte-boundary data realignment of the data in two source reg-
isters; essentially a shift operation that is done in multiples
of 8-bits at a time. Both interleave and align type operations
have hard coded data communication patterns. Insert and
eztract operations allow for a specific packed element to be
extracted as a scalar or a scalar value to be inserted to a spec-
ified location. Shuffle (also called permute) operations allow
greater flexibility than those operations with fixed communi-
cation patterns, but this added flexibility requires that the
communication pattern be specified either in a third source
register or as an immediate value in part of the instruction
encoding.

The sufficiency of simpler data communication operations
is to some degree dependent on the vector length employed.
For example, 128-bit AltiVec vectors contain up to sixteen el-
ements, while a shorter extension such as Intel’s 64-bit MMX
contain at most eight of the same type of element. This means
that simple data rearrangement operations (e.g. merge) cover
a relatively larger fraction of all possible mappings in the case
of the shorter vector length. [Lee00] presents a novel set of
simple data communication primitives which can perform all
24 permutations of a 2x2 matrix in a single cycle on a pro-
cessor with dual data communication functional units. This
is useful because any larger data communication problem can
be decomposed into 2x2 matrices. Although this approach
might make some very complex data communication patterns
slow to compute, we have found that most multimedia al-
gorithms have patterns which are relatively simple. Because
of this we endorse [Lee00}’s technique for covering the data
communication needs of multimedia applications.

A related class of instructions that the AltiVec extension in-
cluded, that was quite useful, was a set of “splat” instructions,
which place either an immediate scalar or specified element
from a source register into every element of the destination
register. This was very useful when constants were required;
on other architectures it is necessary to statically store these
types of values in memory, and then load them to a register
when required.

5.3.6 Prefetching

Prefetching is a hardware or software technique which tries to
predict data access needs in advance, overlapping memory ac-
cess with useful computation. Although we will not otherwise
examine the performance implications of prefetch instructions
(which would be a useful extension to this study), we men-
tion them briefly because they are often a part of multimedia
instruction sets due to the highly predictable nature of data
accesses in multimedia applications.

Software prefetch instructions are used to fetch data into
the cache from main memory without blocking true load/store
instruction accesses. Determining the ideal location for
prefetch instructions in a piece of code depends on many
architectural parameters. Unfortunately, these include such
things as the number of CPU clocks for memory latency and
the number of CPU clocks to transfer a cache line, which are
both highly machine dependent and not readily available to
the programmer.

Rather than issuing an explicit prefetch instruction for each
desired data prefetch, Motorola’s AltiVec uses a single data
stream touch instruction (dst) which indicates the memory
sequence or pattern that is likely to be accessed. We will refer
to this hybrid of hardware and software prefetching as soft-
ware directed prefetching to indicate that a separate prefetch
instruction need not be issued for each data element. A data
stream is defined by a sequence starting address, size of each
unit (up to 32 128-bit blocks), total number of units (up to
256), bytes between units (-32768..+32767) and a 2-bit ID
tag for the stream. Hardware optimizes the number of cache
blocks to prefetch so it is not necessary for the programmer to
know the parameters of the cache system. A stream is fetched
either until all of the requested blocks have been brought into
the cache or another dst instruction is issued with the same
tag ID. The stream construct eliminates the instruction issue
overhead as well as the problem of determining the optimal
prefetch distance.

5.4 Bottlenecks and Unnecessary Features

In this section we discuss those features which appear in mul-
timedia instruction sets, do not appear to be useful, and are
not “free”; i.e. they aren’t a low {or no) cost side effect of
some other useful feature.

Instruction Primitives The VIS instruction set does
not include full 16-bit multiply instructions. It instead of-
fers multiplication primitives, the results of which must be
combined through addition (see Algorithms 15 and 16).

Algorithm 15 Sun VIS 16-bit x 16-bit —16-bit Multi-

ply

fmul8sux16  %£0, %f2, %f4
fmulBulx16  %f0, %f2, Wf6
fpadd16 %f4, %f6, %f8

The Mix stereo kernel is a good example of the high cost
of synthesizing needed instruction functionality from other
primitives. Audio mixing consists of multiplying a vector of
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Algorithm 16 Sun VIS 16-bit x 16-bit —32-bit Multi-

ply

fmuld8sux16 %f0, %f2, %f4

fmuld8ulx16 %£0, %f2, %f6

fpadd32 %£4, %f£6, %f8 Fs

count input signals (sp[]) by a vector of mixing coefficients
chan, ; chan, and summing the result (Algorithm 17). In the
Timidity MIDI music synthesis application, fixed point inte-
ger computations are used to mix the various signed 16-bit
instrument sounds into a 32-bit output buffer.

Algorithm 17 Mix Stereo

INT16 **xsp_p; INT32 #*lp_p; INT32 count; INT32 chan_1; INT32 chan_2;
INT16 s, #sp = *(sp_p); INT32 *lp = *(lp_p);
while (count--) {
8 = #5p++;
*1p++ += s*chan_1;
*1p++ += s*chan_2;
}
*(sp_p) = sp;
*(lp.p) = 1p;
}

Comparing the code snippet in Algorithm 18 to Algorithm
19 we can see that Sun’s approach of synthesizing function-
ality from primitives (especially in the case of synthesizing a
16-bit merge) is much more costly than using a single instruc-
tion.

Algorithm 18 Intel Mix

movq mm0, [esi) ;mm0: | 83| 82| si1 | s0 |
movq mni, [edi] ; mmi: | 1p1 | 1p0 |
movq mn2, [edi + 8] ; mm2: | 1p3 | 1p2 I
pshufw mm§, mmO, 00000000b ; mm5: | 80 | 801 80 | 80 |
pshufw mm6, mmO, 01010101b ; mm6: | 81 | 81 | 81 | sl |
pmaddwd mmS, mm7 ; mmS: | sO*right | sO%left |
pmaddwd mm6, mm7 ; mm6: | slsright | sisleft |
paddd mml, mm5 ; nmi: | 1p1> | 1p0° |
paddd mm2, mmé ; mm2: | 1p3* | 1p2’ |

The reason that the architects of VIS divided up 16-bit mul-
tiplication in this way was to decrease die area. Not providing
a full 16x16 multiplier subunit cut the size of the arrays in half
[Trem96b]. Unfortunately, dividing an operation into several
instructions (which are not otherwise useful in and of them-
selves) increases register pressure, decreases instruction de-
coding bandwidth and creates additional data dependencies.
Splitting SIMD instructions (which have been introduced for
their ability to extract data parallelism) can actually cripple
a superscalar processor’s ability to extract instruction level
parallelism. A multi-cycle operation can be a better solu-
tion than a multi-instruction operation because instruction
latencies can be transparently upgraded in future processors,
while poor instruction semantics can not be repaired without
adding new instructions.

Unused High Latency Approximation Instructions
Floating point approximation of % instructions, although
available on several platforms, did not find application in any
of the kernels we studied. AltiVec also includes approximate
log, and exps instructions, which find application in the light-
ing stage of a 3D rendering pipeline; this is currently handled
by 3D accelerator cards, and not the CPU.

Algorithm 19 Sun Mix

wr %g0, 6, Ygsr !set alignment for right shift by 16
1d [Z11 + 0], %f16 !%f16:] 1p0 | XXXXXXXXXXX |

1d (K11 + 4], %£17 4%£17:] 1p0 | 1pt 1

1d [%11 + 8], %£18 1%f18:| 1p2 IXXXXXXXXXXX |

1d [411 + 12], %£19 1%£19:) 1p2 | 1p3 1

! simulate 16-bit merge

fpmerge %£28, %£28, %Af4 !%f4: 1s0_|s0_|_s0|_s0ls1_|s1_|_s1|_s1}
fpmerge %£29, %£29, %£10 !%£10:1s2_Is2_|_82|_s2183_l83_|_s3]_s3}

faligndata %f4, %f4, %f6
faligndata %£10, %f10, %f12

1%£6: |.s1|_s11s0_|s0_]_s0]_sOlsl_is1_}
1%£12: | _s3|_s3i82_I82_|_s2|_s2l83_l83_|

fpmerge %£6, %f4, L8 1%£8: |XXXIXXXIXXXIXXX] 80 | &80 |
fpmerge %£12, %£10, %f14 1%f£14:|XXX{XXX|XXX|XXX} 52 | 82 |
fpmerge  %f7, %f5, %f2  1%£2: |XXXIXXXIXXXIXXX| si | s1 |
fpmerge A£13, Yf11, %£26 1%£26: |XXX|XXX|XXX!XXX| 83 | 83 |
fsrcis %£9, %2 1%£2: | 80| 80| s1 ]| 81|

fsrcis %£15, %£26 1%£26:1 82 ] 82| 83| 83|

! simulate 16x16 -> 32-bit multiply

fmuld8suxi6 %£0, %f2, %f4

fmuld8ulx16 %£0, %f2, %f6

! simulate 16x16 -> 32-bit multiply

fmuldBsux16 %£0, %f3, %f8

fmuldBulx16 %f0, %£3, %f10

fpadd32 4f4, %£6, %Uf4 ! %f4: | sO%chanl | sO#chan2 |
fpadd32 #£8, %£10, %f6 ! Y%f6: | slschanl } si*chan2 |
fpadd32 %£16, %f4, Uf16 ! Yfi16: | 1p0° i 1pt?’ |
fpadd32  %f18, %f6, %f18 ! %fi8: |  1p2’ |  1p3’ |

Unused Pixel Conversion Instructions Motorola’s
AltiVec extension includes pixel pack (vpkpx) and pixel un-
pack (vupkhpx, vupklpx) instructions for converting between
32-bit true color and 16-bit color representations. These did
not find application within the BMKL, although it is possible
that they might be of utility in situations where AltiVec needs
to operate on 16-bit color data; many video games use 16-bit
textures, for example.

Unused Memory Access Instructions Sun’s VIS in-
cludes two sets of instructions for accelerating multimedia op-
erations with sophisticated memory addressing needs. The
first, edge8, edgel6, and edge32, produce bit vectors to be
used in conjunction with partial store instructions to deal with
the boundaries in 2D images. The second group of address-
ing instructions include array8, array16 and array32 which
find use in volumetric imaging (the process of displaying a
two dimensional slice of a three dimensional data). An ar-
ray instruction converts (z,y, 2) coordinates into a memory
address. The Berkeley multimedia workload does not include
any volumetric imaging applications, so it is unsurprising that
these instructions found no utility in our workload.

Singular, Highly Utilized Resources Although we
usually think of SIMD architectures as extracting data level
parallelism, all of the implementations of the instruction sets
we have examined are also superscalar, with multiple parallel
SIMD functional units. In fact, unless the SIMD vector length
is long enough to hold the entire data set being operated on,
there is almost always the potential to extract instruction
level parallelism as well. In coding the kernels with Sun’s VIS
extension, it became clear that instruction level parallelism
was being compromised by the over utilized graphics status
register (GSR).

Sun’s VIS architecture does not include partitioned shift
instructions, the GSR has a 3-bit addr_offset field which
is used implicitly for byte granularity alignment, as well
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as a 4-bit scale_factor field for packing/truncation oper-
ations. The VIS GSR is a serializing bottleneck because any
time packing or alignment functionality is needed, it must be
pushed through the GSR. Because VIS lacks partitioned shift
operations, we found ourselves synthesizing such operations
with the packing and alignment operations where no other
algorithmic path was possible. Even with careful planning of
packing and alignment operations it was often necessary to
write to the GSR several times in each iteration of the loops
of our multimedia kernels. The serializing effect of this singu-
lar resource prevented VIS operations from proceeding at the
fullest possible degree of parallelism.

5.5 Alignment and Memory Traffic

Factors such as register file geometry (the number of registers
and their width), data path location (pre-existing integer or
floating point, or separate) and alignment issues are reflected
in the uncached memory traffic - the data accesses as seen
by the L1 data cache. Table 3 lists the average number of
bytes loaded or stored per function call. This was computed
by multiplying the number of dynamic load and store instruc-
tions executed by their widths in bytes.

From Table 3 we can see that Motorola’s and Sun’s im-
plementations sometimes seem to transfer (load and store)
more bytes in each function call than the AMD, DEC or Intel
implementations of the same kernel. We would expect the
Motorola and Sun implementations to spill registers to mem-
ory less frequently due to their larger register files (on average
we see that the register file geometry does affect memory traf-
fic as we might expect). This surprising result is actually an
artifact of how we computed memory traffic, rather than an
indication of an architectural shortcoming. Dynamic instruc-
tion counts alone are not a completely accurate predictor of
actual memory traffic, since some of the architectures (AMD,
DEC, Intel) support unaligned loads (hiding some loads issued
by the hardware which handles unaligned memory access in
the CPU) and the rest do not. Hardware support to efficiently
handle memory accesses that are not aligned are expensive in
both area and timing [Thak99].

Transparently Forced Alignment The AltiVec in-
struction set architecture does not provide for alignment ex-
ceptions when loading and storing data. Alignment is main-
tained by forcing the lower four bits of any address to be zero.
This is transparent to the programmer, so the programmer is
responsible for guaranteeing alignment, otherwise incorrect
data may be loaded or stored. We believe it is better that
performance and correctness issues due to alignment be made
explicit. The loading of incorrect data due to a mistaken
assumption about alignment would be an extremely difficult
bug to track down.

5.6 Overall Instruction Mix

Table 4 shows what types of instructions comprised the total
mix of dynamic instructions executed by each architecture.
Counts are for the code within the kernels only, and do not

include instructions from the rest of each application. Control
state instructions are those which interact with special pur-
pose machine registers (e.g. the GSR on Sun’s VIS). Branches
and other data dependent codes such as conditional moves are
categorized as “control flow” type instructions.

We can see that SIMD kernels utilize a significant number
of scalar operations for pointers, loop variables and clean up
code; evidence that sharing the integer data path is not a
good idea. Intel’s SSE is a 128-bit wide extension, as com-
pared to AMD’s 64-bit wide 3DNow!, explaining why Intel’s
overall instruction count is lower by about 1 billion instruc-
tions. The same reasoning applies to Motorola’s G4 which
has the 128-bit wide (both packed integer and floating point)
AltiVec extension. DEC’s bloated instruction count is due to
the fact that their MVI extension is very limited in function-
ality (13 instructions in total), and so many operations need
to be done with scalar instructions.

Data communication operations represent the overhead
necessary to put data in a format amenable to SIMD op-
erations. Ideally, these types of instructions should make up
as small a part of the dynamic instruction mix as possible.
Table 4 reveals that the Motorola AltiVec extension executes
the largest percentage of these instructions. This is due to
two factors: 1) the wider register width means that it is less
likely that the data is arranged correctly as first loaded from
memory and 2) data communication operations are used by
AltiVec to simulate unaligned access to memory.

6 Performance Comparison

In order to establish a base line for performance, the average
execution time of the C and SIMD assembly versions of the
BMKL were measured on each platform (Table 5). A speedup
from 2x-5x was typical, although some kernels were sped up
considerably more than this. Note that the C compiler for the
Apple system running a pre-release version of OS X (devel-
oper’s preview 3) is known to be weak, making the speedup
of AltiVec over C look unrealistically good.

All of our performance measurements utilize the metric of
time rather than cycle or instruction counts. If all of the
architectures in our study had equal cycle times, then com-
paring cycle times would be valid, since time, in that case,
would simply be proportional. This is not the case, since the
Sun UltraSPARC IIi used in our study has a 360 MHz clock,
while the remainder of the chips are 500 MHz parts. Instruc-
tion counts are not valid measure for cross architectural com-
parisons, as each instruction set does not necessarily do the
same amount of work (computation) in the same number of
instructions, nor take a the same amount of time to perform
similar instructions.

To measure how well or how poorly a given platform per-
forms relative to the competition we use the metric of percent
deviation from the mean:

%DM = 100 - (flzt—‘) (2)

where t; is the time taken on platform i, and % is the average
performance (time) across all of the platforms examined for
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AMD DEC Intel Motorola Sun Average
Register Fle 8x64b (FP) 31x64b (Int) 8x64b (FP), 8x128b 32x128b 32x64b
Geometery 4
'Add Block 296 2.5% 249 18.2% 290 4.7% B 417% 256 16.0% 304
Block Match 356]  27.7% 512]  -16.2% 35| 27.8% 70| 48.0% 43 9.0% 392
Clip Test & Project 5261 -10.8% 5,755 42.3% 2.830]  40.0% 2,139 34.9% 6.735]  -41.9% 4,746
Color Space 14,517,360] _-101.9%] 2,073,744 71.2%|  14,517,360] _ -101.9%] 2,419,504 66.3%] 2419296]  66.3%)] | 7.189.453
DPCT 2,24]  52.4% 19,008]  -273.1% 24200 52.5% 304 94.0% 1320]  74.1% 5,095
FFT 99797 12.0% 171,163 50.9% 95,117] __ 16.1%] 118,560 45%| 52,408 27.3% 113,409
IDCT 1640 -60.6% 682 33.2% 1,640]  -60.6% 320 68.7% 824]  19.3% 1,021
Max Value 8521 20.6% 782 27.1% 852 20.6% 2,008 -95.5% 783 27.01% 1,073
Mix Stereo 823]  -17.5% 303 28.2% 83| -17.5% 505 27.9% 849]  21.0% 701
Quantize 4733 45.6% 7,391 15.1% 4675 46.3% 21,098] _ -142.5% 5,609 35.5% 8,701
[Short Term Anal. Filter 8,584]  -105.0% 3,056 27.0% 8.584]  -105.0% 772 93.5% 340 89.5% 4,187
|Short Term Synth. Filter 7.100]  -93.3% 3,448 6.1% 7.100]  -93.3% 274 92.5% 21 88.0% 3,673
Subsample Horizontal 13,685,804]  -67.3%] _ 2.945,448 64.0%] 13,685,802  -67.3%) 5,642,508 31.0%] 4930600 39.7%] | 8.178.050
ISubsam le Vertical 8,300932] _ -88.5%] 1,123,328 74.5%] _ 8,301,053]  -88.5%] 2,137,092 51.5%]  2,160040]  51.0%| | 4404480
Synthesis Filter 4,080 2.2% 4,136 3.6% 4,124 -3.8% 3273 78.0% 7328 3.4% 3,992
Xform & Nor 3,037]  -34.6% 1,976 12.5% 2,162 2.2% 1.659 26.5% 2,451 5.6% 2,257
[Average T 2.290,192] _ -26.3%] __ 397,640] __ -0.6%] 2,289,707  -20.4%] 646,923]  16.3%] 601,053  25.9%

Table 3: SIMD Kernel Memory Traffic - data bytes transferred per call as seen by the L1 cache (in other words, uncached
memory traffic) are listed in the left subcolumns, with the percent deviation from the mean values (%DM) given in the right
subcolumns. Values in italics indicate kernels which are implemented in C due to lacking SIMD instruction set functionality.

AMD Athlon DEC 21264A Intel Pentium II1 Motorola G4 Sun UltraSPARC IIi
Int Load/Store 241E+08__ (5.4%) | L.5SIE+09 (20.3%) | 2.19E+08__ (6.0%)| 1.09E+08  (2.4%)| 1.47E+08  (2.6%)
Int Arithmetic S43E+08_ (12.1%)| 2.18E+09 (29.29%) | 4.34E+08_ (12.3%) | 8.65E+08 (19.1%)| 1.49E+09 (26.6%)
Int Control Flow 5.75E+08_(12.8%) | 8.41E+08_(11.3%) | 4.13E+08 (13.4%) | 6.06E+08 (13.8%)| 5.20E+08 _ (9.3%)
2‘0‘ ::::nicaﬁm 1.03E+08  (2.3%) | 4.98E+08  (6.7%)| 7.50E+07 (2.1%)| 4.75E+07 (1.1%)| 0.00E+00  (0.0%)
FP Load/Store 1.42E+08__ (3.0%) | 836E+08_(11.0%) | LA0E+08 _ (4.0%) | 335E+08 _ (7.4%)| 4.4SE+08  (8.0%)
FP Arithmetic 0.00E+00__ (0.0%) | 1.34E+09 _(18.1%)| 0.00E+00 _ (0.0%) | 1.04E+08__ (2.3%)| 4.69E+08  (8.4%)
FP Control Flow 0.00E+00__ (0.0%) | 1.05E+07 _ (0.1%)| 0.00E+00 _ (0.0%)| O.00E+00 _ (0.0%)| 3.50E+08  (6.0%)
2‘; l:;::‘nicaﬁon 0.00E+00  (0.0%)| 0.00E+00 (0.0%)| 0.00E+00 (0.0%)| 8.73E+05 (0.0%)| 0.00E+00  (0.0%)
SIMD Load/Store 8.70E+08_ (19.4%) | 0.00E+00 _ (0.0%) | 740E+08 (21.0%)| 8.12E+08 (17.9%) | 6.56E+08 (11.7%)
z‘ol‘mmmf;‘;ﬁw 5.50E+08 (12.3%) | 0.00E+00 (0.0%)| 4.43E+08 (12.6%)| 7.67E+08 (17.0%)| 5.44E+08  (9.7%)
SIMD Int Arithmetic | 5.61E+08_(12.5%) | 2.28E+08 __ (3.1%) | 6.62E+08 (18.8%) | 5.36E+08 (11.8%)| 7.61E108 (13.6%)
illol'wm Int Control 0.00E+00  (0.0%)| 0.00E+00  (0.0%) | 0.00E+00 (0.0%) | 5.23E+03  (0.0% | 1.97E+08  (3.5%)
SIMD FP Arithmetic | 8.95E+08_(19.9%)| 0.00E+00__(0.0%) | 327E+08 _ (9.3%) | 3.12E+08 _ (6.9%) | 0.00E+00 _ (0.0%)
:,Kg’”c"“"“' 2.91E+05  (0.0%)| 0.00E+00 (0.0%)| 146E+05 (0.0%)| 8.12E+04  (0.0%)| 0.00E+00  (0.0%)
Control State 8.24E+06__ (0.2%) | 0.00E+00 _ (0.0%) | 8.35E+06 _ (0.29%) | 1.25E+07 _ (0.3%) | 2.16E+07 _ (0.4%)
Total 4.49E+09  100%| 1.45E+09  100%] 3.52E+09  100%| 4.53E+09  100%| 5.60E+09  100%

Table 4: Overall Instruction Mix - counts are listed with percentages in parentheses. Control state instructions are those
which interact with special purpose registers. Control flow instructions include branches as was as conditional moves and

' comparisons. »

a particular kernel. This metric indicates how much better
or worse than average, and provides a normalized result for
computing the average improvement or degradation in per-
formance. Table 6 lists the average %DM (the arithmetic
average of the %DM values for all of the kernels on a given
platform).

The algorithm employed by the original MPEG-2 encoder
DCT code (Algorithm 3) is not very efficient - it uses dou-
ble precision floating point where fixed point integer should
provide sufficient precision (and is typically faster on most
architectures) [IEEE91]. Because the DCT and IDCT algo-

rithms are of the same computational order of magnitude it
might seem strange that they demonstrate such different per-
formance improvements (Table 5). Unlike the original forward
DCT code which was computed in floating point, the scalar
inverse DCT source code (Algorithm 4) is written in fixed
point integer. Thus it is much more directly comparable to
our fixed point integer SIMD implementations.

The fact that the original C DCT algorithm is floating point
and the SIMD implementations are fixed-point integer meant
that it was not appropriate to use the original code as the “so-
lution” for the DEC Alpha architecture, which did not provide
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AMD Athlon DEC 21264 Intel Pentium 11 Motorola G4 Sun UltraSPARC Ii Arithmetic Mean
‘Add Block ©.6%) 1,087 14| (.99 | 669) 350] (6.4%) 969| 152] 359 1,054 423 [Gox) | 1oss] 276
Biock Match 7.91) 1,801 1,855 381| Q4x) 1,466 437, @.11) 1,702 461
Clip Test & Project (1.6x) 7374 7,938 6,336] (2.6x) 8,906) 3,427 L8 (1.57) 9,006] 7.027]
Color Space (9.4x) | 122,103,855 60,141,946| 10,803,618 (4.5x) | 58,043,968| 12,959,530 (4.8%) | 64,940,953] 14,545,102
DCT** (1693) 24332 38,192 1,228] (36.6x) 33,176 907|(9.21) (22.7x) 27,819 1,512
FFT @2.0x) 125,484 147,047 846611 Q.0x) | 23227 116,828 |iK 0% (151) | 136677 88,703
IDCT (3.6x) 2,999 2,772 993] 3.9%) 3,326 847} (1.53) (2.6x) 2,831 1,290
Max Value (4.01) 2,407 2,536 669} (6.61) 4,110 618](0.73) @.25) 3272 2355]
Mix Stereo @8x) 956, 1,065 528] (381) 1,710 46| 2.1%) (3 1,579 729)
Quantize (1.8x) 34,233 37.000]  15000] @.1x) 29,488 14,335 (1.73) 31,059] 20,476
Short Term Analysis Filter | (1.53) 15,268[ 16,129 12,003] (6.5%) 24,156 3,729 (2.63 20,689 10,150]
Short Term Synthests Filter | (2.9%) 21,849| 43,582 5,759] (6.51) 23,721 3,672] (3.2x) 48,660 15,202] | @2x 31,404 10.253
|Subsample (4x) | 15977835 15,777.956] 11,714,792] (16) | 17,372,826] 10,849,858| (0.9%)| 17.707.829] 19,521,092] | (133 15,229,475] 12,537,503
Subsample Vertical (24x) | 25517638 21,969,585] 10,049,618] (9.6x) | 29,349,708 3,070,046] (3.8: ,457, 42x) | 26278,039] 7,771,354
Synthesis Filter (2.8%) 7,308 8.349] 4718] (1.87) 4,917 2,727} Sy 73] | (170 6,522 4414
 Transform & Normalize (2.53) n,sﬁ' {10m) o 20,491 4338] @741 81,985 2,998 {1.0%) 485 433 (3% 27,290 6,876)
Arithmetic Mean | 48x) | 10240997] 2,197,989 2.5% 902,974 1,683,709] (5.1x) | 6,138,595] z,ugzml (.6x) | 6,582,299] 1,689.427](2.8x)[ 7.494325] 3,325,038
Geometric Mean lean | 47,328( 15,0631 (1.5x) 27,110 18,626} (3.1x) | 52,161] 16,694] (4.83) | 60,056] 12,416](1.7%) 66,825 38,312

Table 5: Average Time per Call (ns) - C times listed in normal font, SIMD assembly times listed in italics, speedup

shown to the left inside of (parentheses). Kernels with a grey

background were not implemented in SIMD due to insufficient

instruction set functionality. (**) DCT kernel originally coded in floating point, but implemented in fixed point integer for

SIMD codes.
I AMD Athlon DEC Alpha 21264 Intel Pentium I Motorola G4 Sun UltraSPARC Ili
90.0%, 0.1%: 58.9% -62.1%[ 38.6% ~26.8% 262%! 10.9%) 448% | -50.6% 3.1%
69.5%) -5.8%) 182% 29.0% 17.5%| -18.8%) 13.9%
Test & Project 83% 18.1% <16.1%) 11.9%) 9.8%| 74.0% 1.1%
97.6%| -88.0% 16.4%) 7.4% 25.7%|  -63% 10.6%
-25.5%| 12.5% 37.0% 373% 188%] 61.0%|  -193%
28.4%) 8.2%) 12.7%| 7.6% 4.6%] 29.1% -69.9%
41.1%) -5.9% 8.6% 2.1% 23.0%| 52.7% -17.5%
23.6%) 264% 17.7%) 22.5%] 71.6% | 1063% 25.6%
19.6% 39.5% -14.1%) 32.6%, 27.5% 63.7%! -8.3%
10.2%| -102% 47.6% -19.4% 267%] 21.8% 5.1%)
Short Term Analysis Filter 40.3%) 26.2% 433%] 22.0%) -8.4%]| 1503% -16.8%
Short Term Synthesis Filter -30.5%) 30.4% 78.7% -38.8% 43.3%] 52.6% 24.5%
Subsample Horizontal 124% 4.9% 7.4%) -3.6% 6.6%] 28.5%) 147%
Subsample Vertical -44.2%) 2.9%) 48.4% 16.4%) -29.3% | 1255% -11.7%)
Fllter 683%) -12.0%) 53% -28.0%) -69%|  13% 24.6%)
Transform & Normalize -65.7% 57.8%) -35.4%) 24.9%| 36.9% | 273.8% 200.4%
[Ari Average [ 164% | 6.0%| 26.9% | -483% | 46.2%| 48%] 14% | 0.4%] 19.5%] 60.7% | -18.8%] 31.0% | -35.7% | -33.8%] -82.3% |

Table 6: Percent Deviation from the Mean (%DM) - for data in Table 5, which is defined as 100 - (E;Ztt), where t; is
the time taken on platform 4, and % is the average performance (time) across all of the platforms examined for a particular

kernel.

sufficient SIMD instruction set functionality to implement a
SIMD version of the DCT. A C fixed-point integer DCT was
substituted, which is why a 19.7x speedup is shown in Table
5, even though we did not recode it.

AMD Athlon, Intel Pentium III The AMD Athlon
and Intel Pentium III processors in our study at first glance
appear to be very similar; both run at 500 MHz, and, as we
noted in Section 4, both share Intel’s MMX SIMD integer
extension. In fact, because we implemented the Intel kernel
set first, it was possible to simply reuse the same code for
the AMD SIMD version of many of the integer kernels in the
BMKL. The SIMD integer kernels include all but the clip test,
FFT, quantize, synthesis filter and transform kernels. It is
interesting to observe the differences in performance between
the two processors on what is often identical code. A few
salient architectural differences to note [Stil99):

e Athlon has a 64 KB instruction, 64 KB data cache, while
Pentium IIT’s L1 caches are 16 KB/16 KB respectively

¢ Athlon has three instruction decoders working in parallel,
while Pentium III has only two

e Athlon’s pipeline is 10-cycles long, while Pentium III’s

is 12-17 cycles; the cost of branches in the Pentium is
exacerbated by Pentium ITI’s weaker branch prediction
unit

o Intel’s MMX instruction latency is lower (1 cycle SIMD
add/sub, 1 cycle shuffle, 3 cycle SIMD mult) compared
to Athlon (2 cycle SIMD add/sub, 2 cycle shuffle, 3 cycle
SIMD mult)

So, although the SIMD integer instruction set is the same in
both cases, AMD’s Athlon SIMD integer is a more powerful
implementation; its only deficiency is the higher simple SIMD
integer instruction latency when compared to the Pentium III.
We can see this very clearly in Table 5, although where each
architectural difference comes into play depends on the kernel.
One interesting case is that of the DCT and IDCT kernels
- the Pentium III is faster on the DCT, while the Athlon
is faster on the IDCT. This is surprising given that the two
kernels are algorithmically quite similar - each is basically a
mirror image of the other. Upon further investigation, we
found that the DCT code has shuffle instructions (pshufw)
in several places that are not scheduled well for the Athlon
instruction’s higher latency; a circumstance which was not
duplicated in the IDCT code. ‘
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In terms of multimedia, the greatest difference between
the two processors are their SIMD floating point extensions.
AMD’s 3DNow! is quite similar to MMX, reusing the eight
x87 floating point registers as 64-bit wide SIMD registers.
Intel’s SSE has new 128-bit wide registers and instructions,
although in the Pentium III implementation, each 128-bit in-
struction is actually decoded into two 64-bit wide micro-ops.
This does, however, give the Pentium III more overall register
space to work with. Other important architectural features
of the two SIMD floating point instruction sets:

e AMD’s 3DNow! FP latency (4 cycle add/sub, 4 cycle
multiply) is lower than Intel’s SSE (4 cycle add/sub, 5 cy-
cle multiply, throughput of 64-bits per cycle like 3DNow!)

In the arena of floating point operations, the AMD Athlon
architecture eliminates the only deficiency it had compared
to the Pentium III in SIMD integer - namely, slightly higher
instruction latency. From Table 6, we can see that overall
SIMD AMD Athlon code does 26.9% better than average,
while the Pentium III is 19.7% better than the average of all
of the multimedia instruction sets. Both chips perform well,
but the AMD Athlon matches or outperforms the Intel chip
on all but one SIMD floating point kernel: quantize.
Quantization is a process by which a real value is con-
verted to a discrete integer representation. An array of real
double precision floating point values, zr[], is converted to
an array of 32-bit integers, zi[], according to the function

zi[i] = \/ v/ zr[i]* + 0.4054. Note that original C implemen-
tation utilizes a lookup table for some values (not shown in
Algorithm 20).

Algorithm 20 Quantize

static INT32 lutab[10000];
INT32 1_end; FLOAT64 xr[]; INT32 ix[]; FLOAT64 *istep_p;
FLOAT32 temp;
for (i=0;i<l_end;i++) {
temp=(*istep)*fabs(xr[i]);
ix[i] = (int) ( sqrt(sqrt(temp)*temp) + 0.4054);
}

Although SIMD floating point instruction sets include ap-
proximations for ﬁ, rather than /a, the equivalence /a =

a- % can be used. The reason for AMD’s lackluster per-

formance on the quantize kernel is clear based on our earlier
discussion - AMD'’s reciprocal square root instructions are ac-
tually scalar - they only produce one result value, based on
the lower packed element. This costs 3DNow! performance
for this highly square-root intensive kernel.

DEC Alpha 21264 From Tables 5 and 6 we see that
the DEC Alpha platform far outstrips the other systems in
terms of compiled C performance. It has been claimed that
a broader multimedia instruction set would not be useful on
Alpha, as an extension like Intel’s MMX only fixes x86 legacy-
architecture performance deficiencies which are not present
in the Alpha architecture [Rubi96]. Our performance com-
parison makes this sound rather dubious, as the kernels pro-
grammed with the extensions from AMD, Intel and Motorola

were able to not only match the performance of those on the
Alpha 21264, but often exceeded it.

Motorola G4 Motorola’s AltiVec was the only multime-
dia extension which was architected from the ground up - all
of the others in some way leverage existing resources. AltiVec
in many ways agrees with our design suggestions (e.g. a large
number of 128-bit wide registers), although in fact the in-
structions included in AltiVec are far more general than those
required by multimedia applications. Almost every possible
operation and data type is supported, which should allow it
to be applied to other application domains as well. A 128-
bit register width combined with latencies that are at least
as good as those found on the other (64-bit) architectures,
allows AltiVec to come in with the best overall performance
(31% better than average on SIMD accelerated code, accord-
ing to Table 6). However, performance on a few of the kernels
is still poor, especially on add block and the FFT. The add
block kernel’s problem has already been discussed - the 128-
bit register width is actually too long for this kernel, causing
unnecessary data to be loaded from memory. The reason for
the poor FFT performance is not entirely clear, although a
review of our code revealed that the way in which we coded
data to be stored to unaligned memory could be improved.

Sun UltraSPARC IIi The performance of the VIS mul-
timedia extension was mediocre at best, although we should
note that the UltraSPARC Ili processor examined is the only
one in our study running at 360 MHz (the other processors
all have a 500 MHz clock). It is also the oldest multimedia in-
struction set we have looked at, the second to be released after
HP’s MAX-1 (1996). As we have pointed out, this instruction
set suffers from some odd instruction choices (e.g. multipli-
cation primitives), missing functionality (no partitioned shift
operations) and a highly utilized control register that creates
a bottleneck (the graphics status register).

7 New Directions

In this section we describe two new ideas for future multime-
dia extensions based on features we found lacking during our
coding experience.

7.1 Strided Memory Access

Consider the difference between how memory is loaded into
a SIMD register in the horizontal and vertical subsampling
kernels. The original C sources for the horizontal and vertical
subsampling kernels are in Algorithms 21 and 22 respectively.
In the horizontal subsampling case, a vector load can only
directly retrieve the data from one iteration of the loop into a
register. For vertical subsampling, the n** element from each
of M loop iterations is loaded (M is the number of packed
element in a register) into a register without any data rear-
rangement. Because SIMD applies the same operation to all
of the elements of a vector, the vertical subsampling kernel
can be computed more efficiently.

16




Algorithm 21 Subsample Horizontal

UINT8 #src; UINT8 *dst; INT32 width; INT32 height;
for (j=0; j<height; j++) {
for (i=0; i<width; i+=2) {
1tmp = (22#(erc[i-5] + srcli+5])-52*(src[i-3] + srcl[i+3])

+169+(srcfi-1] + srcli-1])+256+%src[i] + 256)>>9;
/* clip result to UINTS range 0..265 */
dst[i>>1] = 1tmp>255 ? 255 : (ltmp<0 7 O : 1ltmp);
}
srct= width; dst+= width>>1;
}

Algorithm 22 Subsample Vertical

UINT8 *src; UINT8 *dst; INT32 width; INT32 height;
INT32 w, ltmp;
w = width>>1;
for (i=0; i<w; i++) {
for (j=0; j<height; j+=2) {
/% FIR filter with 0.5 sample interval phase shift */
ltmp = (228*(srclw*jl + srclwxj+1]1)+70*(srclw*(j-1)] + srclw*j+2])
-37+(srclw*j-2] + srclw*j+3])-21*(srclw*j-3] + srclwej+4])
+11#(src[w*j-4] + src[wsj+5]1)+5%(srcw+j-5] +
srclwsj+6])+256)>>9;
/* clip result to UINT8 range 0..255 */
dst[w*(j>>1)])=1tmp>255 ? 255 : (ltmp<0 ? O :
}
srctt;
dst++;
}

1tmp);

With current SIMD architectures, when registers contain
the data for a single loop iteration, either operations on some
of the packed elements must be nullified, or significant over-
head must go into transposing the data, wasting computation.
Although this worked acceptably well in the DCT and IDCT
kernels, there are some cases, such as image processing, when
it is not feasible to transpose an image - the overhead is far
too great.

We propose that SIMD architectures implement strided
load and store instructions to make the gathering of non-
adjacent data elements more efficient. This is similar to the
prefetch mechanism in AltiVec, except that the data elements
would be assembled together by the hardware into a single
register, rather than simply loaded into the cache. Of course
such a memory operation would necessarily be slower than
a traditional one, but it would cut down immensely on the
overhead that would have to go into reorganizing data as
loaded from memory. Strided loads and stores would have
three operands:

Instruction Syntax
Load Strided lyxstrd vD, rA, rB
Store Strided | stvstrd vD, rA, rB

where in each case rA is the base address and rB contains
a description of the memory access pattern:

width width of the data elements to be loaded [2 bits], 00
= 8-bits, 01 = 16-bits, 10 = 32-bits, 11= 64-bits

offset number of bytes offset from the base address from
which to begin loading [6 bits], interpreted as an
signed value: -32..+31

stride number of bytes between the effective address of

one element in the sequence and the next [24 bits],
interpreted as a signed value: -8388608..+8388607

The color space conversion kernel is an excellent example of
where strided load and store instructions could be used. Pixel
data consists of one or more channels or bands, with each
channel representing some independent value associated with
a given pixel’s (z,y) position. A single channel, for example,
represents greyscale, while a three (or more) channel image
is typically color. The band data may be interleaved (each
pixel’s red, green, and blue data are adjacent in memory) or
separated (e.g. the red data for adjacent pixels are adjacent in
memory). In image processing algorithms such as color space
conversion we operate on each channel in a different way, so
band separated format is the most convenient for SIMD pro-
cessing. Converting from the RGB to Y CgCpgr color space is
done through the conversion coefficients shown in Algorithm
23.

Algorithm 23 Color Space Conversion

UINT8 #rowp, *y_p, *u_p, v.p;

INT32 red = #*rowp++, green = srowp++, blue = ¥rowpt+;
*«y_p++ = +0.25568+*red + 0.5022%green + 0.0975%blue + 16.5;
*#u_p++ = -0.1476+red - 0.2899+green + 0.43754blue + 128.5;
*v_p++ = +0.4375*red - 0.3664*green - 0.0711sblue + 128.5;

Algorithm 24 replaces thirty-eight instructions in the orig-
inal AltiVec color space conversion kernel (the corresponding
code fragment is listed in [Sling00d]). In the original AltiVec
code, it was necessary to load six permute control vectors
(each 128-bits wide) before executing the six vperm instruc-
tions required to rearrange the data into band separated for-
mat.

Algorithm 24 Modified Color Space Conversion

rgb_to_yuv:

oris rii,r11 RED_PATTERN

oris ri2,r12,GREEN_PATTERN

oris ri3,r13,BLUE_PATTERN

lvxstrd v28,0,r3,ri11

35 v28: IxOlr1ir2ir3ir4lrbir6ix7(r8Ir9irAIxBIxCixDITE|ILF]
lvxstrd v29,0,r3,r12

33 v29: Ig0lglig2lg3lg4igblg6lig7ig8lgd|IghigBigClgDIgEIgF|
lvxstrd v30,0,r3,r13

33 v30: |b0Ib1]b2ib3i{b4|b5Ib6ib7Ib8|bIIbAIbBIbC|bDILE|bLF]

Traditional SIMD data communication operations have
trouble with data which is not aligned on boundaries which
are powers of two - in the case of color space conversion, visu-
ally adjacent pixels from each band are spaced 3 bytes apart.
Strided loads and stores are by definition unaligned, so this
would need to be handled by the load/store hardware in the
CPU. It would also make sense to have additional versions of
these instructions which would be a hint to circumvent the
cache (on a load) or to not do write-allocation (on a store)
if the cache lines containing the strided data elements would
not be of near-term utility.

7.2 Superwide Registers

Generally, multimedia data is stored in a packed format and
is loaded into registers into the same format. Frequently, un-
packing is required before operations are performed, and the
unpacked data, of course, no longer fits within a single regis-
ter. We therefore propose:
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e registers that are wider than the data loaded into them
¢ implicit unpack with load
e implicit pack with store

Our design is in some ways similar to the as yet unimple-
mented MIPS MDMX instruction set [MIPS97]. The MIPS
MDMX extension has a 192-bit accumulator register as its ar-
chitectural cornerstone, with the more usual style of register
to register SIMD operations also included; non-accumulator
SIMD operations share the 64-bit floating point datapath.
The destination of normal SIMD instructions can be either
another SIMD register or the accumulator (to be loaded or ac-
cumulated). When accumulating packed unsigned bytes, the
accumulator is partitioned into eight 24-bit unsigned slices.
Packed 16-bit operations cause the accumulator to be split
into four 48-bit sections. This extra width allows for multiple
accumulations to occur without overflow.

What is good about the MDMX accumulator approach is
that implicit width promotion provides an elegant solution to
overflow and other issues caused by packing data as tightly as
possible. For example, multiplication is semantically difficult
to deal with on SIMD architectures because the result of a
multiply is longer than either operand [Lee97c¢]. This prob-
lem is avoided by the MDMX accumulator, because there is
enough extra space to prevent overflow.

Fixed point arithmetic is also more precise because full pre-
cision results can be accumulated, and the total rounded only
once at the end of the loop. Similarly, most scalar multimedia
algorithms only specify saturation at the end of computation.
This is because it is more precise to saturate once rather than
at every step of the algorithm. For example, if we are adding
three signed 16-bit values:

Saturation at Every Step: 32760 + 50 — 20 = 32747

Saturation at Last Step: 32760 + 50 — 20 = 32767

Unfortunately, in SIMD architectures where the packed ele-
ments maximally fill the available register space, the choice is
either to be imprecise (compute with saturation at every step)
or loose parallelism (explicitly promote the input data to be
wider). Saturating arithmetic can also produce unexpected
results since, unlike normal addition, the order of operations
matters.

While the MIPS MDMX solution may seem elegant in prin-
ciple, it ignores the architectural side of actually making such
a design fast. The accumulator is a singular (unique) shared
resource, and as such has a tendency to limit instruction level
parallelism. We found that the existence of only a single accu-
mulator was a severe handicap to avoiding data dependencies.
On a non-accumulator but otherwise superscalar architecture
it is usually possible to perform some other useful, non data
dependent operation in parallel so that the processing can
proceed at the greatest degree of instruction level parallelism
possible. On MDMX all computations which need to use the
accumulator must proceed serially.

Low Precision High Precision
Storage | Computation Storage Computation
8U 125x16 8U 24Sx8
16S 24Sx8 16S 48Sx4
328 48Sx4 - -
32FP 32FPx4 - -

Table 7: Supported Data Types - data types are divided
into storage (how it is stored in memory) and computation
(the width of arithmetic and other instruction elements)

Supported Data Types To avoid the problems with
MDMX, we suggest that a normal register file architecture
be used, with the entire SIMD register file made wide (for
example, 192-bits). Supported memory (load and store) data
types include those that we have seen to be of importance in
multimedia for intermediate and storage formats: 8-bit un-
signed, 16-bit signed, 32-bit signed and single precision float-
ing point. The data types actually supported by packed arith-
metic operations are different: 12-bit signed, 24-bit signed,
48-bit signed and single precision floating point. Depending
on the algorithm it may be desirable to utilize the extra bits
of a superwide register for either accumulation or data par-
allelism. We suggest supporting two memory widths: 64-bits
(high-precision) and 128-bits (low-precision), which are un-
packed to different computational widths. This also allows
for better matching with algorithms that have different nat-
ural widths (e.g. add block, which works best with a 64-bit
vector length).

Packed floating point data types present an interesting de-
sign choice - we can either operate on:

1. four single precision values in parallel (not using 16 of
the bits in each register element)

2. four single precision values which have been expanded to
a 48-bit extended precision format

3. six single precision values, exactly filling a 192-bit register

The downside of the second solution is that SIMD results may
not exactly match scalar results. In addition, the latency of
many floating point operations depends heavily on the preci-
sion being computed, so a more precise operation is a higher
latency one. The third solution, although attractive for its
additional data parallelism, is problematic because it would
require its own set of data rearrangement instructions based
on a six element (rather than four or eight element) vector.
For our sample design, we chose the first option.

Supported Operations Because we have fundamentally
changed the treatment of multimedia data types, we also need
to reexamine which operations are still valuable in this new
light. Several instructions are no longer useful:

e average - the only useful average instruction data type
within our workload was for 8-bit unsigned values. Av-
erage is only really useful on existing multimedia archi-
tectures because it allows for computation without width
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promotion. On a superwide register architecture average
instructions are unnecessary, since the requisite function-
ality can be synthesized through shift and add (opera-
tions which are useful in and of themselves), and there is
already sufficient precision.

saturating arithmetic - saturation is done implicitly dur-
ing packing. Of course, max and min instructions can
always be used if an exotic type of clamping (e.g. 9-bit
signed in the IDCT) need to be supported.

pack/unpack - performed implicitly with loads and stores

truncating multiplication - truncation predefines a set
number of result bits to be thrown away. This primarily
has application when multiplying n-bit fixed point val-
ues with fractional components which together take up
a total of n-bits of precision. Unfortunately, this plays
havoc with precision since it is usually desirable to trun-
cate once, at the end of a fixed-point computation, rather
than at every step. Because all of the high precision com-
putational data types in our design are more than wide
enough to hold the product of two storage data types,
overflow is never a problem.

In [Sling00d] we present our proposed instruction set (97 in-
structions in total) for a superwide register SIMD multimedia
extension. Unlike existing instruction sets which are funda-
mentally byte-based, this instruction set is centered around
quantities which are multiples of 12-bits wide. This can be
though of as four extra bits of precision for every byte of ac-
tual storage data loaded.

Example A small example of how to code for the pro-
posed architecture is shown in Figure 1. Note that load and
store operations specify both the computational and storage
data type.
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Figure 1: Superwide Registers Example

8 Summary

8.1 Useful Features

Many of the architectural features of existing multimedia in-
struction sets attempt to get around the limitations of tightly
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packed SIMD registers. With a superwide register architec-
ture, many of the reasons for these features are eliminated,
creating a simpler overall design. Our summary distills our
conclusions about standard tightly packed SIMD, although
we note were there are differences introduced by a superwide
register approach.

8.1.1 Register File

e Sharing the floating point datapath is usually preferable
to the integer data path because there is no contention
with pointer and loop variables, and less chance of af-
fecting the critical path of the processor. If no existing
data path is to be shared by SIMD instructions, a 128-
bit wide data path is optimal for most multimedia algo-
rithms, 192-bits in the case of a superwide architecture.

Multimedia algorithms can take advantage of large reg-
ister files - we suggest at least 16 128-bit registers, or 32
64-bit registers.

8.1.2 Data Types

e 8-bit signed data types are not useful. 8-bit unsigned
data types are most often used for storage, rather than

computation.

16-bit signed data types are the most common; they are
the intermediate (computational) data type for video and
the storage (and sometimes computational) data type for
audio and speech algorithms. Unsigned 16-bit values are
not useful.

32-bit signed values are most often used for accumulation.
Unsigned 32-bit values are not useful.

Single precision floating point (32-bit) is found in the
audio and 3D graphics (geometry) kernels. We did not
come across a multimedia algorithm which required dou-
ble precision (64-bit) floating point.

8.1.3 Integer Arithmetic

e Saturation prevents overflow in a fast, numerically ac-
ceptable way for SIMD operations, although with our
proposed superwide register architecture, saturation is

really not needed except when packing.

Max and min operations are an efficient way to per-
form SIMD comparisons as well as clamping to arbitrary
ranges. They are useful at all computational data widths.

Average instructions we found only to be useful in the
MPEG encode block match kernel for interpolation (8-bit
unsigned data type). They are less useful on a superwide
register architecture, because there averaging can be done
through an add and subsequent shift right by one bit
without unpacking to a wider width.




Shift operations of all types are useful at all data widths
- they are critical for fixed point arithmetic, and also pro-
vide an efficient means for data realignment and division
and multiplication by powers of two.

Sum of absolute difference instructions are only useful
for MPEG encoding and other video encoding algorithms
which utilize motion compensation (block match kernel -
8-bit unsigned data type).

8.1.4 Floating Point Arithmetic

%approxima,tion instructions are useful; through multi-

plication they can also estimate /z and 1. A full pre-
cision version of this instruction is not necessary, as the
Newton-Raphson method can always be used to improve
the precision of the approximation.

Exceptions and sophisticated rounding modes (as speci-
fied by the IEEE floating point standard) are not neces-
sary for multimedia; in any instance of where these might
be used it is possible to substitute a reasonable value that
will allow computation to continue unhindered, and still
produce an acceptable result.

8.1.5 Data Rearrangement

A full permute operation (as is found in AltiVec) is very
flexible, but is probably overkill for most multimedia
applications where data rearrangement patterns can be
handled by simpler data rearrangement operations. How-
ever, it should be noted that in AltiVec the vperm instruc-
tion serves double duty as a means for aligning unaligned
data loads, so its capabilities are basically free.

[Lee00] presents a novel set of simple data communica-
tion primitives which can perform all 24 permutations of
a 2x2 matrix in a single cycle on a processor with dual
data communication functional units. We endorse this
technique because any larger data communication prob-
lem can be decomposed into 2x2 matrices, and because
most multimedia data rearrangement patters are simple;
they can be done in a single cycle. [Lee00]’s instructions
are preferable to vperm because they do not require a
permutation control vector to first be loaded into mem-
ory, as their data communication patterns are statically
defined.

8.1.6 Memory Operations

Hardware support to efficiently handle memory accesses
that are not aligned are expensive in both area and tim-
ing [Thak99]. Ideally, data would always be aligned by
software (e.g. the compiler or run-time architecture). In
some situations it is impossible to guarantee alignment.
The strided load and store operations which we have pro-
posed would be in many cases inherently unaligned, mak-
ing hardware support a requirement. Also, for example,
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in the motion compensation step of MPEG video cod-
ing, unaligned memory access is needed depending on
the motion vector [Kuro98], as the addresses of the refer-
ence macroblock can be random depending on the type
of motion search being performed.

Allowing only aligned memory accesses (and synthesiz-
ing unaligned accesses in software) can potentially per-
form better than unaligned access implemented in hard-
ware. However, silently accepting an unaligned address
and forcing it to be aligned (as in AltiVec) is a bad idea
as it can allow alignment errors (typically very difficult
to track down because they are intermittent) to go un-
noticed. Instead, an exception should be raised when
an unaligned access occurs, or hardware should support
unaligned memory access directly.

8.2 Bottlenecks and Unnecessary Features

e Instruction primitives (such as the multiplication instruc-

tion primitives found in Sun’s VIS) are a bad idea, as
they decrease instruction decoding bandwidth, increase
register pressure, and are not useful in and of themselves.
Even if the atomic version of an operation may be slow,
it is preferable because it is much easier to upgrade an
instruction’s latency in the next revision of an architec-
ture than it is to implement entirely new instructions,

rendering the previous instructions and any related ones

useless.

Motorola’s AltiVec extension includes pixel pack and un-
pack instructions for converting between 32-bit true color
and 16-bit color representations which we did not find
useful in the BMKL. Similarly, AltiVec includes approx-
imations for logy and ezp,, which also went without ap-
plication in our workload; they are used in lighting algo-
rithms for 3D rendering.

Sun’s VIS includes edge instructions for dealing with
boundaries in 2D image processing, as well as array in-
structions for volumetric imaging. Neither type of in-
struction was found to be useful to the Berkeley multi-
media workload.

In general, a singular (unique) resource (such as a con-
trol register, or accumulator) is a potential bottleneck
if it will be highly utilized. In the case of Sun’s VIS
graphics status register (GSR), their bottleneck could
have been avoided if SIMD shift instructions and bet-
ter data communication primitives had been included.
As it was, the GSR ended up being used to synthesize
this missing functionality, beyond its original designed
purpose. The MIPS MDMX accumulator register which
we briefly discussed is another example of this type of
problem.

8.3 New Directions

In addition to analyzing how well current multimedia instruc-
tion set features map to multimedia workloads, we also pro-




posed two new directions for multimedia instruction sets.

® Because SIMD architectures apply the same operation to
all of the elements in a packed register, there are many
cases where data is not optimally organized as loaded
from memory. This occurs when working with 2D data
types, such as video frames; either row or column pro-
cessing will not be natively arranged in a way that is
amenable to SIMD style processing. Typically, we would
like to load M data elements into a vector register, with
each element being loaded starting at some base address
and separated from each other by a constant byte off-
set. Similar to scatter-gather operations from traditional
vector architectures, we proposed implementing strided
loads and stores for packed registers. These are speci-
fied in a way that is similar to how prefetch streams are
specified in AltiVec.

e Based on the observation that storage and computational
data types are almost always different, we proposed a su-
perwide register architecture, which eliminates much of
the explicit packing and unpacking overhead that typ-
ically makes SIMD processing progress at less than its
maximal degree of data parallelism. We found that this
fundamental change in how data types are handled had
significant implications for instruction set design.
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