IEEE TRANSACTIONS ON COMPUTERS, VOL. C-25, NO. 9, SEPTEMBER 1976

J., Extra Issue 26, Nippon Telegraph and Telephone Public Corp.,
Tokyo, Japan, 1968.

[16] J. Culliney, “On the synthesis by integer programming of optimal
NOR gate networks for four-variable switching functions,” Dep.
Comput. Sci., Univ. of Illinois, Urbana, IL, Rep. 480, 1971.

{17] H.C. Lai, T. Nakagawa, and S. Muroga, “Redundancy check tech-
nique in designing optimal networks by branch-and-bound meth-
od,” Int. J. Comput. and Inform. Sci., vol. 3, pp. 251-271, Sept.

1974.

[18] H. Hart and A. Slob, “Integrated injection logic: A new approach
to LSI,” IEEE J. Solid-State Circuits, pp. 346-351, Oct. 1972.

[19] H. H. Berger and S. K. Wiedman, “Merged-transistor logic—A low
cost bipolar logic concept,” IEEE J. Solid-State Circuits, pp.
340-346, Oct. 1972.

[20] American Micro-Systems, Inc., MOS Integrated Circuits.
Princeton, NJ: Van Nostrand, 1972.

[21] Electronics, pp. 91-96, Feb. 21, 1974.

Saburo Muroga (SM’60) was born in Numazu,
Japan, on March 15, 1925. He graduated from
the Department of Electrical Engineering,
Tokyo University, Tokyo, Japan, in 1947.
After working with the Railway Technical
Laboratories and then the Radio Regulatory
Commission, he joined the staff of the Electri-
cal Communication Laboratories, Nippon Tel-
egraph and Telephone Public Corporation, in
1951. There he was engaged in research of in-
formation theory. He later was in charge of de-
sign, construction and operation of MUSASINO-1, the first universal

907

digital computer with parametrons in Japan. In 1960, he joined the re-
search staff of IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, and since 1964 he has been Professor of Computer Science
and Electrical Engineering, at the Department of Computer Science,
University of Illinois, Urbana, IL. He has published several scores of
papers (many in Japanese) and a few Japanese books on pulse modulation
theory, narrow-band voice transmission system, information theory,
computer organization, threshold logic, file-memory addressing, integer
programming, switching theory and logical design of integrated circuits.
He has more than a score of patents. In 1971 he authored a book titled
Threshold Logic and Its Applications (New York: Wiley, 1971).

Dr. Muroga is a member of the Association for Computing Machinery,
the Information Processing Society of Japan, and the Institute of Elec-
trical Communication Engineers of Japan.

Hung Chi Lai received the B.Eng. and M.-
Eng. degrees in electronic engineering in 1968
and 1970, respectively, from the University of
Tokyo, Tokyo, Japan, and the Ph.D. degree in
computer science in 1975 from the University
of Illinois at Urbana-Champaign.

During 1970-1975, he was a Research Assis-
tant in the Department of Computer Science,
University of Illinois. He is now with the Labo-
ratory Division, Fuyjitsu California, Inc.,
Sunnyvale, CA.

Dr. Lai is a member of Sigma Xi, Phi Kappa Phi, and the Association
for Computing Machinery.

A Modified Working Set Paging Algorithm

ALAN J. SMITH, MEMBER, IEEE

Abstract—The working set paging algorithm is known to be
highly efficient, yet has the disadvantage that during changes of
locality large numbers of pages are accumulated in memory un-
necessarily. The author proposes a modification of the working set
algorithm called the damped working set (DWS) algorithm which
resists sudden expansion of working set size and exhibits far
greater stability in the number of page frames allocated to an active
process. Program address traces are analyzed to determine the
effectiveness of the DWS algorithm.

Index Terms—Paging algorithms, page replacement algorithm,
virtual memory, working set paging algorithm.

I. INTRODUCTION

PAGED virtual memory, implemented as early as
1958 in the Atlas computer [1], has become a com-

mon feature of large, modern operating systems. Paging
is highly advantageous in that it permits and simplifies the

Manuscript received September 30, 1974; revised December 19, 1975.
This research was supported under a fellowship from the National
Science Foundation. This research was also supported in part by the
National Science Foundation under Grant DCR74-18375. Computer time
w)as provided by the Atomic Energy Commission under Contract AT(04-
3)-515.

The author is with the Computer Science Division, Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA 94720.

management of virtual address spaces that are often larger
than the physical memory available. Paging, however, in-
troduces an overhead in the operation of a computer sys-
tem in several ways; it requires additional time for address
formation and page faults require processing time to exe-
cute the page replacement and page placement algorithms.
Even in multiprogrammed computer systems, the pro-
cessor is often forced to remain idle while pages are
transferred from secondary storage to main memory.
The costs associated with paging have led to a great deal
of research on the subject of paging algorithms. The im-
plicit or explicit objective of this research has been to
maximize the “throughput” which is itself an ill-defined
term. Because of the complexities inherent in designing
a paging algorithm to cope with both uni- and multiprog-
ramming, fixed or variable partitions, drums, disks or slow
core as the secondary storage medium and differing pro-
cessors, some researchers (e.g., [2]) have chosen as their
objective to minimize either the real or virtual space-time
product. The space-time product is the amount of the
memory resource used (in bit seconds or word seconds) by
the process under the given paging algorithm. The virtual
space-time product is the space-time product measured
during process or virtual time. The real space-time product
is commonly defined as the space-time product as com-

vF

m~ o), o~ T

[PN

WS e Y — S

e T

908

puted in a uniprogramming system with a secondary
storage device of some specified characteristics, in which
the processor remains idle during page faults. The real
space-time product obviously includes the resource used
while the page is brought into memory. Since the real
space-time product can be determined (approximately)
once the virtual space-time product is known (see Section
II), we chose to restrict ourselves to the simpler case of
virtual space-time.

We shall be concerned in this paper with describing a
demand paging algorithm proposed by the author (see also
[3]) and in experimentally examining its performance. For
evaluation, the operation of the least recently used (LRU),
MIN, working set, and VMIN algorithms will be compared
with our algorithm; we briefly review for the reader the
definition of these algorithms below and then we indicate
the bases for comparison.

1) LRU [4]: At the time of a page fault, remove the page
in memory that has not been referenced for the longest
period of time and use the page frame made available.

2) MIN [4]-[7]: Remove the page from memory that will
not be used for the longest period of time. This algorithm
requires knowledge of the future and is, therefore, not
implementable in practice, but it is known to be optimal
[4] in terms of minimizing the number of page replace-
ments in a fixed-size memory and, therefore, provides a
useful standard for comparison.

3) Working Set [8]-[15]: The working set algorithm
retains in memory exactly those pages of each process that
have been referenced in the preceding T seconds of process
(virtual) time. If an insufficient number of page frames are
available, then a process is deactivated in order to provide
additional page frames.

4) VMIN [16]: Remove from main memory any page
that will not be referenced sooner than T seconds. This
algorithm minimizes the virtual space-time product (see
[16]) for a given fault rate but is unrealizable in practice.
It provides, as does MIN, a useful standard of comparison.

Of the four paging algorithms discussed above, LRU and
MIN assume that the amount of memory available to the
process(es) is fixed. (These algorithms may also be applied
globally over a set of programs in a multiprogramming
environment, in which case the number of pages available
to each program is permitted to vary. While there is some
evidence that this produces improved performance [17],
we will concern ourselves with measurements taken in a
uniprogramming environment for simplicity.) Working set
and VMIN both assume that the number of page frames
available to any one process is variable according to the
needs of the process; therefore, they implicitly function
only in a multiprogramming-environment. Comparisons
between these algorithms exhibit the inherent advantages
of variable space algorithms and argue for multiprog-
ramming. The operation of variable space algorithms also
requires the existence of a buffer pool of available page
frames and our measurements of the average number of
page frames used does not take this into account. There
seems to be no simple way to avoid this problem.

IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1976

Some analysis of the above algorithms is reported in the
literature [5], [14], [18]-[21]. Some comparisons, based on
measured memory address strings or models of program
behavior are also reported in the literature [5], [22], [23].
As a general rule, those algorithms using past history (e.g.,
LRU) do better than those not using past history and those
which allow the space occupied by a program to vary (e.g.,
working set) do better than those which do not (e.g., LRU).

We are concerned in this discussion solely with demand
paging algorithms; algorithms which attempt to predict
which pages will be needed and fetch them in advance do
not concern us here. The working set algorithm, being
perhaps the most efficient (although difficult to imple-
ment) and having a simple definition, was a promising
starting place for obtaining a still better algorithm.

II. THE WORKING SET ALGORITHM

The working set algorithm keeps in memory exactly the
members of the working set (W(t,T)) which is defined for
time t as the set of pages referenced in the process time
interval (¢t — T,t). The working set size w(t,T) is the
number of pages in W(¢t,T). w(T) is the mean working set
size. We note that working set is very similar to LRU; the
working set algorithm specifies removal of the LRU page
when that page has not been used for the preceding 7" time
units, whereas the LRU algorithm specifies removing the
Kth most recently used page when a page fault occurs in
a (full) memory of capacity K. .

The success of the working set algorithm is based on the
observed fact that a process executes in a succession of
localities [9]; that is, for some period of time the process
uses only a subset of its pages and that with this set of
pages in memory the program will execute efficiently.
Because at various times the number of pages needed to
execute efficiently will change, the pages used in the pre-
ceding T seconds (for some appropriate T’) are considered
to be a better predictor than simply the set of K (for some
K) pages most recently used. Thus, for example, a compiler
may need only 25 pages to execute efficiently during
parsing, but may need 50 during code generation; working
set with the correct choice of the parameter T would adapt
well to this situation, whereas a constant K over both
phases of the compiler would either use excess space in the
syntax phase or insufficient space in the code generation
phase. The problem of choosing the appropriate value of
T has been the subject of some research [8] [13], [24], but
will not be considered here.

Available to the author are the memory ¢ ddress traces
of a number of different programs as executed on the IBM
System 360, including WATFIV, a Fortran compiler;
WATEX, the execution of a typical program written in
Fortran and compiled using the WATFIV compiler; APL,
the execution of a program written in APL; and two fast
Fourier transform programs, FFT1and FFT2. Interpretive -
simulation of different paging algorithms on these address
traces has been used to examine the behavior of different
paging algorithms. Efficient methods for such interpre-

e e PRERE SPEReRREE e

' SMITH: WORKING SET PAGING ALGORITHM

tative simulations are discussed by Belady (5], [6] who
provides an efficient implementation of the MIN algo-
rithm and by Mattson et al. [4]. By collecting the distri-
bution of interreference times to individual pages, it is

possible to calculate the number of faults that occur when -

the working set algorithm is used [10], [15]. In Fig. 1 we
show such a plot for each of the above programs, for a page
size of 256 words. In Fig. 2 we show the mean working set
size in virtual time (w(T)) and the maximum observed
working set size (labeled “max’’), as a function of the
working set parameter T, for three of the programs. We
note that the virtual space-time product when using the

working set algorithm can be computed for any value of the -

working set parameter T by multiplying the mean working
set size in virtual time by the length of the memory address
trace. This also holds true for the data presented in later
illustrations. The observed behavior is similar to that ob-
served and/or predicted by other researchers (2], [10}, [14].
The WATFIV program executed for 1 050 001 memory
cycles; the others were examined for the first 1 500 000
cycles.

Figs. 3and 4 are plots of the fault rate in virtual time for
two of the programs, WATFIV and WATEX, asa function
of the average memory use, also in virtual time. We note
that there is a fairly consistent ordering which has also
been observed by the author on other traces and elsewhere
(e.g., [24]) by other researchers: VMIN out-performs MIN
and working set out-performs LRU. Both of these results
show variable space algorithms out-performing fixed space
algorithms. We note that in Fig. 4 working set has out-
performed MIN:for a portion of the scale. This type of
behavior has been observed on other occasions [24] and
results from the fact that working set is able to adapt to the
wide variations in the number of pages necessary for effi-
cient operation whereas MIN is not able to adapt.

We note from Fig. 1 that the number of faults for rela-
tively large values of the working set parameter (e.g.,
greater than 20 000 memory cycles) is relatively insensitive
to the value of the parameter T. That is, large changes in
T produce small changes in w(T) and in the observed fault
rate, whichis a valuable property. Although all of the al-
gorithms examined display comparable wild increases in
the fault rate as the (mean) number of page frames allo-
cated decreases, the result is highly sensitive to the inde-
pendent parameter K, the number of page frames, in the
MIN and LRU cases whereas with VMIN and working set
the independent parameter is T and the changes are far
less drastic.

In Fig. 5 the expected time until the next reference to
a page is plotted as a function of the time since the last
reference to that page (a!l pages never referenced again
were ignored) and it can be seen that the expected time
until the next reference is a generally increasing function
of the time since the last reference. This confirms the ex-
pectation from which working set and LRU originated:
that the most recently used pages are those most likely to
be used again soon.

The working set size was also measured at the times of

909

JBRKING SET PAGE FAULT RATE

'
W
o

256 WORDS/PAGE

|
w
(3}

\
bt
o

LOGI0 { PAGE FAULT RATE)

8] 20000 80000 100000

20,903 PARRETER T
Fig. 1. Working set page fault rate.

WORKING SET SIZE VS. W.S. PARAMETER

— T l T v ¢ I l ™ ¢ ! l ™1 v 1 l T
APL, MAX

-
(=]

WATFIV, MAX

60

40
WATEX, MAX

WATEX
20

MAXIMUM, AVERAGE W.S. SIZE

....l....l...l....l. N
0. I - 1
¢] 20001 40000 6000 8000 100000

WARKING SET PARAMETER T
Fig. 2. Working set size versus working set parameter.

FAULT RATE VS. MEM@RY USE

o.00t2 _ WATFIV

0.0010
0.0008

0.0006

FAULT RATE

0.0004

0.0002

35 40 45 50
AVERAGE MEMBRY USE (256 WORD PAGES)

Fig. 3. Fault rate versus memory use (WATFIV trace).

page faults and no statistically significant and consistent
difference was found to exist between the mean value
measured over all time (actually at 1000 reference inter-
vals) and the value measured at fault times. This indicates
that there seems to be no simple and obvious modification
that we should make to the number of pages kept in core
as a function of w(t,T). Thus, modifications of the type
«when w(t,T) is large keep extra pages in core and con-

910 h IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1976

FAULT RATE VS. MEMBRY USE

T r I LENEE SN S [LIS B 2 l T T ' l\ LI S 3 "] N
0.0005 WATEX =]

0.0004
WARKING SET LRU

11

0.0003 Mk

FAULT RATE

cea

0.0002

T
o

L

0.0001

lll

R T T N

12 14 16 18 20
AVERAGE MEMORY USE (256 WERD PAGES)
Fig. 4. Fault rate versus memory use (WATEX trace).

EXPECTED TIME T@ NEXT REFERENCE
AR R

200000
150000 [—
100000 |

50000 F

EXPECTED TIME T@ NEXT REFERENCE

[512 WDRDS/PAGE,WATFIV
- 256 WBRDS/PAGE,WATFIV

512 WORDS/
PAGE.APL

el

N P

o

0 20000 40000 60000 80000 100000

TIME SINCE LAST REFERENCE TB PAGE

Fig.5. Expected time to next reference versus time since last reference

to page.

versely” seem to be inappropriate. This is similar to the
observation that because of the concave nature of the faults
versus T plot (Fig. 1), varying T around an average value
of T would yield more faults than keeping T constant. The
latter observation is based on the assumption that varia-
tions in T are independent of the value of w(t,T). The lack
of a correlation between the working set size and the fault
rate indicates that variations of T that depend on w(t,T)
would be no more effective.

This last observation, that the working set size and fault
rates are uncorrelated, allows us to calculate (approxi-
mately) the real space-time product. The page faults in-
crement the virtual space-time product by an amount
equal to the product of the mean working set size, the
number of page faults and the mean time to process a page
fault. Therefore, we have (approximately)

real space-time product ~
(trace length) * (mean working set size)
+ (time to process page fault)
* (mean working set size)
* (number of page faults).

The interested reader may make this calculation from the
values given in Figs. 1, 3 and 4; we abstain for reasons of
brevity.

III. THE SEARCH FOR A NEW ALGORITHM

There is one difficulty with the working set algorithm
which up until now has not been mentioned. Occasionally,
or even frequently during the execution of a program, a
sudden change of locality will occur. For example, a com-
piler will often have a syntax analysis phase (parsing)
followed by a code generation phase. The pages used
during these two phases will be substantially different.
Much the same sudden change of locality will occur when
a large subroutine which may do substantial computation
and use considerable amounts of memory is called. The
problem is that when such a change of locality occurs, a
time of 7" will elapse before the pages belonging to the old
locality may be completely removed from memory. In the
meantime, a number of pages belonging to the new locality
will be brought into memory. Such a situation is illustrated
in Fig. 6, where dimensionless graphs of the expected type
of behavior are shown. (There may also be pages in com-
mon to the old and new localities.) Figs. 7-9 are plots of the
working set size w(t,T) (labeled with “mult = 1”; the up-

" permost trace) for three of the above-mentioned programs

as a function of time. It can easily be seen that there are
sudden peaks in w(t, T) which represent just such changes
of locality. (The meaning of “mult” and of the other curves
will be discussed in Section IV.)

R A

SMITH: WORKING SET PAGING ALGORITHM

worg (1.T) whew(1.T)
0 Tt [T o
Old Locality New Locality
w(t,T) /\——-
0 T 1

Overal!

Fig. 6. Working set size during change of locality.

WBRKING SET SIZE VS. TIME

911

357 T LA B i IS A R I me

N WATEX]

30 -

w o 4

~ r '_\]

%) C 3

- MULT=.25,.50,1.0]

= & 7 _]

] o 3

L] L 3

Z 20 —

x - []

% L . -
E (-] =5

Ll R T RSP BSST B

a] 50 100 150 200

THBUSANDS BF INSTRUCTIBNS
Fig.7. Working set size versus time (WATEX trace).

WBRKING SET SIZE VS. TIME

80—

60—

40—

WORKING SET SIZE

20—

FT T

MULT-.25,.50,1.0

| A B
APL

T3

N

W I R |

c - S0 100 150
THAUSANDS BF INSTRUCTIBNS

200

Fig. 8. Working set size versus time (APL trace).

In an inexhaustible memory where the only constraint
on the memory use is its cost (average memory size used)
the peaks in the working set size are unimportant, as they
contribute very little to w(T'). Unfortunately, all current
memories are finite and the use of working set implies a
multiprogramming environment. Such peaks in w(t,T)
represent page frames that are either taken from the
common pool of unassigned frames, or are frames be-
longing to another process. In the latter case, it may even
be necessary to deactivate a process in order to accom-
modate this peak demand. It seems at least as important
to seek to minimize the maximum memory demand of a
process (consistent with efficient operation) as to minimize
the average memory demand.

What is desired then in a paging algorithm is to retain
in main memory exactly those pages in the current locality
without accumulating excess pages during changes in lo-
cality. The effect of this policy, if applied to a working set
type algorithm, would be to cut off the peaks of the w(t,T)
versus t plot. It would be similar to applying a low-pass
filter to the w (¢, T') “signal” (see Section IV).

In his dissertation, Prieve [24] considered the problem
of choosing an appropriate working set parameter and
suggested using a different value of T for each page in the
address space of the process. By observing the previous
periods of activity and inactivity of each page, he at-

tempted to compute a value of T that will indicate when
the process has indeed finished using the page. A by-
product of his approach is to reduce the maximum working
set size, but he does not indicate the behavior of his algo-
rithm during changes in locality.

Before deciding on the damped working set (DWS) al-
gorithm, discussed in the next section, the author inves-
tigated a number of other approaches. These are discussed
in [25].

IV. THE DWS ALGORITHM

The algorithm chosen by the author to remedy the de-
fects of the working set algorithm, the DWS algorithm,
functions as follows.

1) Any page not referenced within the preceding T
seconds is removed from main memory.

2) At the time of a page fault, if the time since the last
reference to the least recently used page in core is
greater than mult * T (mult less than 1); then replace
the least recently used page by the new page, other-
wise increase the space allocation by one page frame.

The DWS algorithm has two parameters; T, the working
set parameter, and mult, a multiplier less than or equal to
1. Alternately, the two parameters may be referred to as

AK

rel ssal

A et T

W e et e

912

WORKING SET SIZE VS. TIME

7°'|""l""l""l""l .
w 8O MULT-.25,.50,1.0]
N]
w o p
W S0~ —
73] N]
(] -4
g]
T e —
¥ r]
S L ;

a0k VATFIV]

X i B T I

] 00 750

250 S 1000
THBUSANDS @F INSTRUCTIBNS
Fig.9. Working set size versus time (WATFIV trace).

T and T” where T’ = mult * T'. The working set algorithm
is itself a special case of DWS in which mult = 1. An algo-

rithm similar to DWS is reported by Fogel [3] and is dis-

cussed in Section V; his algorithm was created for different
reasons.

The behavior of the DWS algorithm is illustrated in Figs.
7-9.In Figs. 10-12 we plot the number of faults as a func-
tion of the average memory space used, for three different
programs and different values of mult (“pages taken” is
discussed below). It can be seen that the number of faults
with DWS is sometimes slightly higher (APL, WATFIV)
than working set for the same average memory allocation
and sometimes lower (WATEX). The occasional increase
in the fault rate by DWS over working set is not unex-
pected; DWS resists true changes in the working set size
and in programs in which these are a frequent occurrence,
the fault rate can be expected to increase slightly. Con-
versely, the WATEX trace displays large fluctuations in
w(t,T) which do not reflect true increases in the number
of pages necessary to run efficiently; thus the fault rate
remains (almost) unchanged as a function of w(T) as w(T)
decreases for DWS. In all cases, it can be seen that the in-
crease or decrease in fault rate as a function of the mean
working set size is small and that the analysis of many more
traces would be necessary to establish any consistent
pattern.

We see in Figs. 7-9 that DWS has produced the desired
type of behavior. The peaks in the w(t,T) versus t curve
have been cut off, more and more effectively for smaller
and smaller values of mult. This is further indicated in
Figs. 13 and 14 where the maximum number of pages used
is plotted as a function of the working set parameter 7" for
two of the traces. It can be seen that the maximum is
considerably less than for traditional working set. In Figs.
10-12 the number of “pages taken” is shown, that is the
number of times that the space allocated to the process
under damped working set was increased. This number is
considerably less than the number of faults and represents
the number of times that a page frame must be obtained
either from the common pool or from another process.
With working set, every fault requires that a new page
frame be obtained.

We pause here slightly to note that the problem of

IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1976

FAULT RATE VS. MEMZRY USE
. ———

0.0010 F

APL —
DVS, HULT-.25]
DVS, MULT=.50 —
DS, MULT~.75

0.0008 [~

[werkING seT]
0.0006 |-]

0.0004 _ DVS, MULT~.75, RAGES TAKEN :
[DVS, MULT18Q, PAGES TAKEN]
0.0002 [, DS, MULT=.25, PAGES TAKEN J
S et Berecrarnll SRR

25 30 35
AVERAGE MEM@RY USE (256 WBRD PAGES) .

FAULT RATE - PAGES TAKEN RATE

Fig. 10. Fault rate versus memory use (APL trace).

FAULT RATE VS. MEMBRY USE
L"l""'I""I""l""l"

0.0008 |- WATFIV]
L DWS, MULT-.5]
0.0006 |— DVWS, MULT-.75 —
o WBRKING SET E
0.0004 |—

[DVS, MULT=.75, PA

0.0002 [~ DVS, MULT-.5, PAGES TAKEN
I I S

FAULT RATE - PABES TAKEN RATE

38 40 42 44 46
AVERAGE MEMBRY USE (256 W@RD PAGES)
Fig. 11. Fault rate versus memory use (WATFIV trace).

controlling the large peaks in the working set size that
occur when the locality changes is really a problem in
time-series analysis. That is, the time function of the
working set size is a time series [26]-[28]. Throughout this
paper we have looked at this problem in the time domain
only, but as one of the most popular approaches to time
series is spectral analysis, we examine briefly the effect of
the DWS algorithm on the frequency spectrum of the
working set size. In Fig. 15 we show the discrete Fourier
transform of w(t,T') and w(t,T,mult) where w(t, T, mult)
is the DWS size. The transform was generated by applying

~ the fast Fourier transform algorithm [29] to the w(t,T)

function sampled at 1000 reference intervals. 1024 sample
points were used and the resulf for clarity was smoothed
using a ten point rectangular window. It can be seen in Fig.
15 that there is a smaller (proportionately) high-frequency
component in w(t, T, mult) than in w(t,T); thus our com-
ment about introducing a “high frequency filter” seems
appropriate. (We note that the log scale permits easy
comparison of relative magnitudes.)

V. IMPLEMENTATION

The problem of implementing the working set paging
algorithm has always been a difficult one. Denning [8]
suggests modifying the hardware with capacitors to keep
track of the time since last reference. Morris [20] describes
an actual implementation on the Maniac II of the working
set paging algorithm using modified hardware. Prieve [24]

g

SMITH: WORKING SET PAGING ALGORITHM

FAULT RATE VS. MEMBRY USE

0.0005 T e

0.0004 [~
0.0003
0.0002 -

o.0001 -
F DVS, MULT-.5, FAGES TAKEN

| S, HUITT-.ZS. PAGIES TAKEN.

FAULT RATE - PAGES TAKEN RATE

o0 bewail..,
15 18 17 18 19 20
AVERAGE MEM@RY USE {256 WBRD PAGES)

Fig.12. Fault rate versus memory use (WATEX trace).

MAX., AVE. SIZE VS. W.S. PARAMETER

70 1] I I 1 —
w VATFIV .
%) T MAX., MULT-}
w — p—
@ 60 .
e L
& r MAX., MULT=.S 1
w 3 4
< F -
i 50— /—/L/’/ —
s - MAX., MULT=-.25 4
= N 4
=2 B
= L
E 4
3 a0~ AVERAGE, MULT-.25,.50,1.0 —
s L

N IV S T

10 15 20 25 30
WBRKING SET PARAMETER (1000'S)

Fig. 14. Maximum and average working set size versus working set
parameter (WATFIV trace).

suggests the use of reference bits which are examined at
intervals, to approximate the working set algorithm as does
Fogel [3]. Reference bits are common on many computers
and are set when a page is referenced. The CDC Star [17]
uses an LRU paging algorithm, with the LRU stack kept
locally for each process. It could easily be modified to im-
plement any version of the working set paging algorithm
(either damped working set or working set) by associating
with each entry in the LRU stack a separate field which
gives the time of last reference. Any of the above sugges-

tions are feasible, with some modification, for implemen-.

tation of the DWS algorithm. The simplest would be the
CDC Star with the additional “last referenced” field. We
note that although DWS requires more information to be
kept than working set and, therefore, presumably involves
more overhead, this is almost certainly more than com-
pensated for by fewer process deactivations.

An implementation of a similar, but not identical, al-
gorithm to the DWS algorithm is reported by Fogel [3]. He

describes the paging algorithm currently used by the

UNIVAC virtual memory operating system (VMOS)
running on the UNIVAC series 70 systems. VMOS keeps
track of the time since last reference to a page by periodi-

cally scanning the access bits of the page frames. An esti-.

mate of the working set size is kept for each process by

913

MAX., AVE. SIZE VS. W. S. PARAMETER

AR S R | 17
80—

APL
I MAX., VBRKING SE'

[MAX,, MULT=.25 _

- VE., MULT=.25,.50,.75,1.0
L iV B S P

8
5
I

>
o
T

MAXIMUM @R AVERAGE SIZE

10 15 20 25 30
WBRKING SET PARAMETER (1000'S)

Fig. 13. Maximum and average working set size versus working set
parameter (APL trace).

FOURIER TRANSF@RM BF W.S. SIZE
i L e o o B
I I I I I

WATEX —]
SAMPLING INTERVAL]
1000 MENSRY REFERENCES]

L@GIO (PAWER)

- MULT-.25

]
I4

P34 IV D D D
0 100 200 300 400 500
FREQUENCY

Fig. 15. Discrete Fourier transform of working set size versus time (1024
sample points, taken at intervals of 1000 memory references, 10-point
- rectangular window for smoothing). .

counting the number of pages used during its previous
activation. The pages belonging to each process are
grouped in two sets; a) those used within the preceding
mult * T instructions, and b) those used within the pre-
ceding T instructions, but not within the preceding
mult * T instructions where mult is less than one. (The
mult notation is not that of the paper by Fogel [3].) When
a page fault occurs, the need for a page is satisfied:

1) If the process is using all pages allocated to it under
its estimate of its working set size (see above), then
a page frame from set (b) is chosen; if none is avail-
able, then a frame from the pool of free frames is
chosen. If none is available either way, the process
is deactivated.

2) If the process has not yet reached its estimated size,
then a page is taken from the pool of free frames [if
any; if none are available, then from its set (b)]. If
none are available either way, the process is deacti-
vated.

Whenever a page from set (b) is chosen, the least re-
cently used one is taken.

Fogel presents no analysis of the operation of this al-
gorithm, other than to say that performance improvements
were experienced in comparison to the previously used

914,

paging algorithm. Some suggested values for the parame-
ters mult and T are given, but they represent experience
with only one set of benchmark programs. By using the
estimated working set size for the previous activation,
there is the possibility that “stale” information, that is,

outdated estimates of the working set size, will cause

suboptimal behavior. It seems more efficient to simply
prepage the entire working set from the end of the previous
activation when a new activation is begun. The working set
size could then be kept track of dynamically with no special
adjustments for activation and deactivation. This could
also avoid the overhead of processing page faults individ-
ually with the accompanying long latency. By placing the
pages from the preceding activation on adjoining sectors
on the paging drum (a frequently used paging device), a
great deal of time could be saved in page fetch. If this were
done, the algorithm described by Fogel would be essen-
tially the same as DWS.

VI. CONCLUSIONS

Working set is known to be an effective page replace-
ment algorithm yielding a relatively low number of page
faults as a function of the average memory space occupied.
It has the problem that during changes of locality exces-
sively large numbers of pages are collected in memory, with
consequent harm to other processes in a multiprogram-
ming environment. The proposed DWS algorithm alle-
viates this problem and is comparable in efficiency to
working set.

ACKNOWLEDGMENT

The author would like to thank Prof. F. Baskett of
Stanford University for his help and encouragement in this
research and for pointing out the paper by Fogel [3]. The
author also thanks L. Shustek for generating the program
address traces analyzed in this paper, R. Chafee and R.
Beach of the Stanford Linear Accelerator Center for the
graphics systems that made possible the illustrations in
this paper, and T. Kenyon and R. Suzuki for their skillful
typing of successive drafts of this manuscript.

REFERENCES

[1] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner,
“One-level storage system,” IRE Trans. Electron. Comput., vol.
EC-11, pp. 223-235, Apr. 1962.

{2] W. W. Chu and H. Opderbeck, “The page fault frequency replace-
ment algorithm,” in 1972 Fall Joint Comput. Conf., AFIPS Conf.
Proc., vol. 41. Montvale, NJ: AFIPS Press, 1972, pp. 597-609.

[3}] M. H. Fogel, “The VMOS paging algorithm, a practical imple-
mentation of the working set model,” Operating Syst. Rev., vol. 8,
pp. 8-17, Jan. 1974.

[4] R. L. Mattson, J. Gecsei, D. R. Slutz, and L. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, pp. 78-117,
1970. .

[5] L. A. Belady, “A study of replacement algorithms for a virtual
storage computer,” IBM Syst. J., vol. 5, pp. 78-101, 1966.

[6] L. A. Belady and F. P. Palermo, “On-line measurement of paging
behavior by the multivalued MIN algorithm,” IBM J. Res. Develop.,
vol. 18, pp. 2-19, Jan. 1974.

[7] E. G. Coffman, Jr. and L. C. Varian, “Further experimental data
on behavior of programs in a paging environment,” Commun. Ass.
Comput. Mach., vol. 11, pp. 471-474, July 1968.

[8] P. J. Denning, “The working set model for program behavior,”
Commun. Ass. Comput. Mach., vol. 11, pp. 323-333, May 1968.

~

IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1976 -

[9] ——, “On modeling program behavior,” in 1972 Spring Joint
Comput. Conf., AFIPS Conf. Proc., vol. 40. Montvale, NJ: AFIPS
Press, 1972, pp. 937-944. :

|10} P. J. Denning and S. C. Schwartz, “Properties of the working set
model,” Commun. Ass. Comput. Mach., vol. 15, pp. 191-198, Mar.
1972.

[11] D.P. Fenton, “B6700 ‘working set’ memory allocation,” in Operating
Systems Techniques, C. A. Hoare and R. H. Perrot, Eds. New
York: Academic, 1972, pp. 321-327.

[12] D. J. Hatfield and J. Gerald, “Locality, working set, request string,
distance function, and replacement stack,” in Statistical Computer
Performance Evaluation, Frieberger, Ed. New York: Academic,
1972, pp. 407-422.

[13] B. G. Prieve, “Using page residency to select the working set pa-
rameter,” Commun. Ass. Comput. Mach., vol. 16, pp. 619-620, Oct.
1973.

[14] J.R. Spirn and P. J. Denning, “Experiments with program locality,”
in 1972 Fall Joint Comput. Conf., AFIPS Conf. Proc., vol. 41.
Montvale, NJ: AFIPS Press, 1972, pp: 611-621.

[15] D.R.Slutz and I. L. Traiger, “A note on the calculation of average
working set size,” Commun. Ass. Comput. Mach., vol. 17, pp.
563-565, Oct. 1974.

[16] B. G. Prieve and R. S. Fabry, “An optimal variable space page re-
placement algorithm,” in Proc. Fifth Symp. Operating Systems
Principles (Supp.), Austin, TX, Nov. 1-3, 1975; also in Commun.
Ass. Comput. Mach., vol. 19, pp. 295-297, June 1976.

[17] N. A. Oliver, “Experimental data on page replacement algorithm,”
in Proc. Nat. Comput. Conf., 1974, pp. 179-184.

[18] D. J. Hatfield, “Experiments on page size, program access patterns

) and virtual memory performance,” IBM J. Res. Develop., vol. 16,
pp. 58-66, Jan, 1972.

[19] P. A. W. Lewis and G. S. Shedler, “Empirically derived micromodels
for sequences of page exceptions,” IBM J. Res. Develop., vol. 17,
pp. 86-100, Mar. 1973.

[20] J. B. Morris, “Demand paging through utilization of working sets
on the MANIAC II,” Commun. Ass. Comput. Mach., vol. 15, pp.
867-872, Oct. 1972.

[21] A.J. Smith, “Analysis of the optimal, look ahead, demand paging
algorithms,” SIAM J. Comput., to be published.

[22] J. L. Baer and G. R. Sager, “Measurement and improvement of
program behavior under paging systems,” in Statistical Computer
Performance Evaluation, Freiberger, Ed. New York: Academic,
1972, pp. 241-264.

[23] B.S. Brawn and F. G. Gustavson, “Program behavior in a paging
environment,” in 1968 Fall Joint Comput. Conf., AFIPS Conf.
Proc., vol. 33. Montvale, NJ: AFIPS Press, 1968, pp. 1021-1032.

‘[24] B. G. Prieve, “A page partition replacement algorithm,” Ph.D.

dissertation, Univ. California, Berkeley, 1974.

[25] A. J. Smith, “Performance analysis of computer system compo-
nents,” Ph.D. dissertation, Dep. Comput. Sci., Stanford Univ.,
Stanford, CA, 1974. , :

26] M. A. Kendall, Time Series. London, England: Griffin, 1973.

27] G.E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting
and Control. San Francisco, CA: Holden-Day, 1970.

[28] J. Makhoul, “Linear prediction: A tutorial review,” Proc. IEEE, vol.
63, pp. 561-580, Apr. 1975.

[29] J. W. Cooley and 4. W. Tukey, “An algorithm for the machine cal-
culation of complex Fourier series,” Math. Comput., vol. 19, pp.
297-301.

Alan J. Smith (S’73-M’74) was born in New
Rochelle, NY. He received the S.B. degree in
electrical engineering from the Massachusetts
Institute of Technology, Cambridge, and the
M.S. and Ph.D. degrees in computer science
from Stanford University, Stanford, CA, the
latter in 1974.

He is currently an Assistant Professor in the
Computer Science Division of the Electrical
Engineering and Computer Sciences Depart-
ment, University of California, Berkeley, a po-
sition he has held since 1974. His research interests include the analysis
and modeling of computer systems and devices, operating systems, and
data compression.

Dr. Smith is a member of the Association for Computing Machinery,
the Society for Industrial and Applied Mathematics, Eta Kappa Nu, Tau
Beta Pi, and Sigma Xi.

S

