ot

-

Ve

-

o = e

~t

==
2
(24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 1, JANUARY 1977 g

Two Methods for the Efficient Analysis of
Memory Address Trace Data

ALAN JAY SMITH, MEMBER, IEEE

Abstract—The high cost of analyzing long memory address traces has
limited most researchers to short traces and analysis algorithms that are
linear in the length of the trace. We suggest two methods that permit a
trace to be shortened in length by one to two orders of magnitude (or
more) for later further analysis. The Stack Deletion Method eliminates
all references in the trace to the top k levels of the LRU stack. The
Snapshot Method records the reference bits of the pages in the original
tape at discrete intervals and uses these bits to generate a new trace.
Extensive measurements are presented, from which we conclude that
there is little or no loss in accuracy using reduced traces for many pur-
poses for a wide range of memory sizes and degrees of reduction.

Index Terms—Data compression, memory management, paging, trace
driven simulation.

I. INTRODUCTION

EMORY ADDRESS trace data, that is, a record of all

memory addresses referenced during the execution of a
computer program(s), has been widely used in the study of
paging algorithms and scheduling for virtual memory computer
systems. Belady [1] was one of the first to present extensive
simulations of various paging algorithms using trace data;
many other papers have appeared since that also use such data.
Because of the cost of generating and analyzing traces, most
researchers have been limited to a few hundred thousand or,
at most, a few million memory references. Analysis of paging
algorithms requiring time more than linear in the length of the
trace, such as algorithms that minimize the number of “pushes
and pulls” rather than just the number of faults [2] is prohibi-
tively expensive for traces longer than about 10 000 references

- [3]. The simulation of computer scheduling algorithms using

memory trace data is likewise unreasonably expensive.

The high cost of analyzing memory trace data has led some
researchers to search for efficient algorithms [4]-[6]. In this
paper, we take another approach to this problem: we choose
to condense the information on a trace tape in a manner that
avoids significant loss in the accuracy of our measurements
and conclusions. We will employ, to achieve this condensa-
tion, the well-known observation that there is a large degree
of immediate rereferencing to pages, and that over short
periods of time only a very small number of pages are used.
Lewis and Shedler [7], among others, have observed this fact.

Manuscript received October 20, 1975; revised Feburary 9, 1976.
This work was supported in part by the Joint Services Electronics Pro-
gram under Contract F44260-71-C-0087, and in part by the National
Science Foundation under Grant MCS75-06768. Computer time was
provided by the Energy Resources Development Administration under
Contract E(043)515.

The author is with the Computer Science Division, Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA 94720.

Denning [8] characterized this phenomenon as the “principle
of locality” which states that programs execute in a series of
localities; that is, they use, over short periods of time, only a
subset of their pages. Madison and Batson [9] have recently
made some progress in identifying and studying localities. We
discuss the relation of their work to ours later in this paper.

The explication of our algorithms will require some defini-
tions. LetR=ry,ry, - ,r; - be the memory address refer-
ence string, where, without loss of generality we substitute for
the memory address the name of the page in which the address
is located. We define a time-dependent paging algorithm as
one which explicitly considers time (defined as the index i in
the reference string) in making replacement or removal deci-
sions. In this class are Working Set [10] and Page Fault Fre-
quency [11]. A time-independent paging algorithm will be
one which does not consider time explicitly. In this class are
LRU (least recently used) [12], MIN [1], and CLOCK [12],
[13], the algorithm used in Multics and in CP-67.! We note in
particular that for the latter class of algorithms, immediate
rereferencing of a page has no effect on the behavior of the
algorithm. Thus LRU, MIN, and CLOCK will behave exactly
the same whether processing R, or R,, where R, =a,b, ¢, c,c,
¢,c,a,bandR; =a, b, c,a,b,and where a, b, and ¢ are page
names. This rereferencing does affect the behavior of Working
Set (WS) and Page Fault Frequency (PFF) as may be readily
demonstrated.)

Examination of stack distance functions (see [16] for exam-
ples) will show that the fraction of hits to the top levels of the
stack is very high. For example, in the WATFIV trace dis-
cussed in Section IV, we find that the top five levels of the
LRU stack received, respectively, 42.3 percent, 36.5 percent,
7.7 percent, 4.02 percent, and 2.45 percent of all references.
Because of the high hit rate to these top levels in the stack, it
should be clear that for purposes of memory management,
little if any useful information is contained in this repeated
rereferencing to recently used pages. Any memory manage-
ment scheme, to work, must succeed in keeping these fre-
quently referenced pages in memory.

As noted above, immediate rereferences can be eliminated
from program address traces without any change in the fault
count for time-independent paging algorithms. From our

!The CLOCK page replacement algorithm operates as follows: A
reference bit is associated with every page. When the page isreferenced,
this bit is set to one. Imagine the reference bits arranged in a circular
list, with a pointer rotating around this list. When a page frame is
needed, the reference bit pointed to by the pointer is examined. If it
is zero, the page is chosen for replacement, and the pointer advanced.
Otherwise, the bit is turned off (to zero), and the pointer is advanced.
This page is now considered in turn.

SMITH: EFFICIENT ANALYSIS OF MEMORY ADDRESS TRACE DATA i 95

argument above, it would appear that many other refer-
ences could also be removed without a significant effect
on fault counts and. other program behavior statistics.
One way to do this would be to remove all rereferencing
within “localities” as defined by Madison and Batson [9]. We
shall, instead, choose two less sophisticated methods of de-
leting page references from the program trace. Both methods
rely heavily on the locality that characterizes almost all mem-

ory traces, but do not explicitly identify localities. The first

method, the Stack Deletion Method, records only pages enter-
ing the first X stack positions; the second method, the Snap-
shot Method, periodically records the set of recently refer-
enced pages. We will present comparisons of analyses in
Section IV using both the condensed and original tapes; these
comparisons will indicate that very little loss in accuracy
occurs from the use of reduced traces. ’

II. STACK DELETION (METHOD 1 AND 1%)

As indicated in the previous section, the behavior of some
paging algorithms is completely unaffected by the deletion
of immediate rereferencing from the page reference string.
The deletion of immediate rereferences is equivalent to de-
leting all items in the reference string that are “hits to level 1”
of the LRU stack [4], [14]. We extend this idea to what we
call Stack Deletion (with two subvariants, Method 1 and
Method 1¥).?

Stack Deletion (Method 1): Delete all references in the ref-
erence string that are hits to levels 1,- - -, k- 1. Define the
deletion parameter D to be equal to k in this case. The re-
duced trace will then contain only those references that
remain.

Example: Let the original reference stringR =a,b, ¢, c, c,
¢,b,b,b,d,d,a,b,c,d,c,b,c,a. Let R;, denote the reduced
string of parameter D = k. ThenR, =R,R;=a,b,¢,b,d,a,
b,c,d,c,b,c,a;R3=a,b,c,d,a,b,c,d,b, a,andR4=a,b,

¢, d,a, cd,a. Fault and program behavior statistics may then -

be gathered using the reduced string Ry (k = 2,3,4) by analyz-
ing the reduced string (almost) exactly as if it were the original
trace. One may see that the number of page faults observed in
processing R with LRU replacement for memory capacities of
1,2,3,and 4is (13, 10, 8, 4), and similarly, fong,Rg,R‘; we
obtain (13 10, 8, 4), (10, 10,9,4),and (8, 8, 5, 4) faults. To
convert these number of misses to miss ratios requires some
adjustment to the trace length.

Define N to be the length of the original string R and let V;
be the length of the reduced string R; of parameter i. F; 1(C,4)
is the number of faults observed when processing reduced
string R; in a memory of capacity C with page replacement
algorithm 4. We define the fault rate (miss ratio) f;(C, A) as
fi(C, A) = F;(C,A)/N. We note that the fault rate is defined in
such a way that the number of faults is divided by the length
of the original trace, not the reduced trace. A consequence of
this definition is that the fault rate as measured on the reduced
trace (f;(C, A)) is bounded by N;/N and thus is almost certain
to be inaccurate for small memory capacities. We will see later

2Reportedly (according to a referce), a similar method was used by
Chu and Opderbeck [11].

that the page fault rate is very accutately preserved for larger
memory sizes.

It may be noted by the alert reader that Method 1 has no
provision for time-dependent paging algorithms. One ap-
proach to estimating the fault rate for such algorithms is to
calculate a “stretching factor” S; = N/N;. Then, instead of
incrementing the time counter by 1 at every memory refer-
ence in the reduced trace, it is incremented by S;. This ap-
proach fails, however, when the frequency of deletion is not
uniform throughout the length of the trace. We therefore de-
fine a variant of Stack Deletion which we will call Method 1*.

Stack Deletion (Method 1*): Delete all references in the
reference string R that are hits to levels 1, - -,k - 1. Define
the deletion parameter D to be equal to k as before. The re-
duced string will consist of a two-tuple for every reference
that remains after deletion. The two-tuple will be composed
of the name of the remaining reference and the increment for

* the time counter.

Example: Let R be as before. Let Ry denote the reduced
trace of parameter k as before. Then R, =(a, 1), (b,1),(c, 1),
®,4), @,3), @,2), ®,1), (c,1), @, 1), (c, 1), (b, 1), (c, 1),
@1). R; =(a,1), (b,1),(c,1),d7), @2),5,1),(c, 1),

d,1),(b,2),(a,?2). R, may be easily calculated as well. g

It may be seen that Stack Deletion (both Methods 1 and 1%)
follows directly from the principle of locality. We have chosen
to define our “locality” as that set of pages in the top & - 1
positions in the LRU stack. Our reduced trace then contains
a record of every entry into this locality. It is possible, given
a record also of departures from the locality, to calculate the
fault rate exactly for LRU replacement for all capacities

greater than k - 1 [14]. More generally this is true for any -

stack replacement algorithm when we define our “locality”
appropriately. Because the sequences of “pushes” from the
LRU locality aids only in calculating the fault rate for the
LRU algorithm (in this case) we have omitted this information
in the reduced trace. ’

It is possible to bound the error introduced into the LRU
fault rate when dealing with the reduced trace. For brevity,

we shall provide only a heuristic argument; it is possible to

prove this rigorously. When stack deletion processing occurs,
only hits to levels k and lower in the stack are kept in the re-
duced trace. Thus all reordering among the top k - 1 pagesin
the LRU stack (for the original trace) produces no output, and
thus no changes in the stack for the reduced trace. Consider
the top k - 1 positions in the stack for the reduced trace. The
page in position 1 could actually belong in position & - 1 (by
our argument above), and similarly, the page in position k - 1
in the reduced stack could actually belong in position 1 of the
true LRU stack. It should also be clear that all “misplace-
ments” in the stack must occur by permutations of the top
k- 1 positions. Therefore, the page that is pushed from the
k - 1st position in the reduced stack might actually belong (as
a result) anywhere from positions 2 to 2k - 2. This malorder-
ing bound clearly carries as the page migrates down the stack
since a page in stack position at time # will be in either posi-
tion 1, i, or i + 1 at time ¢ + 1. Thus any given page in the re-
duced trace stack actually belongs anywhere from k - 2 ele-
ments lower in the stack to k - 2 elements higher. Since no

is

P2 R - e B

~.

AV e e

- Aw em B U e et

96" ’ ’ IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

stack hit in the reduced trace analysis can miss by more than
k - 2, the fault rate is similarly bounded. Therefore, F(C - k +
2, LRU) < Fi(C,LRU)< F(C + k - 2,LRU). In the author’s
experience (see data analysis sections), this bound is very
loose and in fact far less stack disordering takes place than this
bound permits or than one might expect.

IIl. THE SNAPSHOT METHOD (METHODS 2 AND 2%)

It is possible to derive another method of trace condensation
from the locality principle. Rather than recording changes in
the locality, we periodically record the contents of the locality
by taking a “snapshot” of the reference bits for the pages. The
information contained is used to generate a new, reduced trace
as follows.

Snapshot Method (Method 2): At intervals of T memory
~ references (where T is the interval parameter), the list of pages
in memory (linearly order_ed by page name or number) is
scanned and the name of every page with a reference bit set
is inserted into the reduced trace. Then all of the reference

bits are turned off and a marker is placed in the reduced trace.

This marker indicates that the snapshot interval has expired in
order to permit updating of the time counter.

Example: LetT=2. LetR=a,b,c,c,c,c,b,b,b,d,d,a,
b,c,d,c,b,c,a as before. Let R, denote the reduced trace
with ‘interval parameter T = ¢. (This notation ordinarily-pro-
duces no confusion with the Stack Deletion Method, since T is
usually much greater than any feasible value of D). We use
“0” as a marker. ThenR, =4,b,0,¢,0,¢,0,b,0,b,d,0,2,d,
0,b,¢,0,¢,d,0,b,c,0,a,¢,0. R3=a,b,c,0,c,0,b,0,a,d,
0,b,¢,d,0,b,c,0,a,0, and so on. The reduced trace(s) is
then analyzed in exactly the same manner as the source trace,
except that the marker entries are used to update the time
counter as necessary.

We define the fault rate f,(C,A) in the same manner as in
the previous section.

A minor deficiency is evident in Method 2 upon close inspec-
tion. Since the entries in the reduced trace are generated in
the same order each time (the list is scanned linearly), process-
ing the reduced trace will result in “reaching down into the
stack™ more often than necessary. For example, the reference
string R =a,b,c,c,c,b,a,awillyield R4 =a,b,c,0,a,b,¢,0
with LRU misses for R for capacities of 1,2, and 3 of (5,4, 3),
respectively, and for R4 of (6,6,3). In general, we may see
that for some range of memory capacities the fault rate on the
reduced trace will be too high. We therefore define a variant
of the Snapshot Method called Method 2*:

Snapshot Method (Method 2*): Generate a reduced trace
exactly as in Method 2 except that the list of pages is scanned
in random or pseudo-random order rather than repeatedly in
the same order. (

In our implementation, for computational simplicity, we em-
ployed the following pseudorandom scan order: proceed
through the list of pages examining the reference bits by con-
sidering (linearly and circularly) each third page on one snap-
shot and each fifth page on the next. (This requires, respec-
tively, three and five passes through the list to record all set
bits). Because three and five are relatively prime, this provides

a fair degree of randomness between the two orders. More

sophisticated randomizations are easily possible but are more
difficult and slower to implement. . .

A version of the Snapshot Method was used by Prieve [15]
in his dissertation. He obtained trace data from a machine by
recording the contents of the page reference bits every 10 ms.
He does not describe the exact manner in which he processed
this information.

In generating his reduced trace, Prieve [15] took advantage
of the fact that the original program could be executed at nor-
mal speed on a machine, and that the reference bits could be
examined by periodically stopping the machine with an in-
terrupt. Thus it was possible to generate a reduced trace
representing hundreds of seconds of real machine time using
two or three times that much machine time, rather than the
fifty or more times more machine time required for interpre-
tive execution and trace generation.

IV. DATA ANALYSIS

A. Introduction

A number of memory address trace tapes that record the
operation of programs on the IBM System 360 are available
to the author; extensive analysis of these tapes has been pre-
sented elsewhere [16]. Measutements from three of these
tapes will be given in this section. These three traces include
“APL,” a trace of a plotting subroutine written in APL;
“WATFIV,” the execution of the Watfiv Fortran compiler;
and “FFT,” the execution of an implementation of the
Fast Fourier Transform algorithm [17] written in Fortran.
These three tapes were chosen from among those available
in order to span a wide range of program behavior. The APL
trace is stationary in its deletion frequency and accesses a rela-
tively large number of pages, the WATFIV trace is nonsta-
tionary and accesses a somewhat smaller number of pages, and
the FFT trace is for a program that has a number of small
tight loops which comprise the majority of its execution time.
" A large number of parameters describe the behavior of a
program; among them are the fault rates for different memory
capacities, page sizes, and paging algorithms, interreference
intervals (time between consecutive references to the same
page) for pages, intervals between page faults, and the working
set size as a function of time. We have chosen to consider the
first two items: the fault rates for the LRU, MIN, CLOCK, and
Working Set algorithms and the interreference intervals to
pages. We note that the interreference interval information is
equivalent to the Working Set fault statistics. It is of course
possible to study other parameters and to employ sophisti-
cated statistical techniques, but our choice is sufficient for
many purposes and to indicate the utility of our reduced
traces.

B. Length and Analysis Time Reduction

The reduction in the length and analysis time of a trace

when reduced using either Stack Deletion Method 1* or Snap-
shot Method 2* (we consider 1* and 2* unless otherwise
noted as they represent refinements of 1 and 2) can be ex-
pected to be substantial for programs that display strong local-
ity of reference. We define the decrease in length as the ratio

e e S D

SRS LA A i

e W S

SMITH: EFFICIENT ANALYSIS OF MEMORY ADDRESS TRACE DATA

97

TABLE 1
LENGTH AND ANALYSIS TIME REDUCTION RATIO OF ORIGINAL/ REDUCED
LENGTH OR TIME

Method | Parameter WATFIV FFT APL
Length | Time Length | Time Length | Time
1 3 4,735 4.45 4.017 3.94 5.79 5.24
1 4 7.484 6.56 7.698 7.42 -- --
1 5 10.704 9.07| 26.6 23.4 - --
1 6 14.514 | 11.64 | 36.2 30.7 22.6 15.34
1 8 - - - - 46.2 28.96
1 12 -- - -~ - 109.2 33.9
2 25 5.51 4.86 6.25 5.9 6.25 5.72
2 100 12.65 9.23 | 17.4 13.6 15.8 13.2
2 400 28.57 16.36 | 40.6 25.8 40.3 22.3
2 1600 63.7 25.9 |136 47.8 103.2 35.6
TABLE 11
PAGE FAULTS—WATFIV
Faults | Per Cent Error
Method 1* Method 2*
. |Memory Parameter Parameter
Algorithm| Size T 3 - [2z 100 40 1600
LRU 30{ 4491 aa63|- .6 |aas6| .1 |4529] .8 | 4603} 2.5] 4486}- .1 a612| 2.7| 5069| 12.9| 6163} 37
35| 2802 2761|-1.5 |2786{- .6 |2806] .1 | 2859| 2 2801 0 2852| 1.8] 3079] 9.9} 3541| 26
40} 1033 1058| 2.4 {1070] 3.6 {1070] 3.6 | 1106] 7.1| 1037 .4 1045| 1.2| 1103] 6.8} 1269| 23
45| 347 348 .3 349] .6 | 348] .3 350 8| 345|- .6] 355/ 2.3] 347 0 354} 2.0
50 234 236| .85(236| .85| 236/ .85) 237| 1.3] 234| 0 235 .4} 233|- .4} 23] O
551 182 184 1.1 | 184] 1.1 | 184} 1.1 184! 1.1 184} 1.1 183 .50 181}~ .5 184] 1.1
60] ~127 129| 1.6 | 130] 2.4 | 130] 2.4 130] 2.4] 128| .8| 128 .8] 128 8| _132] 3.9
MIN 35(1203 1194{- .8 [1190]-1.1 |1190}-1.1 | 1179}~ 2 1220| 1.4| 1210 .6 1183|- 1.7} 1096{- 8.9
40| 482 481}~ .2 | 478|- .8 | 478{- .8 475|- 1.5 491| 1.9 488f 1.2| 48| 0 460| - 4.6
45! 213 213 0 212|- .5 | 212{- .5 211f- .7} 214} .5] 215 .9l 211|- .9} 209¢- 1.9
50{ 144 44} 0 144{ O 144 143~ .7| 45| .7{ 145 L7 142]- 1.4 1411- 20
55| 114 114} 0 14| 0 114 0 Nn3|- .9 14 0 115 .9] 112|-1.8] 112|- 1.8
60l 95 951 0 95 0 9] 0 - 95 0 95| 0 95! © 95! 0 94{- 1.1
£1.0CK 30} 557 5518] .1 |5384|-2.4 |5463|- .y | 5217}- 5.4| 5589| 1.4 5456}~ 1 5232]- 5.1} 5591 1.4
35 3169 3165~ .15/3097]-2.3 |3099]-2.2 | 3071}~ 2.9| 3259 2.8 3223 1.7| 3019}~ 4.8 3072|- 3.1
401 1380 1358|-1.6 11328]-3.7 11263|-8.5 | 1289]- 6.5 1384 2.9| izi5(~ 4.7} 1202]-13 1194-13
45] 382 390] 2.1 | 409| 7.0 | 402| 5.2 405! 6.0{ 376/-1.6] 800| 4.7/ 386 1 378}- 1
50| 236 236] 0 235|- .5 | 233}-1.3 230|- 2.5| 233}-1.3] 241 2.1| 237 4| 234)- .9
55{ 181 1811 0 180|- .6 | 188| 3.9 179]- 1.2| 182] .e| 184} 1.7} 188 3.9 182 .6
60f 141 141 0 143} 1.4 | 144} 2.1 143| 1.a| 143] 1.4] 139{- 1.4] 137}- 2.8 154] 9.2
Working| 100{31943 34135{ 6.9 43484| 36.1[33102] 3.7|54726] 71 34881 9.2{15729 .51
Set 1000| 8779 8825| .5 9107} 3.7) 8794 .1| 8839 .7| 8852 .8}15729| 79
10000} 626 629 5 , 634] 1.3} 627] .2| 631 .8| 639 2.1} 592|- 6.5
50000f 122 122| 0 177 0 122 .8| 122 .8 19| 1.7} 117i- 3.3
100000 €9 69 0 62| 0 69; 0 69 0 66]- 2.4 64j- 7.3

of the number of page name entries (excluding markers and
counters) in the original trace to the reduced trace. We define
the analysis time reduction as the similar ratio taken from the
observed CPU execution time. .

The three traces described earlier have been reduced using
Methods 1* and 2* for a number of different values of the
deletion and interval parameters; we present the time and
length reduction data in Table I. Our analysis program calcu-
lated the fault rates for LRU, MIN, and CLOCK page replace-
ment algorithms and the interreference times for Working Set
simultaneously, thus our figures represent an average (or sum)
of the times for each of these algorithms over a range of
memory capacities. The original trace was run for one million
references in each case. s

We observe that for the parameter values chosen: D=3,4,5,
6,8, and 12, T=25,100,400and 1600, reductions in length
ranging from approximately 4 to 135 were obtained, with
significant variations occurring between programs for the same
parameter values. D =2 was not chosen as a sample parameter,
since, as it may be seen from Section I, there is no loss of ac-

curacy at all in eliminating immediate rereferences and simul-
taneously keeping track of the number of deletions. We note
that the analysis time has not decreased in direct proportion
to the decrease in length, but somewhat more slowly. This
occurs because references in the reduced trace are likely to be
deeper in the stack and are likely to require more processing
per reference.

C. Stack Deletion (Method 1*) Data

Some of the data for simulations of the LRU, MIN, CLOCK,
and Working Set algorithms on the WATFIV and APL reduced
traces (for source tape lengths of one million references) are
presented in Tables IT and III. The number of faults and the
percent error from the correct (unreduced trace) value for a
number of different parameter values and memory capacities
is given. We note the following two features for the interval
deletion data.

1) With the exception of a few entries involving substantial
reductions in the trace length and small memory capacity, al-
most every entry shows an error of less than 4 or 5 percent.

Sl e B § i i b i it ISP Y

98

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

TABLE 111
PAGE FAuLTsS—APL

Faults | Per Cent Error

Method 1* Method 2*
Algo-| Memory| Par: Parameter
rithm Size 1 3 6 anete—y 12 25 100 | 400 Te00
LRU 15| 5452 5549! 1.8 | 5620] 3.1 | 6106{ 12 5153|~ 5.5 | 5584] 2.4| 5787 6.1 | 7442y 36.5 5;‘252 g.g
201 2852 2848/- 1.5 | 2880] 1.0 | 3045] 6.8 |2752|- 3.5 | 2825)- 1 2863 .4 | 3139} 1 3 o 17.
25| 1456 1452]- .3 | 1480]- 1.1 | 1474] 1.2 [1430{- 1.8 | 1436|-- 1.4] 1428|- 2 1421]- 2.5 1725 s
30, 799 800 1 801 .25| 806 .75| 848 6 7991 0 791- 1 802 4| 8 1.7
35/ 528 528 531 .6 533 .94 536 1.5 526|- .4| 529 .2 528 O 53; 2.5
4 395 395 0 393j- .5 394f- .3} 408] 3.3 395(0 392(- .8 398 3 “'I)G]-9
45| 310 3N .32] 312 .64] 313 ,97] 318 2.6 3 .4 313 1.0 3131 1 3 .
MIN 20| 1547 1527]- 1.3 | 1477|- 4.6 | 1437{- 7.1 [1165{-24 1511]~ 2.4] 1539]- .5 | 1504{- 2.8 1406~ 9.2
25 795 793} .3 769}~ 3.3 756|- 4.9 | 685)-14 793]- .3} 794f- .1 785(- 1.3 72; - A.g
30f 472 4711- .2 460}~ 2.5 456|- 3.5 | 440|- 7.8 470{- .4| 47}- .2 468 .8 328 - 3-g
350 331 331 0 326i- 1.6 322|- 2.8 | 317|- 4.3 330}~ .3] 333 .6 328{- .9 329 - 1.2
40{ 252 252 0 248]|- 1.6 244|- 3.2 | 243}- 3.6 251}- .4 253 4 249~ 1.2 o - -2
45| 205 205 0 202|- 1.5 199;- 3 198{- 3.5 204{- .5| 205 0 203|- 1.0 - .
Clockl 18| s938| |se38| o | 6081| 2.4 | 6138 3.4 |4s20|-19 | 5938| o | 6125] 3.1 [7119} 20 |6176) 4.0
20} 3010 3007§- .1 { 3020 .3 | 3040/ 1.0 |2567|-15 3010 O 2995{- .5 | 3128 3.9 390; 29.;
25| 1458 1434}~ 1.7 | 1452}~ .5 | 1425{- 2.3 |1354{- 7.2 | 1468 .71 1493 2.4 | 1460 .14/161 10.
30f 854 860 .7 820|- 4 811i- 5 8221~ 3.8 843j- 1.3| 870 1.9 839/- 1.8 | 866 1.4
35| 556 566; 1.8 569 2.4 561 .9 | 558 .35 549|- 1.3 §59 .5 5?7 3.8 | 561}~ 1.:
40} 422 4271 1.2 414i- 1.9 407|- 3.6 | 419}- .7 430} 1.9f <35 3.1 48|- 1.0 | 416}~ 2.1
451 341 328)- 3.9 327]- 4.2 345! 1.2] 353] 3.5 343 .6 337(- 1.2 329|- 3.5 | 334|- 2.
50{ 279 278|- .4 279 0O 305| 9.31301 7.9 :
Work- 100} 19897 2205} 10.6|25348| 28 18756{- 6 9155 .54124834] 25 42527 114 21105| 6.2 {9696}~ S1
ing 1000| 4172 4254) 2.0 | 4728] 13.3 | 5063| 21 5746| 38 4286] 2.9 4270 25 4187 .55 9626 133 P
Set 10000 645 647 .3 660 2.3 673 4.3 | N7t N 658| 2.2| 649 .77} 647 .46| 640|- .4
50000 249 250 .4 250/ .4 2531 1.6 | 238{- 4.5 250 0 250 0 250f 0 Zgz - 0~
100000f 153 154, .65 ISSJ 1.3 139]- 9 138}{-10 154 0 154 0 154) O 1
PAGE FAULT RATE USING LRU REPLACEMENT PAGE FAULT RATE USING LRU REPLACEMENT
=y L] I L) L} L] 1 ‘ ¥ ¥ L] L) I L] T L) L] l L] T T L] I T T 100 L l L] ¥ L] L] l i) T T ¥ l L) ¥ T L]] L] L} L] L) l T L]
-1 APL - D=1 ‘
10 =—
= METHBD 1 O D=6 10'1
V1] s wl
— 3 + 0-12 e
< B <
® 102 L e -2
— E 10
) = =
=} - o}
< - <
ey | 4 1073
- I]
107 ©
< E <
o - o -4
5 10
-4
- | | | | |
;lllllllilllllllllllllIII N I N T O I O O B B e e s

50 75

0 25 100
MEMBRY SIZE (256 WBRD PAGES }

Fig. 1. Page fault rate using LRU replacement; APL trace, Stack De-
letion Method (1) used for reduction, deletion parameter values =1,
6,12,

2) For large memory capacities, the number of faults ob-
served is generally small, and thus errors of one or two in the
number of faults loom disproportionately large. An appropri-
ate level of significance for the error in the number of faults
|F(C, A) - F;(C, A)| is VF(C, 4), which is the standard devia-
tion for counts of rare events (page faults) [18].

Fig. 1 shows the fault rate for the APL trace and LRU page
replacement for deletion parameter values 1,6,and 12. As in-
dicated earlier, the maximum fault rate is bounded by N;/N,
but we see that the observed fault rate quickly converges to
the true one. -

The LRU fault rate for the FFT trace is given in Fig. 2 where
we observe 1) the underestimate of the fault rate for small
memory sizes (as noted earlier), and 2) the overestimate of the
fault rate at the “corners” of the curve. The latter effect is
due to the very tight loop structure of the FFT program which
gets slightly distorted by eliminating loops within less than D

30
PAGES)

9] 10 20 40
MEMBRY SIZE (256 WBRD

Fig. 2. Page fault rate using LRU replaoemeni; FFT trace, Stack De-
letion Method (1) used for reduction, deletion parameter values = 1,
3,6.

pages. Some general rules of thumb for the degree of deletion
producing acceptable error rates are presented in part E of this
section. The results for the WATFIV trace are similar to that
for the APL trace.

Interreference intervals were taken for Method 1* and when
plotted on a scale extending from 1000 to 100 000 time units,
were found to be indistinguishable from the true values.

D. The Snapshot Method

In Tables II and III we also present measurements for the
Snapshot Method (2*) for parameter values of 25, 100, 400,
and 1600 for both the WATFIV and APL traces. We observe
that for large memory capacities or small parameter values the
error introduced is negligible, being generally less than four
percent. The exceptions are for small memory sizes and large
parameter values where the error is sometimes substantial. We
illustrate this behavior further in Figs. 3 and 4 for the APL

SMITH. EFFICIENT ANALYSIS OF MEMORY ADDRESS TRACE DATA - 99

PAGE FAULT RATE USING LRU REPLACEMENT

0 17 TT T 1 17 L 7

00 T I [I

- T-1 APL 3

-1 [#<T=2 METHED 2)

wll E

| = =

< - 3

@ []

: 10-2 E— —

2 c 3

< E 3

w - 3

w .3 ’
o L
S E
a E
-4 B

‘Illllllllllllllllllllll

0 25 50 75 100
MEMBRY SIZE (256 WBRD PAGES)

Fig. 3. Page fault rate using LRU replacement; APL trace, Snapshot
Method (2) used for reduction, interval parameter values = 1, 25, 100,
400, 1600.

PAGE FAULT RATE USING LRU REPLACEMENT
0

10 g) I T L} T L} l T T T T I T T T T] T L T T [T T [_é

- T-1 APL f

a1 f T=25 METHBD 2 7

[- 3
< o]
[r i
S0 b —
oD = 3
< = 3
L s]
Ll -3 i 7
€] — —
21 E 3
a - 3
04 - -

. £ 1 l 1 1 1 I 1 1 1 1 ' 1 1 1 1 I H L LI l 11 1 3

0 25 50 75 100
MEMBRY SIZE (256 WBRD PAGES)

Fig. 4. Page fault rate using LRU replacement; APL trace, Snapshot

Method (2*) used for reduction, interval parameter values = 1, 25,

- 100, 400, 1600.

trace. Proceeding linearly through the page list induces a sub-
stantial error in the fault rate for a range of memory sizes (Fig.
3); our pseudo-randomization of the scan order has substan-
tially reduced this error (Fig. 4).

The fault rate for the Working Set algorithm is given in Fig.
5 for the APL trace for the Snapshot Method. We have de-
liberately chosen to present our results for small working set
parameter values in order to demonstrate the rapid conver-
gence of the interreference times to the actual values as the
interreference times increase. The Snapshot Method produces
a square wave which brackets and rapidly converges to the cor-
rect value. We note that the possible error in the time of
reference to a page here is bounded by 2*7. Thus if we de-
note the Working Set miss ratio as mr(¢) for working set
parameter ¢ and deletion parameter T, then the miss ratio
mp(t) is bounded as my(t + T) <myp(t) < my(t - T) where
m(?) is the miss ratio for the original trace.

 FAULT RATE VS. W.S. PARAMETER

llllllll‘lIII‘llllllllIlT‘llllr

APL - T-1]
- T-25]
i ‘0 T-100
w .-l
100 X T-400
< = 3
x N :
I— - -
—d - p
po]
< - -
I
1072

Ll l]jll

o'

llllIlllllll!ltllllllllll!!l

0 200 400 600 800 1000
WBRKING SET PARAMETER

Fig. 5. Fault rate versus working set parameter; APL trace, Snapshot
Method (1) used for reduction, interval parameter values = 1, 25, 100,
400.

TABLE 1V
DIRECTION OF ERROR
+/- ,
Algorithm Method 1* Method 2*
LRU 67/11 49/10
MIN 0/38 20/29
CLOCK 34/35 41/31
WS 25/5 30/9

E. Comparisons and Range of Validity

The direction of the error in the observed fault rate between
the original and reduced traces, that is, whether the fault rate
was over (positive error) or under (negative error) estimated, is
an important parameter for many applications. In particular,
any consistent pattern in the error can suggest either improve-
ments in the algorithm or compensations to the results. In
Table IV we indicate the number of positive and negative
errors for each algorithm and for each method as drawn from
Tables II and III and from corresponding data for FFT. Some
definite and consistent patterns may be observed.

Working Set is based on the assumption that the probability
of referencing a page is a monotonically declining function of
the time since the last reference. LRU, similarly, is based on
the assumption that the probability of referencing a page is a
monotonically declining function of the number of pages that
have been referenced since the last time the given page was
used. If these two (similar) assumptions are well justified,
then one would expect the fault rate observed from the re-
duced traces to increase over that from the source trace. This
follows from the fact that reducing the trace allows the stack
to become locally disordered (for LRU) and allows the inter-
reference times to become inaccurate. This hypothesis is sup-
ported by the data in Table IV where we observe a prepon-
derance of positive errors (overestimate of fault rates) for both
LRU and Working Set.

One would expect the fault rate for MIN to decline when the

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

length of the trace decreases, since MIN is a lookahead algo- _TABLE V

rithm. By removing information from the trace, the reduction RELATIVE MAGNITUDE OF ERROR

algorithm allows a great deal more latitude for removal deci- 1* better/2* better

sions, which works to the advantage of MIN. We may observe Algorithm

just this phenomenon in Table IV for Method 1* and to some

extent for Method 2*.) LRU 16/21
There seems to be no evident pattern in the errors for the gll.gCK iéﬁg

CLOCK algorithm nor does any pattern suggest itself to the WS 8/15

author.

Comparisons of the relative degree of error for algorithms 1*
and 2* for comparable reductions in the trace length are pre-
sented in Table V where we see that there is a slight but per-
sistent bias in favor of algorithm 2*. This statistic is somewhat
misleading, in that there are large and consistent errors that
occur for algorithm 2* for certain parameter combinations,
whereas algorithm 1* produces errors with a larger apparent
variance but a less consistent bias throughout most of the
parameter values examined. Also, Method 2 is guaranteed to
produce absolute errors in timing no worse than 27, while 1*
will produce LRU fault rates inaccurate at most by kK - 2 in
memory capacity.

An examination of the data presented in Tables II and II
indicates that some rough rules of thumb may be given for the
range over which the error rates for the reduced traces are
tolerable. For algorithm 1%*, it seems that for memory capaci-
ties greater than 2*D, the error rate is extremely low and
within the “noise.” One can obtain a similar rule of thumb for
Method 2 in a rather indirect way. A value of D corresponding
to a value for T may be obtained by choosing D to yield an
equivalent amount of trace reduction as T. The estimate for a
safe memory capacity in this case may be taken to be 2*D.
One may also compute a:result directly for timing information
(e.g., working set execution); a safe parameter value is at least
four to eight times as large as 7. One may also observe that
for the normal operating region of a program, i.e., where the
fault rate is within two or three times the minimum, the re-
duced traces seem to give very good results for all parameter
combinations tested.

F. Other Tests

In addition to the data presented here, we have conducted
considerable additional experimentation and we believe that
the data we have presented here are typical. There are of
course many program properties that we have not tested and
there are parameters that have not been varied. Page size has
not been varied, although there is every reason to expect that
varying it over a wide range should have no effect. Paging
algorithms other than those presented have not been simu-
lated, but those presented include three realizable algorithms,
one lookahead algorithm, three stack algorithms, one non-
stack algorithm (CLOCK), three time-independent algorithms,
and one time-dependent algorithm. There is some doubt
about the effectiveness of locality measuréments (as in [9]),
although Madison and Batson [9] only considered a form of
reduced trace (one limited to array segments), but this requires
experimentation beyond the scope of this paper. The range of

of approximately 10000 references.

possible tests and useful parameter combinations is limited
only by the range of application of program traces.

V. OTHER METHODS

In addition to the two variants of both the Stack Deletion
Method (1 and 1*) and the Snapshot Method (2 and 2*), ex-
periments were run on additional deletion strategies. A third
deletion strategy for the Snapshot Method, one which involved
a linear scan of the page list, but in the opposite direction on
alternate scans, was tested, and no significant difference was
found in comparison to Method 2*. A third deletion method,
which involved deleting all references to pages which had been
previously referenced within T time units, was tested, and it
was found to perform somewhat worse than Stack Deletion.
It is possible that a more sophisticated deletion algorithm,
such as one which deleted all references to the highest level
locality [9] might produce better results, but the cost of run-
ning such a deletion algorithm might be substantially higher,
and the possible gains to be expected are minor. It is our
judgement that the two methods described throughout this
paper yield consistently reliable results for a very low pro-
gramming and processing cost in generating the reduced traces.

VI. APPLICATIONS

Reduced traces are useful in many aspects of memory man-
agement. If the reduced traces are generated directly, as by
Prieve [15], then the reduced trace may serve as a method of
studying paging algorithms over a long period of operation,
such as many seconds or even minutes. When the reduced
trace must be generated by interpretive simulation, the range
of application is somewhat more limited due to the cost of the
initial generation. One such direct application is to algorithms
that are worse than linear in the length of the string. Yu and
Baskett [3] have used an algorithm proposed by Horowitz
et al. [2] to study algorithms which minimize page writes as
well as page reads. They found themselves limited to traces

traces could extend that greatly.

Another and very important use for reduced traces is to do
trace driven simulation' of the interaction between memory
management and scheduling. Chamberlin et al. [19] studied
such interactions using a mathematical model for the fault
rate as a function of the memory size; the use of reduced
traces could permit substantially more realistic and believable
results. '

Ferrari (private communication) has indicated that reduced
traces of the snapshot variety have been quite adequate for
his program restructuring studies.

The use of reduced

SMITH: EFFICIENT ANALYSIS OF MEMORY ADDRESS TRACE DATA

VII. CONCLUSIONS

The high cost of analyzing long memory address traces has
limited most researchers to short traces and analysis algorithms
that are linear in the length of the tracé. We have proposed
two methods to condense the trace information by as much as
one to two orders of magnitude and we have shown by using
such trace data that the errors from this condensation are
minor and not such as to interfere with the utility of reduced
traces for many applications. These two algorithms promise to
make trace driven studies of memory management and schedul-
ing problems easier, less expensive, and more accessible to
many more researchers.

REFERENCES

[1] L. A. Belady, “A study of replacement algorithms for a virtual
storage computer,” IBM Syst. J.,vol. 5, pp. 78-101, 1966.

[2] L. P. Horowitz, R. M. Karp, R. E. Miller, and S. Winograd, “In-
dex register allocation,” J. Ass. Comput. Mach., vol. 13, pp. 43-
61, Jan. 1966.

[3] F. Yu and F. Baskett, “The effect of page wnte costs on page
replacement algorithms,” to be published.

[4] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evalua-
tion techniques for storage hierarchies,” IBM Syst. J., vol. 9, pp.
78-117,1970.

[5]1 L. A. Belady and F. P. Palermo, “On-line measurement of paging
behavior by the multivalued MIN algorithm,” JBM J. Res. De-
velop., pp. 2-19,1974.

[6] C. H. Lewis and R. A. Nelson, “Some one pass algorithms for the
generation of OPT distance strings,” IBM Rep. RC 4758, Mar.
1974.

[7]1 P. A. W. Lewis and G. S. Shedler, “Empirically derived micro-
models for sequences of page exoeptlons,” IBM J. Res. Develop. ,
pp. 86-100, Mar. 1973.

[8] P. J. Denning, “On modeling program behavior,” in 1972 Proc.
Spring Joint Comput. Conf., 1972, pp. 937-944.

[9] A. W. Madison and A. P. Batson, “Characteristics of program

localities,” Commun. Ass. Comput. Mach., vol. 19, no. 5, pp.

285-294, 1976.

P. J. Denning, “The working set model for program behavior,”

Commun. Ass. Comput. Machinery, vol. 11, pp. 323-333, May

1968.

(10]

- [13]

101

[11] W. W.Chuand H. Opderbeck “The page fault frequency replace-
ment algonthm in 1972 Proc. Fall Joint Comput. Conf., 1972,
© pp. 597-609.°

F. J. Corbato, “A Paging Experiment with the multics system,”
in In Honor of P. M. Morse, Ingard, Ed. Cambridge, MA: Mass.
Inst. Technol., 1969, pp. 217-228.

Y. Bard, “Characterization of program paging in a time sharing
environment,” IBM J. Res. Develop., pp. 387-393, Sept. 1973.

E. G. Coffman and B. Randell, “Performance predictions for
extended paged memories,” Acta Informatica, vol. 1, pp. 1-13,
1971.

B. G. Prieve, “A page partition replacement algorithm,” Ph.D.
dissertation, Univ. California, Berkeley, CA, 1974.

A. J. Smith, “A modified working set paging algorithm,” IEEE
Trans. Comput., vol. C-25, pp. 907-914, Sept. 1976.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of Computa-
tion, vol. 19, pp. 297-301.

W. Feller, An Introduction to Probability Theory and Its Applica-
tions,vol. 1, 3rd ed. New York: Wiley, 1968.

D. D. Chamberlin, S. H. Fuller, and L. Y. Liu, “An analysis of
page allocation strategles for multiprogramming systems with
virtual memory,” IBM J. Res. Develop vol. 17, no. 5, pp. 404~
412, Sept. 1973.

12]

[14]

(15]
(16]
(17]

(18]

(19]

Alan Jay Smith (S°73-M’74) was born in New
Rochelle, NY. He received the S.B. degree in
electrical engineering from the Massachusetts
Institute of Technology, Cambridge, and the
"M.S. and Ph.D. degrees in computer science
from Stanford University, Stanford, CA, the
latter in 1974.

He is currently an Assistant Professor in the
Computer Science Division of the Department
of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, a

position he has held since 1974. His research interests include the
analysis and modeling of computer systems and devices, operating
systems, and data compression.

Dr. Smith is a member of the Association for Computing Machinery,
the Society for Industrial and Applied Mathematics, Eta Kappa Nu, Tau
Beta Pi, and Sigma Xi.

