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ANALYSIS OF THE OPTIMAL, LOOK-AHEAD
DEMAND PAGING ALGORITHMS*

ALAN JAY SMITHY

Abstract. We express the future behavior of programs that may be described by two common
program behavior models, the independent reference model and the LRU stack model, by a discrete
time Markov chain. Using this Markov chain model, we are able to calculate the theoretical minimum
number of page faults for a program representable by either of these models in either a fixed or variable
size memory. The behavior of optimal look-ahead and optimal realizable demand paging algorithms
are compared, and it is seen that look-ahead paging demonstrates an inherent advantage sufficient to
account for the differences observed between currently implemented demand paging algorithms and
theoretically optimal algorithms.
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1. Introduction. A paged virtual memory, implemented as early as 1958 in -
the Atlas computer (Kilburn et al. {1962)), has become a common feature of large
modern operating systems. Memory in such systems is divided into fixed size
blocks called page frames and the address space of each process is divided into
pages. The memory consists of at least two levels; a four or five level memory
hierarchy including fast buffer storage (cache), main memory (core), drums, disks
and tapes is common. If the pages are transferred from secondary storage to main
storage only when needed, then the process is called demand paging. Every time
an attempt is made to access a page which is not in main memory, a page fault is
said to occur and this page is brought into memory. A page fault is costly in terms
of lost processing time in two ways: the processor must execuie the page
replacement algorithm which removes a page from memory and thereby frees a
page frame for the incoming page and it must execute the page fetch algorithm
which finds the incoming page and initiates the transfer. The processor may also
have to wait, if there is no other process ready to run, while that page is fetched.
Effective operation of a computer system with virtual memory therefore requires
that the amount of processor time wasted due to page faults be minimized.

The choice of a good page replacement algorithm is very important to
minimizing the number of page faults. A poor replacement algorithm would
choose pages likely to be needed again in the near future, thus precipitating
further page faults. It can be shown that given complete knowledge of the future
behavior of the program, the optimal paging algorithm for fixed memory size,
MIN (the one that causes the minimum number of page faults), will remove that
page among those in memory that will be referenced furthest in the future
(Mattson et al. (1970), Pomeranz (1971)). Belady presents an algorithm for
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744 ALAN JAY SMITH

calculating this minimum number (Belady (1966)) in one pass over a program
trace tape and he extends it to calculating the minimum number of faults for a
number of different memory sizes at once in Belady and Palermo (1974). Mattson
et al. (1970) present an algorithm for calculating the minimum number of faults
(they call their algorithm OPT) in two passes over the trace tape. Lewis and
Nelson (1974) also present algorithms for calculating this minimum number of
faults. We show below that for certain models of program behavior it is possible to
estimate analytically the number of fauits generated by the MIN algorithm.

A number of paging algorithms have been proposed, such as working set
(Denning (1968)} and page fault frequency (Chu and Opderbeck (1972)) that are
designed to vary the number of page frames allocated to a process as its memory
needs change. These algorithms assume that the computer system is multipro-
grammed and that page frames may be transferred between processes. Prieve and
Fabry (1975) present an algorithm which yields the optimal variable space
memory allocation for a process when measured in virtual time. That is, this
algorithm minimizes the number of page faults for any given average memory size
when that average size is calculated during the period the process is active. In § 4
of this paper we show that it is also possible to estimate the behavior of this
optimal algorithm, VMIN, analytically.

A model for program behavior that has been proposed for its convenience of
analysis is the independent reference model (IRM) in which the probability of
referencing page i at time ¢ is p; for all 7. Baskett and Rafii (1975) have shown that
the proper choice of the reference probabilities allows a number of program
characteristics to bee accurately captured by this model. Aho, Denning and Ullman
(1971) demonstrate an algorithm A, which they prove is the optimal demand
paging algorithm for the independent reference model. This algorithm keeps in
memory the M —1 pages, for memory size M, with the largest values of p;. The
remaining page frame is used for other pages that are referenced. King (1971)
calculates the fault rate for the independent reference model when using the least
recently used (LRRJ), first in, first out (FIFO) or A, paging algorithms. Franaczek
and Wagner (1974), Coffman and Denning (1973) and Denning and Schwartz
(1972) also consider the independent reference model.

Another model for program behavior which has a number of useful features

is the LRU stack model, which is discussed by Coffiman and Denning (1973),
Denning, Savage amd Spirn (1972) and Oden and Shedler (1972). In this model,
the sequence of LRU stack distances, D ={d;}, (Mattson et al. (1970)) are a
sequence of independent, identically distributed random variables. This model
‘provides for locality of reference (Denning (1972)), but it fails to represent
changes in the size of the locality or abrupt changes in the content of the locality.
Lewis and Yue (1971) and Lewis and Shedler (1973) reject the LRU stack model
using formal statistical techniques, but as we show in Fig.-5 (see § 5), there is
reason to believe it 2o be a good approximation. If g; is the probability of a hit to
level i of the stack, and if g; Zg; for i =J, then it can be shown that LRU is the
optimal demand paging algorithm (Cofiman and Denning (1973)).

In the next twwo sections of this paper we show that it is possible to calculate

- analytically the behavior of the MIN algorithm when run on a trace of a program
obeying either the LRU stack model or the independent reference model. In § 4
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LOOK-AHEAD DEMAND PAGING ALGORITHMS 745

we analyze the behavior of the VMIN algorithm when applied to a program that
can be described by either the independent reference model or the LRU stack
model. Because MIN and VMIN minimize the fault rate for a specific reference
string, they have an inherent advantage over realizable algorithms, even optimal
ones such as Ay, which only minimizes the fault rate on the average over all IRM
reference strings. Measurements and calculations to be presented in § 5 (some of
which also appear in Baskett and Rafii (1975)) indicate that the observed
difference between optimal (look-ahead) algorithms and realizable ones when run
onreal program traces is similar to the difference found when such a comparison is
made on traces generated from independent reference model or LRU stack model
simulations. In § 6, the conclusion, we indicate the applicability of our results.

2. The independent reference model. Let us consider a program B which
consists of M pages using a memory of N page frames (N <M). The reference
string R =(ry,rp, -+ -, 1, - -+ ) is the sequence of memory references, listed in the
order in which they occur. We need know only which page is referenced; thus r,
-will denote a page number, 1 =r, =M. The independent reference model assumes

that the reference string R has the following property: P[r, = j]=g; for all i. We )

assume without loss of generality that ¢;>0, 1=j =M.

We define the state S of the process B as (F, W) where F is the (unordered) set
of pages currently in memory and W is the set of all pages in the program B listed
in the order of their first future occurrence. It may be seen that the reference string
R isindependent of the state of the memory F; thus the sequence of states ( W;) for
the future behavior of the process is independent of the memory state also. Except
where it will cause confusion, we will use the word “state” interchangeably to
refer to the state of the entire system, (F, W), the future reference state W and the
memory state F. We shall also omit super- and subscripts where it causes no
confusion.

A future reference state W is denoted by a permutation of the numbers
1,- -+, M. The state W, = (w, w5, - - -, why) at time 7 is deﬁned by: wi=r,.,, and
for j>1, w}= miny (ry, k>1, such that e (wi- - wj_1)). The steady state
probability of state W is

oo mmefigks

which may be shown (Mattson et al. (1970)) to be the same as the steady state
probabilities for the LRU stack, as derived by King (1971) and by Coffman and
Denning (1973). This formula may be quickly obtained by noting that the
probability that w, =j is simply g, the probability that page j is referenced at an
arbitrary time ¢, normalxzed by the “remaining reference probability” to be
accounted for, 1— ZI R qw, orZ —k Guye

The set of possible successors {W,,;} to W, for W, =(w}, - -, why), is

{(w’l’ w;’ wls’ et * w;d), (Wr2’ wll’ w;’ e k4 w.‘~’)’ (wle w;’ w‘l) w;’ s k4 w:\d)’ .
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746 ALAN JAY SMITH

For all W,
AW it wreiw,ay),
3) P[W,ﬂ= W*IW}]= ZVW’E(W.H}P[W']
0 otherwise,

where P[W*]and P[ W] are defined in (D)and{W,,,}in (2). Equation (3) follows
from the simple probability relation P(A IB)=P(AB)/ P(B) where A is the event
that page w} becomes the k th element in the future references state, B is the event
that the remainder of the elements are ordered as{wy, wh, -+, wys) and AB is the
occurrence of both of these events.

Let S, = (F,, W,) be the state of the process at the time of the rth reference.
Define :

(4) . ’ pg,j=P{Sr+1=leI=i} for a]lt;

that is, p;; is the state transition probability. Let p;; be the state transition
probabilities for the future reference state, W, as defined in (3). '
We define the page fault rate, PFR, as

(5) PFR = Y P[S;].

VSi such that w £ F;

We show below that we can calculate the steady state page fault rate given the
State transition probabilities.

The state transition probabilities depend on the paging algorithm. We define
a paging algorithm as follows:

Case 1. r,. e F, Then no page fault occurs and F,,, = F,

Case 2. r,,,2F, Then a page fault must occur. Let F=(fi,--+,fx). Let
fo =max, (w, such that 3f; = wy). Thatis, f, is that page in memory that will not be
referenced for the longest time. The memory state changes as follows:

©)  Fu=F={f+{nah

The paging algorithm we have defined is identical to Belady’s (1966) MIN
algorithm, and it has the property that it is the demand paging algorithm that

algorithm is used; a paging algorithm such as LRU would require not the future
state of the system but that the paststate of the system be specified (King (1 971)).

We may combine the transition information given above for the memory
state F and the future reference state W to get the transition probabilities pi; and
matrix P ={p,}) for the state of the system.

pi fwieF,F=F, We{W)or

(7) _ if W)EE,F;'=F}—{fv}+{WI}9
P = and W, e {W}},
0  otherwise, g
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where f, is defined in (6) and {W}} is the set of successor future reference states to
W.. These state transition probabilities are immediate from the memory transition
specification in (6) and the future reference state transition probabilities in (3).

Let S;=((fi - - fn), (w1 -+ wa)) and let S; be some arbitrary other state.
Then the following sequence of page references will always serve to take us from
state S; through state S;:

(8 fivo i fewrs s W

that is, we will be in state S; immediately after the second reference to fy in the
string given above. We may also enter state S; by the following reference string:

(9) fl"'fN;fl"'fI\JNawl"‘WM, : -

where we enter S; after the third reference to fy. From our definition of the
transition probabilities in (7), it is evident that the state transitions depend only on
the immediately prior state. It can thus be seen that we have defined an
irreducible, nonperiodic, finite state Markov chain.

It was shown in the paragraph above that any state S; is reachable from any

other state S;. The number of possible states then is the number of possible future -

states, times the number of possible memory states, or:

(10) M!- (ﬁ]’)

The steady state probabilities may be found as the solution of
(11) ) m=aP,

where 7 is the vector of steady state probabilities, i.e., m; = P{S;}. The elements of
the matrix P were defined in (7). The calculation for the steady state probabilities
thus involves the solution of a set of equations whose number grows as the
expression in (10), which grows more quickly than factorially with the number of
pages in the program.

3. The LRU stack model. We consider, as in the previous section, a program
B which consists of M pages using a memory of N page frames (N <M). The
reference string R is the sequence of page numbers in the order that program B
references them. Let D =(d,, d>, - - -, d;, - - -) be the LRU distance string (Matt-
son et al. (1970)). That is, a distance of d, at reference ¢ (to page r,) means that
page r, was, immediately prior to reference 7, the d,th most recently referenced
page. The LRU stack model assumes that the distance string has the following
property: P[d, = j]=gq;, for all . We assume ¢;>0,j=1,---, M.

The state S of the process B may be defined again as (F, W) where F is the
unordered set of pages currently in memory and W is the set of all pages in
program B, listed in the order of their first future occurrence. We note that the
LRU stack model for program behavior is a probabilistic description that is
independent of the specific identities of the pages. Coffman and Denning (1973)
show, as might be expected, that the equilibrium probability of a reference to page
i is 1/M for all i and that therefore the mean time between referencing a page is
M. -

Y




748 ALAN JAY SMITH

We let the future reference state W, be ( Wi why as in § 2. The set of
successors to W, {W;}={W,.,}, is as defined in (2). Mattson et al. (1970) show
that each LRU stack hit at distance d; (at time t+u) is also a future stack hit at
distance d; (at time ) where r and t + u are the times of successive references to the
given page, so the probability of a page that has just been referenced appearing

next in the future stack at distance J is g;. Thus for all W, and all «.
(12) P[Wer=(wh - wiw' - wp)| W= (W' - - - wi)l=g;.

Itis also possible to obtain this result by direct calculation, as the interested reader
may easily discover. Let (w, - - - wiw - -wy,) be defined as the Jth successor of

(wy -+ -wr).

It is possible to greatly reduce the state space for this processj Let G, =
(81 - - - gn) be the set of pages in main memory at time ¢ identified by their position

in the future stack. For example, if the future stack contents are W, =

(4%,1,5%,2% 6, 3), where M =6, N = 3,and F,=(4,5,2),then G,=(1, 3, 4). The
“* has been used to denote those pages in main memory and thus the elements of
G.. The updating of both the future stack and the memory state is independent of

the specific identitics of the pages, so that this state space reduction has not
eliminated any useful information.

We now let S, = (G,) be the state of the process at the time 1. Let D;; be the
state transition probabilities, which are defined as

(13) Pi =P[S..1=j|S,=i] foralls.

We define the page fault rate, PFR, as

(14) PFR = Y P{S;}.
VS, such that 12G;
The paging algorithm we will employ is defined as follows:
Case 1. 1€ G, Then no page fault occurs. Let the page r, next appear at a
distance of k in the future stack. Then G,,, = (81, g5, -+, gith), where

t

g ifk<g,
g'=1gi-1 ifk=zg! and g'%1,
k ifgi=1.

—In this case, let G,,, be the kth successor of G,.

Case 2. 1¢G,. A page fault occurs. Let r and k be as in Case 1. Let
j=max; (g). Let G’ = G, —{j}+{1}. Then the successors of state G, are the same
as the successors of state G and occur with the same probabilities. The kth
successor of G, is defined as the kth successor of G’

We have, as in § 2, defined an algorithm that is identical to Belady’s (1966)
MIN algorithm; i.e., we have always chosen that page to remove from main
memory that will not be referenced for the longest time.

The transition probabilities for the state G, for all t are defined as:

(15) - {qk if G; is the kth successor of G,
. Y 10 otherwise. -
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It was shown in § 2 that there exists a sequence of page references that will
create any arbitrary state of pages in memory and any arbitrary future state. Since
i >0, for all k, it follows, therefore, that any state G; is reachable from any state
G;intort+1 steps, for sufficiently large (but finite) z. By the same reasoning used
earlier, we see that we have defined a discrete-time, finite state, nonperiodic,
irreducible Markov chain. The equilibrium state probabilities, may be

obtained as indicated in (11). The number of states is (j‘\’/[)’ which is M!/

(NY{(M~N))). For a constant N, the size of the memory, the number of states
grows factorially with the number of pages in the program, although not nearly as
fast as the number of states in the independent reference model.

4. The VMIN algorithm.

4.1. The independent reference model. Let g; be the probability of refer-
ence to page i, as defined in § 2. The time ¢ between references to page i is
distributed geometrically as

(16) qi(1-g)"
with mean time between references
(17) 1/g..

The probability that the time between references is greater than (where 7 is the
working set parameter (Denning (1968)) is

(18) (1-q)".

Because the time between references is geometrically distributed, the backward
recurrence distance (Cox(1962)) is also geometrically distributed with the same
mean. Therefore the probability that a given page i has not been referenced more
recently than the preceding 7 time units is also (1—g,)" as in (18). This latter
probability is just the probability that a reference to page i will result in a page
fault when using the working set paging algorithm with working set parameter 1.
Therefore the fault rate when using the working set algorithm on a program
described by the independent reference model is

M
(19) _gl q;(l—q.-)’-

The average memory space occupied for working set parameter 7 is simply the
sum Of the probabilities, summed over the pages, that page i is in memory. Page |
isin memory if it has been referenced in the preceding 7 time units, so the average
memory space used is '

(20) £ a-a-q.

The results above in this section have all been presented by Denning and Schwartz
(1972) and Baskett and Rafii (1975). ‘

The VMIN algorithm (Prieve and Fabry (1975)) is that algorithm that
minimizes the number of page faults for given virtual (process) time average

P




750 ALAN JAY SMITH

memory use. It works as follows: for a fixed 7, remove all resident pages that will
not be referenced in the following 7 time units. By varying , a (piecewise linear)
curve is traced out in the plane of page faults vs. average memory size. We note
that since VMIN is a demand algorithm, it cannot behave symmetrically with
working set. The time average probability that a page is in memory is the time
average probability that the interreference interval is of length  or less. This is the
ratio of the probability that the interreference interval is =7 times the mean
length of such an interval to the mean length of all intervals. Thus the average
.memory size for parameter r when using the VMIN algorithm is:

nf & g(l1—g) 't
1-(1—g; (1—1(1 — 7
w 1-(1-q) )(,gl (1_(1_%)’)) MY q(l—q) "t

D Y e T AT (=g

M, -1
= .Z] qi Z] (1-g)'t
i= t=

g (1-(1-g,))

M
=M= 3 (1-4) (1+74)

(which, we observe, is less than for working set, as given in (20)). The page fault
rate is given by (19); therefore we have calculated the expected fault rate and
average memory allocation for the VMIN algorithm when using a given value of =
and when the program in question obeys the independent reference model.

4.2. The LRU stack model. Let q; be the probability of a hit to level i in the
stack, as defined in §3. As discussed earlier (equation (12)), g; is also the
probability that the page just referenced will next be referenced whenitis at level i
in the stack. A page next referenced at level ; will start at level 1 in the stack and
successively occupy levels 1,2, - - -, i before it is referenced.

Let Q; = Z,-Ai,-H qgj, and let f;(j) be the probability mass function (pmf) for the
duration of time a page spends at level i in the stack, given that it is not referenced
at level i in the stack. Then fi(j) is geometrically distributed, since all references

are independent and follow the LRU stack model, and it is equal to

22) ﬁm=f%@7%ﬁ“.

This expression (equation (22)) holds even for i = 1 if we define 0°=1.
Let g, (j) be the probability mass function for the time a page spends at level k
in the stack, given that it will be referenced at level k. Then

j—1
@3 )= (1-72%) .

M 1" 1_,'? 1_,' 1‘ 1—,'7_1
=.§lq‘_2[ 71-4)" | (1-g)(1-(1-gq) )]
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The probability mass function for the time until a page is referenced, given that it
is next referenced at level k, is

ey | m() = (T1 A1) 80,

where “*” denotes convolution and “ *IT” means the convolution product.
Summing over all k, we have as the pmf for the time between references to a page:

M
25) e®)= 3 h(an
and for the cumulativc function,
. . : J
(26) E(j)= .gl e(i).

The pmf for the time to the last reference to an arbitrary page at an arbitrary time
is simply the backward recurrence time (Cox (1962, p. 61)) and is equal to

@7 M(1-E()).

The probability that an arbitrary page is in core is simply the probability that the
backward recurrence time is less than or equal to 7, the working set parameter;
thus we have

(28) M )l:] (1-E@®))

for the probability that an arbitrary page is in core. The mean number of pagesin
core is M times the value of (28) or

(29) M? ‘f‘l (1-E(r)).

The fault probability for a parameter 7 is

(30)  1-E(),

the probability that a page has not been referenced in the preceding 7 time units.

Equations (29) and (30) trace out a fault rate/memory size curve that describes -
the behavior of the working set algorithm when executed on a program obeying

the LRU stack model. There seems to be no simple closed form for these

equations although the generating function for e (z) is easily obtained. (In Denning

etal. (1972) arecurrence relation is derived which permits computing e(z) directly

in t steps.)

Tm————
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Asin (21), we can obtain an expression for the average memory usage for the
VMIN algorithm when using parameter 7. The average memory space used is

i1 e(t)t
(31) sz.;l T ,i‘:; e(t)t.

S. Calculations and simulations. In this section we present calculations of
the MIN fault rate for two simple examples of the independent reference model
and LRU stack model, and then we use simulation to compare the behavior of the
algorithms discussed in this paper for two larger and more interesting cases. Exact
numerical calculation appears limited, because of the combinatorial growth of the
number of states, to systems with a dozen page frames or less.

Example 1. Consider a three page program obeying the LRU stack model,
where ¢, =¢q,=q;=3. We note that a program described by the independent
reference model with the same uniform values of {g:} will have exactly the same
behavior. The state space (where the state G, is given in the circles (see § 3)) and
translation probabilities are diagrammed in Fig. 1, for a memory size of two page
frames. The equilibrium state probabilities are: Pi12=3% pi13=1%and p23=35. The
probability of a page fault occurring is then just p, 3 ora. The probability of a page,
fault using any realizable demand paging algorithm is 3, so that we observe that the
optimal look-ahead algorithm has a 33% advantage over any realizable
algorithm.

Example 2. We consider a program following either the independent refer-
ence model or the LRU stack model with q1=qr=qg3=q,=.25. Let there be

* three page frames in primary memory. The state space and transition probabilities

appear in Fig. 2. After calculation, we obtain as the steady state probabilities:
P123=125, Pi124=%5, P134=735 and P23.4=1. The fault probability is then 35 (or
-13636) which is much less than the fault rate of .25 to be expected from any
realizable algorithm.

Because of the rapid growth in the number of states for the analysis of the
MIN algorithm and the complexity of the analysis of the VMIN algorithm for the
LRU stack model, and also because of the availabilify of an already written
simulation program, we will present simulation results comparing these and other
algorithms. We note that the complexity of our results does not negate their
usefulness; rather it provides an incentive to develop a useful and simple approxi-
mation. In much the same manner that King’s (1971) work provided the basis for
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FiG. 2

some of the work leading to Baskett and Rafii’s (1975) “A, inversion model”’, we
believe that the existence of an exact solution to the fault behavior of nonrealiza-
ble algorithms will permit the development of more tractable approximations.

The values chosen for {g;} for our simulation of both the indcpendent
reference model and the LRU stack model are: v

q=2", 1=i=13,
q=2"", i=14,
q:=0, i>14.

The simulations were run for one million references each.

For the independent reference model, the Ay, MIN, VMIN, working set
(WS) and LRU algorithms were employed, and the fault rate is shown in Fig. 3 for
each of these algorithms. As might be expected, the A, algorithm demonstrated
the best performance of any of the demand algorithms, although MIN, which is
unrealizable, did better.
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The author conjectures that the observed result that working set performed
better than LRU in this case is a general result for the independent reference
model, although the author is not aware of any rigorous proof of this. (A *“proof”
by Denning and Schwarz (1972) was withdrawn by Denning (1973)). We do
present the following heuristic argument; a complete proof (which we do not
have} is, in any case, beyond the scope of this paper. We observe that, for the
independent reference model, the reference pattern to any one page is completely
independent of that to all other pages; thus each page may be studied in isolation
for replacement. For both working set and LRU, a reference to a page constitutes
arenewal epoch; that is, in both cases, replacement decisions for a given page are
completely independent of the reference pattern preceding its last reference.
Because of the independent reference patterns, the only measure of the expected
time to the next reference to a page, given the renewal property described, is the
time since the last reference, which is exactly what working set measures. LRU
records the number of other pages referenced since the given one, which s a crude
approximation to the time to last reference. Since the expected time to next
reference is a monotonically increasing function of the time since last reference,
the page to remove is one not referenced for some period 7 in the past, which is
precisely what working set does. Removal using LRU is somewhat more capri-
cious than with working set, since whether a page is removed is a function of how
many other pages have been referenced since it was last used. Working set thus
uses the best possible estimator for the time to next reference among all
algorithms with the given renewal property. and therefore is the best algorithm for
the independent reference model among the class of such renewal algorithms. A,
and Least Frequently Used, not belonging to this class of algorithms, are clearly

superior,
™

"LRU STACK MBDEL

10_2 E: T ! L] T t T ‘ T 13 ¥ T I T T T T I T T T L} ]_';
E 10-3 - —
< - 3
x - n
b r ;
-

5 L 4

10-5 - i 1 1 1 1 ’ 1 1 1 1 ! e 1 1 1 ! 1 1 1 1 4

6 8 10 12 14
MEMBRY SIZE ( P/\GE FRAMES )

Fi1G. 4

AR A SRR L S e e N e ey e

p

I

b e

L Nt v B s, S 1 6 e L

PAGE FAULTS

We also o!
held in core ac
reader should :
represent ratio

InFig. 4w
the working se:
monotonically
algorithm (Spir
MIN as the opt
(by a factor of
amount.

For comp:
simulated and
program writte
5)is taken from

The APL ;
addresses acces
simulation and:
both the MIN
probabilities wi:
generated by th.
in Fig. 5.

Because M
advantages ovc
LRU for the L.
This inherent .
our trace drivern:
approximately




LOOK-AHEAD DEMAND PAGING ALGORITHMS 755

REAL AND SIMULATED PAGE FAULTS
T T I T T 1 ! T T T l L T T I ¥ T T l T

2000

—
4}
[=]
o

1000

PAGE FAULTS

S00

12.5 15 17.5 20 22.5 25
NUMBER @F PAGE FRAMES

FIG. 5. (From Baskett and Rafii (1975))

We also observe, as expected, that VMIN, which varies the number of pages
held in core according to the future behavior of the process, did the best. The
reader should note that the vertical scale is logarithmic and thus vertical distances
represent ratios.

In Fig. 4 we present the results of our simulation of the LRU stack model for
the working set, LRU, MIN and VMIN algorithms. Our choice of {g;} convex and
monotonically decreasing makes LRU the optimal realizable demand paging
algorithm (Spirn (1 973)), and, as expected, it performed better than working set.
MIN as the optimal (unrealizable) algorithm can be seen to be significantly better
(by a factor of about 35%), and VMIN is better than MIN by about the same
amount. ,

For comparison with our simulation results, we show a comparison of
simulated and measured results for the “APL” program, the execution of a
program written in APL and described in detail in Smith (1974). This figure (Fig.
5)is taken from Baskett and Rafii (1975) and is reproduced with their permission.

The APL program was interpretively executed and a trace of the memory
addresses accessed was produced. This trace was used to drive a trace driven
simulation and the number of page faults generated by the trace was measured for
both the MIN and the LRU algorithms. The observed set of LRU stack hit
probabilities was then used to generate a reference string and the number of faults
generated by the LRU and MIN algorithms was measured. The results are shown
in Fig. 5.

Because MIN and VMIN are look-ahead algorithms, they have inherent
advantages over optimal realizable algorithms, such as A, for the I.R.M. and
LRU for the L.R.U.S.M. which can only minimize the fault rate on the average.
This inherent advantage is apparent in our calculations, simulations and also in
our trace driven simulation. Further, we note that the magnitude of this effect is
approximately the same as the observed difference, in a number of studies,

-
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between the results obtained with realizable and optimal algorithms. This is most
clearly illustrated in Fig. 5 where the effect of MIN on a simulated reference string,
generated from the LRU stack model, is almost identical to the effect on the real
reference string.

6. Conclusions. We have demonstrated an algorithm for calculating the
expected number of faults when a program is paged using either the MIN or
VMIN replacement algorithm when that program can be described by either the
LRU stack model or the independent reference model. This not only comple-
ments results by Denning and Schwartz (1972) and King (1971) on realizable
algorithms, but it also demonstrates that it is possible to analyze look-ahead
(nonrealizable) algorithms, certainly a nonobvious result. Although the complex-
ity of our formulas makes direct calculation for most programs difficult or
impossible, these exact results provide a basis from which a simple and effective
approximation may be developed.

As noted in the last section, we have also shown that the difference in
performance between realizable and nonrealizable algorithms on reference
strings generated from our models of program behavior is very close to that seen
on real program traces. This is all the more striking by being demonstrated
analytically. .
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