J. P. Hayes
Editor

Computer Architecture
and Systems

Long Term File
Migration:
Development and
Evaluation of
Algorithms

Alan Jay Smith
University of California, Berkeley

The steady increase in the power and complexity of
modern computer systems has encouraged the
implementation of automatic file migration systems
which move files dynamically between mass storage
devices and disk in response to user reference patterns.
Using information describing 13 months of user disk
data set file references, we develop and evaluate
(replacement) algorithms for the selection of files to be
moved from disk to mass storage. Our approach is
general and demonstrates a general methodology for
this type of problem. We find that algorithms based on
both the file size and the time since the file was last
used work well. The best realizable algorithms tested
condition on the empirical distribution of the times
between file references. Acceptable results are also
obtained by selecting for replacement that file whose
size times time to most recent reference is maximal.
Comparisons are made with a number of standard
algorithms developed for paging, such as Working Set,
VMIN, and GOPT. Sufficient information (parameter
values, fitted equations) is provided so that our
algorithms may be easily implemented on other
systems.,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or 10 republish, requires fee and/or specific permission.

Partial support for this research has been provided by the National
Science Foundation under grants MCS75-06768 and MCS77-28429,
and by the Department of Energy under Contracts W-7405-ENG-48

(1o the Lawrence Berkeley Laboratory) and DE-AC03-76SF00515 (10

the Stanford Linear Accelerator Center).

Author’s present address: A. J. Smith, Computer Science Division,
EECS Department, University of California, Berkeley, CA 94720. The
author is also on the staff of the Lawrence Berkeley Laboratory and is
a visitor at the Stanford Linear Accelerator Center.
© 1981 ACM 0001-0782/81/0800-0521$00.75.

521

Key Words and Phrases: file migration, paging.
replacement algorithm, memory hierarchies, mass

storage.
CR Categories: 4.33, 4.35, 4.41

1. Introduction

Most large computer installations have memory hier-
archies similar to that shown in Figure 1. The limited
storage capacity of the disk system generally results in
some form of file migration, whereby active files are kept
on or moved to the disk and inactive files are moved to
or kept on tape Or mass StOTage. This migration may be
managed by the user or done automatically by the
system. The increasing need for such migration has led
many large computer installations and manufacturers to
supply migration as a feature of the file system, although
such features vary widely in their transparency to the
user and the extent to which they are automatic. Cur-
rently, SLAC [2], the Lawrence Berkeley Laboratory
{13}, and a number of other Department of Energy
Laboratories [9, 17] have projects in progress to install
such file migration systems. IBM now provides automatic
file migration [5, 11, 14, 20]. Various independent soft-
ware vendors also have available file migration packages.
Users have also set up their own migration systems (€.g-»
(12).

The spreading popularity of file migration has not
been accompanied by the research results needed to
select good or even satisfactory algorithms for the fetch,
placement, and replacement of files. The problems are
as follows: when to migrate a file from mass storage to
disk (fetch algorithm), where on disk to place it (place-
ment algorithm), and when to remove that file to mass
storage when the disk space is again needed (replacement
algorithm). In this paper, we develop and evaluate, based
on real file system access data, a number of file replace-
ment algorithms. Our approach to this problem is ini-
tially broad and we show a general methodology for the
problem. The data do not permit us to consider the fetch
problem in a useful way, and we choose at this time not
to consider the placement algorithm problem.

There has been considerable study of the replacement
algorithm problem in the context of main memory pag-
ing. We refer the reader to [23] for an extensive bibliog-
raphy on the subject. With regard to files, however, the
only useful study of file migration, because it uses real
data, is one by Stritter [27); we use the same data, but
our analysis goes considerably further. To our knowl-

¢
A — MASS
MAI
CPU c MEMO’;Y W STORAGE
H AND TAPE
3

Fig. 1. Memory Hierarchy of 2 Large Computer Installation.

Communications August 1981
of Volume 24
the ACM Number 8

M‘x.ﬁr~ e < Sty e Bl e 2

edge. the only other set of data in existence suitable for
similar research is that described by Revelle [21], but be
has not considered file migration algorithms. Zehab and
Boies [28] describe the algorithm that they implement,
but their system is specialized and no comparative eval-
uations or data are given.

A number of other researchers have considered the
file migration problem, either in general, descriptive
terms or by using unvalidated mathematical models. In
the first category, we note [1]. Mathematical models and
mathematical optimization results are presented in [15]
and [18]. Some additional references appear in [26].

As noted earlier, this paper is concerned with the
development and comparative evaluation of algorithms
for the migration of files from disk back to mass storage.
Our emphasis throughout is on the use of measured file
system data to both construct algorithms and then to
evaluate them. In a companion paper to this [24], we
discuss the origin and features of these data in detail and
analyze them extensively. A brief summary of this infor-
mation is provided in the next two sections (II and HI),
but the reader is urged to refer to [24]. We then consider
principles and criteria for replacement algorithms; that
discussion is followed by a section in which file replace-
ment algorithms are explained and/or developed. Ex-
perimental comparisons and parameter values appear in
Sec. V1. We find that algorithms based on both the file
size and the time since the file was last used work well.
The best realizable algorithms tested conditions on the
empirical distribution of the times between file refer-
ences. Acceptable results are also obtained by selecting
for replacement that file whose size times time to most
recent reference is maximal. Comparisons are made with
a number of standard algorithms developed for paging,
such as Working Set, VMIN, GOPT, etc. Sufficient
information (parameter values, fitted equations) is pro-
vided so that our algorithms may be easily implemented
on other systems. Some consideration of various imple-
mentation issues appears in the last section.

11. Data Description

Our data consist of a record of each Wylbur [10] text
editor data set that existed over a 384 day period (1974
1975) at the Stanford Linear Accelerator Center. (In fact,
almost all user disk files are included. Our analysis, of
course, reflects just this class of files.) These data were
collected by E.P. Stritter, and a preliminary analysis of
the data appears in his dissertation [27]. For each file
and each day, one bit is available indicating whether or
not that file was used that day. Also available is the file
name, the account identifier of the file’s owner, the date
on which the file was created, the date (if any) on which
the file was scratched, and the file size in disk tracks. No
information is available as to whether the file was read
or written, nor how many times per day it was used.

We were able to classify files by both size and “class.”

522

Files were placed into seven size groups, based on the
base 2 logarithm of their size in tracks. The file size
groups (numbered 0 . . . 6; called “logsize” or “Lsize” or
“L”) were: 1 track, 2-3 tracks, 4-7 tracks, 8-15 tracks,
16-31 tracks, 32-63 tracks, and =64 tracks. We specified
three file classes: files with the name “Active” were
created by the system to save Wylbur text editor data
sets in use at the time of a system crash or an automatic
logout. Files whose names began with “Lib” were clas-
sified as partitioned data sets and were placed in a class
called “libraries.” All other files were placed in a class

called “other files.” Some of our replacement algorithms

use both the size and class groupings.

The 384 day period during which the system was
observed consisted of working days, holidays, weekends,
and 15 days during which either no data were collected
or the system was down. Since file migration would most
likely occur on working days only, we have restricted our
work in this paper to using the data for working days
only. Specifically, we have mapped all file events (create,
scratch, reference) onto the next working day after the
given holiday, weekend, or unmeasured day. Thus, for
the purposes of migration, files created or accessed on a
Saturday would be considered to have been acted upon
on the following Monday. The intent is to represent a
system in which the file replacement program would run
every working day at midnight, using “time since last
reference” based only on working days.

II1. File Reference Patterns

As noted earlier, file reference patterns were exten-
sively analyzed in an earlier paper [24]. Here we sum-
marize the essential findings and present some results
not shown earlier.

It was observed that most files were used on a small
number of days: half of all files were accessed on two or
fewer days during the measurement period. The mean
number of days files were referenced, however, was 10.6;
thus, the distribution of day-references/file is highly
skewed. Of those files whose reference patterns permitted
useful statistical analysis, about one-third were found to
show a declining rate of reference (i.e., declining trend)
with age. Considering only those files with no trend,
about 5 percent showed statistically significant serial
correlation of the interreference intervals (positive in
almost all cases) and about 40 percent were found to
have interreference time distributions that were more
skewed than the geometric distribution. Significant dif-
ferences in various parameters (interreference time dis-
tributions, number of references, etc.) were found be-
tween files of different sizes and classes.

An attempt was made to fit the interreference distri-
butions with the weighted sum of two geometric distri-
butions. Let g(i, L, C) be the empirical interreference
time distribution for files of the given size group (L) and
class (C), and let gf(i, L, C) be the fitted distribution

Communications August 1981
of Volume 24

the ACM Number 8

b3

(.. gi. L, C) is the probability that the time between Table I. Working Days.
cm"xsecutive references to a file of §ize group L and class Size Fitted Parameter Values
Cis equal toi). Then g fu. L. C) is of the form (tracks) Class a b ¢ Niref
i L, C)=ab(l - pY '+ (1 —a)e(l — i-1 1 1 Libraries 0924 0612 0035 189
. gf ¢) () (el) M 2-3 0952 0523 0.029 887
The method of moments was used to select the values of 4-7 0924 0644 0.047 4302
abandc(0=a= 1,0<h<l,0<e< 1) for each 8-15 0974 0612 0039 14947 |
ize/cl mbination d th It h . 16-31 0981 0719 0.051 21099 |
size/class combination, and the resulls are shown in 32-63 0965 0851 0.126 7820
Table 1. Although the chi-square goodness of fit test =64 0989 0802 0.048 1792
showed that in most cases the fit was unsatisfactory, we All 0977 0677 0043 51036
do make use of the fitted distributions later in this paper
and find them useful. 1 Other files 0.835 0458 0.032 23745
Fi 2 and 3 sh th ical and fitted int 2-3 0.880 0418 0.029 25500
igures 2 and 3 show e empirical and fitted inter- 47 0016 0466 0031 24893
reference time distributions for references to files. These 8-15 0941 0491 0032 22824
figures give the results for working days (as does Table 16-31 0954 0543 0034 15223
I) as compared to data in [24] which show similar 32‘633 gzgg 85;3; g-gi; ‘g;g
information for all (including nonworking) days. Al 0914 0490 0031 132575
L L . . 1 Active 0818 0280 0.026 3664
IV. Principles, Criteria, and Computations for File 2-3 0793 0362 0032 1017
Replacement Algorithms 47 0928 0265 0.020 516
8-15 0958 0379 0017 216
In order to compare the relative performance of file ;‘;2; 0'?75 0'?;_73 0‘9‘?5 ‘:z
replacement algorithms, it is necessary to have some —64 3
criterion for evaluation. Our criterion is as follows: De- Al 0843 0288 0.026 5611
fine A to be the replacement algorithm and P to be the
parameter associated with that algorithm (e.g., the work- 1 All files 0.836 0417 0030 27598
ing set window size). Let M(4, P) (the “miss ratio”) be 2-3 0879 0418 0030 27404
he fraction of all file “references” that re uire a fetch &7 om0 0031 B
the X qut 8-15 0956 0527 0033 37987
from mass store. (The term reference is used here to refer 16-31 0972 0627 0037 36461
to the first time a file is used on a given dayj; it is assumed 32-63 0987 0655 0028 18452
that files stay resident for the entire remainder of the day =64 0983 0756 0045 11609
and thus subsequent reads, writes, Or opens are ignored Al 0930 0518 0031 1892
in our computations.) S(A, P), (“space”) is the mean
number of disk tracks occupied by on-line files. The pair X0 = Xland YO < Y1, or (b) X0 < X1 and YO = Yl
[S(4, P), M(4, P)] constitutes an operating point and It should be clear that it is possible for two operating
may be plotted on an x-y plot as shown in Figures 6-13. points to not be ordered as better or worse (e.g., X0 <
An operating point (X0, Y0) is considered to be X1, YO > Y1). An algorithm 4 is considered to be
better than an operating point (X1, Y1) if and only if (a) uniformly better than an algorithm B if for all operating
INTERREFERENCE TIME DISTRIBUTIEN INTERREFERENCE TIME DISTRIBUTIBN
1.1‘_—T*11|v¥;x\.|l| ‘|v|| [llllllunl||||]|'!lllx|;_ i
> C L@GSIZE-E, 5, 4, 3. 2, 1 o n0 b UBRARIES~ e - j,
— r ‘ ! - t- Ry -t —~ !
- 1.0 +— o S S i
— r = V-2 S PP b i
m C) - .
o L N o I ALL FILES '
M 09 — . —
S ;] SHE BTHER FILES]
o - 4 o i FIT]
W 0.8 - w Ll)
= f] = []
=~ I : T o6 ~
-~ 0.7 -— 5 I !.:\ b
2 L] F P 1 VACTIVE FILES 1
5 - . 5 - .
O sl WORKING DAYS] o N WORKING DAYS 4
T 4 0.4 — : . —
L,il 1] y B E il l R S | ‘ [I 1 FI =
0 20 40 60 0 1 20 . 30 40 50
TIME IN DAYS TIME IN DAYS
Fig. 2. Empirical and Fitted Interreference Time Distribution for Ref- Fig. 3. Empirical and Fitted Interreference Time Distribution for Ref-
erences to Files. erences to Files.
523 Communications August 1981
of Volume 24

the ACM Number 8

S U

points (XA4. YA) for A and (XB. YB) for B, XA = XB
— YA < YB. [The better algorithm has an (S, M) curve
which is to the left and below the worse algorithm]
Algorithms which are not uniformly better or worse may
only be compared at specific operating points or ranges
of operating points.

There are two important observations to be made
about our criteria for comparison. First, we have treated
all file misses as equally important. In particular, a
missing large file is considered to be no more costly than
a missing small file. Since the largest file observed (252
tracks) can be transmitted in less than 1.5 sec. and since
the mean latency time for most forms of mass storage is
upwards of 10 sec. (more likely several minutes), ignoring
file size in the miss penalty seems to be appropriate.
Second. we have not selected a specific operating point.
In contrast. a very popular criterion for comparing pag-
ing algorithms is to compare minimal space-time prod-
ucts (see, for example, [3]). We do not believe that this
criterion is appropriate even for paging algorithms, since
the (uniprogramming) minimal space-time product may
not indicate the correct operating point in a multipro-
gramming environment. This criterion is not at all ap-
plicable in the context of file migration because missing
file faults do not convert in some standard way to the
same units used to measure the space-time integral. An
operating point may be determined by selecting a con-
version factor [see Egs. (4), (5), and (6) and discussion
below]. We prefer to leave it to the reader or system
implementor to pick the most suitable operating point;
in some cases, a miss ratio of 10 percent may be tolerable;
in other cases, 1 percent or less may be appropriate.

It is straightforward to compute the values for S(4,
P) and M(A, P) for a given algorithm A and parameter
P. We make the following definitions to aid in our
computations:

Nref(i): number of times (days) that file i is refer-
enced;

Nref: total number of references to all files
(=213,692);

Niref(i): number of interreference intervals to file i =
Nref(i) — 1 if Nref(i) Z 1; 0 otherwise;

Niref: total number of interreference intervals to all
files = (189,222);

Sz(i): size of file i in tracks (sometimes abbreviated
to Sz);

Dayno: the number of days in the measurement pe-
riod (256 working days)

1@, j): the length of the jth interreference interval

for the ith file. (J(i, j) = 1).

For each interreference interval (i, j), the file will be
retained in memory after the reference beginning the
interval for some number of days Kp(4, P, i, j), including
the day of reference, where A4 and P are again the
algorithm and the parameter value. We will generally
abbreviate this as Kp(i, j). We define this in such a way
that Kp(i, j) Z 1; that is, the initial day of reference is

524

o, R 2 - ¢ i

included in the residence time. Please note that if
Kp(i, j) = I(i,), then there is a fault at the time of the
next reference; otherwise there is no fault. Let F(4, P, i,
j) [abbreviated F(i, j)] be either O if there is no fault or
1 if there is a fault on the jth reference to the ith file.
Then we compute S(4, P) and M(4, P) as follows:

S(4, Py =¥, (min[Kp(i, j), 1,)}S=()/Dayno, (2)

M(A, P) =3 F(i, j)/Niref. 3)

We note that our method of computation implies a
small inaccuracy. We have ignored the boundary con-
dition of a finite measurement period—files in existence
at the end of our measurement period have an unknown
interreference interval, as do files in existence at the
beginning. We have chosen to omit the contribution to
M (A, P) in both cases, and we have not counted the first
reference to a file as causing a fault. Thus we assume
that the file is resident on the disk at the time of the first
reference to it. We are interested only in comparative
results (among algorithms), and there is no reason to
think that the relative performance of the algorithms
would have shifted through such a simplification.

It should be clear that there is a trade-off of space for
file faults (instances of a missing file). That is, if Kp(, j)
is reduced, the value of M(4, P) will either increase or
remain the same, and the value of S(4, P) will decrease.
More generally, for all stack algorithms [16] it can be
shown that the (S, M) curve is monotonically nonin-
creasing for increasing S. All of the algorithms that we
consider are stack algorithms. We also note that our
criterion for algorithm evaluation tends [as is evident
from Egs. (2) and (3)] to make large files much better
candidates for replacement than small files.

From Egs. (2) and (3), it can be seen that an optimal
look-ahead algorithm would select any file which has
just been referenced and remove it if and only if for its
upcoming interreference interval, [Sz()IG, j) — D] >
P; otherwise the file would be retained until the next
reference. By varying P, an (S, M) curve is traced out.
This algorithm is known as GOPT (see [8] for details).
VMIN [19] is the algorithm which removes all files (or
pages) whose time to next reference is greater than P.
VMIN is optimal only in the case of fixed size files or
pages. VMIN and GOPT will be used for purposes of
comparative evaluation later in this paper.

V. Replacement Algorithms: Methodology, Definitions,
and Derivations

In this section we describe and/or derive the remain-
ing file replacement “algorithms considered. Our ap-
proach employs a general methodology, as shown below,
and is applicable to many similar problems. The class of
algorithms considered will be of the “variable space”

Communications August 1981
of Volume 24
the ACM Number 8

variety. which means that the total volume of on-line
files may vary even though the parameter value P for
the replacement algorithm remains fixed. This is in
contrast to the fixed space algorithms such as LRU,
FIFO. MIN, etc.. which always maintain a fixed volume
of on-line files or pages.

At the end of the previous section (1V), we described
the optimal look-ahead replacement algorithms VMIN
and GOPT. We proceed in this section to consider
realizable algorithms, beginning with probabilistically
“optimal” ones and moving to algorithms which are
successively more ad hoc and less likely to perform well.

Our approach to algorithm design is largely empiri-
cal. Based on our analysis of the observed file reference
patterns (se€ [24]). we create a general model for the file
reference process; we assume 2 priori that a file is ac-
cessed independently of all others. This general model
suggests a file migration strategy. Parameters for the
migration algorithm can be obtained from analyzing the
file reference patterns in the context of the model. Sim-
pler algorithms can be derived by eliminating “nones-
sential” parts of the model or by creating simpler but
less accurate models. For example, the working set al-
gorithm {6} implicitly assumes that pages are referenced
independently as a renewal process with decreasing haz-
ard rate; this suggests that pages should be retained in
memory for some period T. The reasoning in this section
is similar.

A. A Stochastically Optimal Algorithm

It was noted earlier that the optimal but unrealizable
algorithms VMIN and GOPT used the known time to
next reference to determine when to remove a file. A
realizable algorithm must, of course, deal only with
known information, i.e., past history, and therefore it
can at best estimate which file will not be used. A
realizable algorithm which provides accurate estimates
of the time to next use can be expected to yield good

erformance. We use a general approach below to derive
effective realizable algorithms.

Let 0(4, H, 1, Sz, C, P) be the policy for whether to
remove a file; that is, Q(4, H, 1, Sz, C, P) specifies
whether the file should be kept or removed, given the
values of the parameters. (The word “policy” here is
chosen to correspond to its use in dynamic program-
ming.) A is the algorithm; throughout this section (V.A.)
we shall consider the stochastically optimal policy (de-
noted Stochopt, abbreviated Sopt) only. Unless it causes
confusion, we shall omit A as a parameter. H is the entire
previous history of reference to the file, 7 is the time
(date), Sz is the size of the file, C is the class of the file,
and P is the “cost” of fetching the file when it is next
referenced (should we decide to remove it). P in this case
is the parameter and will be varied to produce the (S,
M) curve; its value is only useful in specifying an oper-
ating point. We have already assumed that files are
accessed independently, so the optimal policy Q includes
all of, but only the information relevant to the file in

525

question. Further, for files with identical values of H. 1,
Sz, C, and P, the policy will be the same.

It is both possible to reduce the number of parameters
for Q (since some of them are not helpful), and desirable
(since there are more parameters than can be conven-
iently used). We first assume that file reference patterns
are independent of the absolute time, all other things
being equal. To some extent this is a simplification, since
summer usage patterns should differ from winter, etc,,
but it does not appear to be unreasonable. Thus we
replace 7 as a parameter with a for the age of the file (in
days since it was created). Our analysis [24] has shown
little if any serial correlation between interreference in-
tervals, so we choose to replace H, the entire previous
reference history of the file, with A, the time since the
last reference. We also choose to consider only demand
fetch policies, i.e., only that fetch algorithm which fetches
a file at the time it is referenced, and not before. In this
case, the optimal policy Q is more general than necessary,
since the file will either be kept for the entire interrefer-
ence interval or will be removed from higher level storage
and only fetched when again referenced.

Therefore, Q is replaced with the optimal (equiva-
lent) policy K(4, a, Sz, C, P), where K is the number of
days the file is to be kept resident from and including its
last day of reference [K(4,a, Sz,C, P) = 1], 4 (= Sopt),
a, Sz, C, and P are as before. K and Q are equivalem, »
but K is simpler to compute and easier to use. Referring
to earlier notation, Kp(i, j) will in each case be computed
using the policy K.

It is worth observing here that the policy approach
K(A4, a, Sz, C, P) is equivalent to a working set policy in
which the window size may be different for a file de-
pending (only) on its size, class, and age. As the inde-
pendent parameter P varies, the window size may change
in a different way for files which have different values of
Sz, C;and a.

K is computed by using previous patterns of reference
to this and similar files to estimate the probability distri-
bution for the time to next reference to this file. We
would thus like to measure R(a, Sz, C), which is the
empirical distribution of time (in days) between refer-
ences to a file, given that it is of size Sz, class C, and is
age a at the date of its last reference. Again, this param-
eter space is too large, primarily in that we have insuf-
ficient data to estimate distributions reliably. Therefore,
in almost all cases a is dropped as a parameter, and Sz
is replaced by Logsize (L), i.e., the size class into which
Sz falls. Some observations in [24] tended to indicate
that this aggregation of files into size classes grouped
files of similar reference patterns. In that paper, we also
noted that about one-third of all files showed declining
rates of reference with age. While we cannot at this time
directly substantiate the insignificance of this observa-
tion, we believe that its effect is extremely small com-
pared to file size, class, and time since last reference. One
simple age based algorithm was developed and was
found to perform poorly. It has been omitted for brevity.

Communications August 1981
of Volume 24
the ACM Number 8

The resulting distribution is referred to as g(i, L, C),
which is the empirical distribution of the times between
references to a file of size class L and type class C. G(,
L. C) is the cumulative distribution and g/(, L, C) and
Gf(, L, C) are the fitted distributions [see Eq. (1)}.

Finally, we make one additional simplification. Ex-
periments which appear in the next section (VL.B.) tend
to indicate that the class C of the file is not very useful
in selecting a file for replacement. For this reason, and
because the size of the computation is unpleasantly large
[see Eq. (4) below]. we have also dropped the class C
from our computations in developing Stochopt.

Computing K(Sopt, Sz, P) (Sz and P are the remain-
ing parameters) is straightforward given the distribution
g, L, *) (* indicates that the distribution has been
aggregated over all values for that parameter). Thus,

K(Sopt, Sz, P)
k-
= {k}mkin [z gli—1, L. *)i—2)Sz

i=1

+(1=Gk-1,L *)k-DSz+ P)]} “)

(where g(0, L, C) = 0, G(0, L, C) = 0). This equation
simply selects that value of which minimizes the cost
of an interreference interval, where the cost of a fault is
given by the parameter P. Thisis equivalent to specifying
the cost of the algorithm as a whole as

Y. min[Kp(, /). 1G,)] % Sz() + ¥ FG.)P)

Table II. Stochopt File Retention Period.

Miss ratio
File
size 1 percent 5 percent 10 percent
1 226 226 226
2 235 235 23
3 235 49 16
4 246 28 12
5 246 17 9
6 246 17 6
7 172 13 6
8 78 12 6
9 78 11 6
10 46 10 6
11 40 9 5
12 40 8 4
13 38 7 4
14 35 7 4
15 24 6 4
16 35 7 4
20 16 6 4
25 13 5 3
30 12 4 3
35 10 4 2
40 10 4 2
45 9 3 2
50 7 3 2
60 7 3 2
70 6 3 2
80 6 2 2
90 6 2 2
526

= S(A4, P) X Dayno + M(4, P) X Niref X P, 6)

where (P X Niref)/Dayno is just the constant of propor-
tionality that relates the relative impact of S(4, P) and
M (A, P) on the total cost of the replacement policy. We
have selected a policy K(Sopt, Sz, P) that minimizes Eq.
(6); i.e., it implicitly specifies an operating point. By
varying P, a curve in the (S, M) plane is traced out. (If
this criterion is applied to page replacement algorithms
and P is set equal to the product of the page fetch time
and the mean number of pages in use at fault times, then
this criterion is minimal space-time product.)

The reader will note that many of the algorithms
defined elsewhere in this paper employ the residual
lifetime function, i.e., the distribution of time to the next
reference, given that the file has not been referenced for
j days. Stochopt can also be expressed in such a manner.
This formulation is not as straightforward, as it is based
on dynamic programming; for that reason, and for brev-
ity, we do not include it here. (See [25] for the use of a
similar methodology.)

In Table II, we show the values for K(Sopt, Sz, P)
for a range of sizes Sz and for those values of P which
yield values of M(Sopt, P) of 1 percent, 5 percent, and
10 percent.

B. Expected Time to Next Reference

A simpler (to compute and to understand) approach
than that used above to selecting the file whose [(time to
pext reference) X (size)] is maximal is to directly use the
expected mean time to next reference. This method is
not optimal, since the mean expected time to next refer-
ence contains far less information than the entire inter-
reference time distribution. A counter example is pro-
vided in [4] for fixed size files (i.e., pages). The reason
for this nonoptimality can be shown by the following
example: Let the distribution of time to the next reference
be bivalued, with the probability 0.5 that the reference
is in 1 day and 0.5 that the reference is in 99 days; then
the expected time to the next reference is 50 days. The
optimal policy would most likely keep the file for one
more day (which means that there is a 50 percent chance
of using the file) and then if it is not used, discard it. A
policy based on only the expected time to next reference
would probably discard the file immediately, since the
expected time is so large.

The expected time to next reference (E(i, L, C),
where i is the number of days since the file was last
referenced; ¢ = 0 implies that the file was referenced that
day) can be computed from the interreference distribu-
tion g as follows:

EG L, C)
=Y g L OG-H/(1-GGLC). ()

J=i+1
The algorithm for file removal is then to remove any file
for which

(EG, L, C)— 1) X Sz>P. ®)
Communications August 1981
of Volume 24

the ACM Number 8

It is also possible to suppress either or both of L and C
and just compute E(, * C).E(G L *),0orEGQ* %) The
file removal decision can then be based on only one or
neither of L and C. We note that the size of the compu-
tation is no longer a problem, so it has not been necessary
to reduce the parameter space as was done in Stochopt.

We let “Etnr” denote the file removal algorithm
specified by Eq. (8). Then we can define a policy K (Etnr,
Sz, C, P) as follows:

K(Etnr1, Sz, C, P)
= {i{|min[((E(, L, C)—1)x Sz)> PJ}.)

The fitted distribution gf can be used in place of the
empirical distribution g. The algorithm in that case is
pamed “Etnrf” (“f” for “fitted”) and we compute it in
the same manner as in Eq. (7):

EfG. L, ©)
= Y gf(. L O)(j— /A =GfGL C). (10)

J=i+1

We define the policy K (Etnrf, Sz, C, P) as

K(Etntf, Sz, C, P)
= (i| min[((EfG, L, C) — 1) x Sz)>P1}. (1)

It occasionally happens that K(Etnr, Sz, C, Py=1
that is, the file is always removed at the end of the day
on which it is referenced. This seems counterintuitive to
many people, although, of course, our formulas take this
into account; thus we define an additional policy “Etnrb”
(b for “bound”) as equivalent to Etnr except that all files
are kept for at least two additional days after the day on
which they are referenced. Thus,

K(Etnrb, Sz, C, P)
= max(3, {i|min[(E(, L, C) — 1) x S2)>P1}). (12)

In Figure 4 we show plots of E @G, L, *) and
EfG, L, *). Figure 5 displays the values of E(i, *, C) and
Ef(i, *, C). The dotted lines in all cases show Ef. There
are two important observations to be made from these
figures. First, the expected time to next reference is
generally increasing with the time since the last reference;
thus the desirability of retaining a file will decline with
the time since the last reference. Second, the values of Ef
are a mediocre fit at best to E. Despite this relatively
poor fit, it will be observed when we show our experi-
mental results that the K(Etnrf, Sz, C, P) policy is
surprisingly effective.

C. Time and Space-Time Algorithms :

All of the realizable algorithms defined thus far
(Stochopt, Etnr, etc.) have relied on interreference time
distributions for the file reference process. It is also
possible to define some algorithms which do not use
measured data but which implicitly assume some model
of file reference behavior. These algorithms are consid-
ered for several reasons. Comparing methods developed

527

Fig. 4. Plots of E(i, L,*) and Ef(i, L,*).
EXPECTED TIME T@Q NEXT

REFERENCE

TT T Y

Fi I i i

RAAASRARASSARES RAARSRARS

lnll.ll

R

EXP. TIME T@ NEXT REF.

|‘||||In!|||

g l
:T]‘V
E

L.

20 40 60 80 1000 20 40 60 80 100
TIME SINCE LAST REFERENCE

from the data with either ad hoc algorithms or those used
elsewhere (e.g., paging) gives some indications of the
performance improvement possible. These methods may
also be of some interest in systems for which measure-
ments are not yet available. Finally, some of these algo-
rithms appear in the paging literature or are the analo-
gous ones for variable size objects and therefore deserve
1o be evaluated. In this section, we define algorithms
called Working Set (WS), Space-Time Working Set
(STWS), and STP**y.

Working Set [6] is that algorithm which removes a
file when it has been unreferenced for P or more days.
This algorithm was originally designed for main memory
paging, and in that circumstance it has been shown to
work very well. It has the defect in this case that it takes
no account of file size, and thus small files are as likely
to be removed as large files. We let “WS” refer to the
working set algorithm. Then the policy K(WS, P) may
be defined as

K(WS,P)=P+1. (13)

EXPECTED TIME T8 NEXT REFERENCE

50- ‘ T T T T l T T T T I T T Al T l T T T T ‘ T T T .I~
; [WERKING DAYS) e
b - X . - -
B gof ACTIVEFIESTR S TLUAGFIES o o
eI i s
g - o ;
bid -
=z 30—
= L
+— L
Y oof-
—
= C
0_' L
> 10:— .
uJ - -
L ']
0 1 l 1 1 1 i l 1 1 1 1 | 1 1 1 1 l 1 1 1 1 l 1 1 i X—__

0 20 40 60 80 100
TIME SINCE LAST REFERENCE

Fig. 5. Values of E(i, *, C)and Ef(i, *, C).

Communications August 1981
of Volume 24
the ACM Number 8

Space-Time Working Set (STWS) is the straightfor-
ward and obvious extension of working set to variable
size objects; it removes any file for which the product
(time since last reference) X (file size) is greater than the
parameter P. The implicit assumption here is that the file
that is likely to incur the largest cost of retention to the
next reference is that which has already accumulated the
largest retention cost since the last reference. The policy
in this case may be written

K(STWS, Sz, P)=|P/Sz}+ L (14)

It can be observed from Figures 4 and 5 that the
expected time to next reference climbs (initially) quite
steeply with time since last reference. In [24] it was
shown that larger files are used more frequently than
smaller files. These two facts would suggest that a mod-
ification of STWS which weighted time since last refer-
ence more heavily than file size should perform better
than STWS. We therefore define a class of algorithms
which we denote as STP**y (STP stands for space-time
product, y is a parameter, and ** is the exponentiation
operator in many programming languages). For the al-
gorithm STP**y, the following is computed: [Sz X (time
since last reference)**y]; that is, the time since the last
reference is raised to the (real valued) exponent y. If the
value of the expression given is greater than the param-
eter P, the file is removed. This policy can be expressed
as

K(STP**y, Sz, P) = [(P/Sz)**(1/y)] + 1. (15)

Qur selection of exponentiation as the way to increase
the weighting of time relative to file size is based simply
on convenience; many other functions could have been
defined instead. We note that this choice is deliberately
ad hoc; better results for this set of data could have been
obtained by directly fitting (over some class of analytic
functions) Stochopt.

D. Bernoulli Process Algorithms

In {26] it was stated that most files observed displayed
reference patterns that could be characterized as Poisson.
We assume that Stritter treated what was a discrete-time
time series as a continuous-time time series. In any case,
we found in [24] that of those files testable, the majority
could not be characterized as Bernoulli (and presumably
therefore not Poisson). Nevertheless, we decided to ex-
periment with some file replacement algorithms based
on the assumption that the actual file reference process
was Bernoulli for each file (with a possibly different rate
for each file). The Bernoulli process (geometric interar-
rival times) is such that the expected time until the next
reference is constant, regardless of the time since the last
reference. The replacement decision thus can be made
immediately after reference to a file; the file will either
be removed immediately (that night) or be kept until the
file is used again. The only problem is to estimate the
rate at which the file is being referenced, or equivalently,
the expected time to the next reference (which is the

528

e o e o e A S s S T AT W b Sk bl B,

reciprocal of the rate of reference). The time to next
reference was predicted with an exponential estimator
[7] using a variety of weights to compute the new value
from the old estimate and the most recent interreference
period. All algorithms of this class that were tested were
found to perform very poorly. This confirms our earlier
statistical tests. For brevity, we do not discuss Bernoulli
process algorithms further.

V1. Experimental Results

A. Methodology

As noted earlier, our data consist only of one bit for
each file for each day specifying whether that file was
used that day. Therefore, we have had to do our exper-
iments in a manner compatible with that restriction.
Thus we assume the following: all files referenced on a
given day are fetched at midnight + €(e¢ —0) of that
day and are retained on the disk until the end of the 24
— 2¢ hour period at midnight — e. At that time, file
migration takes place, and any file which is to be re-
moved is removed at that time. Thus, every time a file is
referenced, it remains on a disk for at least one full day.
Also, it is possible for a file to be referenced on two
consecutive days and still experience a file fault on the
second of those days.

Our algorithm for computing M(A4, P) and S(4, P)
is as given in Eqs. (2) and (3); we considered each
interreference interval in turn for each algorithm and
parameter value.

B. Miss Ratio Comparisons

Figures 6 through 11 give the performance of each of
the algorithms described in the last two sections. Each is
discussed below.

Figure 6 shows the behavior of the GOPT, VMIN,
STWS, Working Set, and Stochopt algorithms., We see
that GOPT, as expected, is the best of all of the algo-
rithms by a substantial margin; it experiences a miss
ratio about one-third as high as the best realizable algo-
rithm (Stochopt) throughout much of the range of op-
eration. Conversely, VMIN performs relatively poorly
because it does not consider file sizes, even though it is
a look-ahead algorithm. Working Set also does very
poorly for the same reason. STWS, which does take into
account the file size, acts fairly well above about 28,000
tracks but is not very good for smaller space allocations.

The Etnr class of algorithms [Eqgs. (7)—(12)] are shown
in Figure 7. We see that Etnr(Lsize, class) and
Etnr(Lsize) perform well and are very close to Stochopt.
Etnr(all files) and Etnr(class) perform relatively poorly.
Interestingly, Etnr(class) is not uniformly better then
Etnr(all files) and Etnr(Lsize, class) is not uniformly
better than Etnr(Lsize). Although it was noted earlier
that the Etnr algorithms were not in any sense optimal,
it was expected that the more accurate E(i, —, -), the
better the performance of the algorithm. We find that

Communications August 1981
of Volume 24
the ACM Number 8

!

'FigA 6. Behavior of the GOPT, VMIN, STWS, Working Set, and
Stochopt algorithms.

MISS RATID VS. SIZE

E ol | [-.3

3 R ’/sws 3

10! g = WORKING SET %

E S~ 3

£ VMIN—" ! = T~ 3

F] 3

r STPCHBPT- 7

§ 1072 & b=
— r =
< E hu
@ r]
n 1073 —
&éxo E
> F 3
04 =3

F WBRKING DAYS .

103 —
000 I A U S 3

15000 20000 25000 30000
MEAN NUMBER BF DISK TRACKS

this is not necessarily so. We also note that the critical
item in computing the Etnr policy is the parameter Lsize;
the class has little if any effect. This tends to validate our
decision to exclude the class in the computation of
Stochopt. (Although the functions E(i, *, C) (Figure 5)
vary widely with the class. the number of interreference
intervals for which F(j, j) switches between O and 1 is 50
small that the miss ratio curves are barely affected, i.e.,
only about 30 percent of the interreference intervals
belong to libraries or active files, and of those, a very
large fraction (about 65 percent) are interreference inter-
vals of 1 day to libraries.)

The fitted function Ef(i, L, C) is used for the results
presented in Figure 8. Comparing this figure with Figure
7, we see that the use of Etnrf is almost as satisfactory as
the use of Etnr despite the poor quality of the fit between
E(, L, C) and Ef(i, L, C). This comparison is shown
again directly in Figure 9, where the Etnr(Lsize, class)
and Etnrf(Lsize, class) policy results are both given.
Their closeness is again evident.

MISS RATIB VS. SIZE

T T 1 T T T T T T T T 1

|

1-000 y \:\ ' -
o WORKING DAYS]
0.500 N

s ET/NRF(CLASS)._._._
o C.100 S -3
< F N, 3
- _ ™o ETNRF(ALL FILESIY
82 D.050 F e STOCHOPT RN — R
= r —_ETNRFULSIZESCLASS) N,]

----- ETNRF(LSIZEY

0.010 —
0.005 C N B S RS L |]
30000

15000 20000 25000
MEAN NUMBER @F DISK TRACKS

Fig. 8. The Fitted Function Ef(i, L, C) Results.

529

Fig. 7. The Etnr Class of Algorithms.

MISS RATIO VS. SIZE

l C:V’: F1 T T ¥ T 1 T T T T ‘ T T T ___J
i 2
v z
0.500 » _ETNRIALL FILES wune -
g |
~ L N
(] | !
— .
Y 0.00 b ETNRULSIZE) - —
o = e !
| S STRCHRPT S . _ETNRICLASS! =
0 0,050 + NG 3
0 L ——ETNRILSIZERCLASS) 4
b b > 4
b I
i -
r
|

0.010 E— WERKING DAYS

r
1=
{

1 LLLl .

| ‘ i

15000 20000 25000 30000
MEAN NUMBER @F DISK TRACKS

0.00%

Figure 9 also shows the performance of Etnrb (Eq.
(12)). Keeping all files a couple of days as a minimum
appears to be a poor policy; the original method of
optimization is better.

A variety of space-time algorithms are compared in
Figure 10. As we observed earlier, an algorithm which
weighted the time since last reference more heavily than
the file size would be expected to perform better than
STWS. We tested STP**1.2, STP**1.4, and STP**.8
against STWS (which is STP**1.0), and the results ap-
pear in Figure 10. STP**1.4 appears to provide the best
performance of any of these algorithms. Additional pa-
rameter values were also tested (STP**1.5, STP**1.6,
STP**1.3). These three and STP**1.4 all perform about
equally well, but none of them seems to be a good
substitute for Stochopt.

Creating replacement algorithms on the basis of mea-
sured data and then testing them against the same data
may cause one to doubt the robustness of our results. A
test for the robustness of Stochopt and Etnr(L, C) was

MISS RATID VS. SIZE

1.000 ,’__] i T 1] T T l T T T T] T T T T ‘
0.500}]
s SToCHEPT e +—ETNRBULSIZEACLASS)
S
2 ooao0p -
o C 3
w i 1
% o.050}]
T | ——ETNRILSIZEACLASS) i
VORKING DAYS i
0ok ETNRF(LSIZE&CLASS) -
F E
0'005 1 | 1 4 1 i I i 1 1 1 [il 1 1 1 \J.—_.
15000 20000 25000 30000

MEAN NUMBER BF DISK TRACKS

Fig. 9. Performance of Etnrb.

Communications August 1981
of Volume 24

the ACM Number 8

Fig. 11. Results of a Test for the Robustness of Stochopt and Etnr
AL, C).

Fig. 10. Space-Time Algorithms.
MISS RATIZ VS, SIZE

1.00C — T T T T T T T T T ‘ T T T T -3
0.500]

=
2 caco b STeoHERT _
& v]
W) 0.050 k 7
’U_": U.Q300 - STPess]
= F 4
0.010 = WBRKING DAYS -
0.005 L j | DAY
30000

15000 20000 25000
MEAN NUMBER BF DISK TRACKS

run by creating the Stochopt and Etnr(L, C) policies
[Egs. (4), (9)] using half of the files on the system and
then measuring the miss ratio on the other half of the
files. This was done, and the results appear in Figure 11,
where measurements for Stochopt, Etnr(L, C), and
STP**1.4 are given. It can be seen that Stochopt and
Etnr continue to perform much better than STP**1.4.
(We also observe that Stochopt is no longer uniformly
better than Etnr).

C. Parameter Selection

Each of the algorithms presented in this paper con-
tains a parameter, the value of which specifies when to
keep or remove a file from the disk. In general, our
interest is not in the parameter value per se, but in the
parameter value that will yield an acceptable miss ratio.
But what is an acceptable miss ratio? The average user
who is logged on uses a mean of 3.41 files that day. If
fetching a file from mass storage to disk were to take one
minute, then a 1 percent miss ratio would imply 0.0341
man-minutes/user/day. A mean of 183.5 users log on
per day, so the loss would be 6.26 man-minutes/day. A
10 percent miss ratio would give a figure exactly 10 times
as large or a little more than a man-hour per day. The
one minute figure may be far too optimistic, however,
since it assumes no queueing delays. (The average access
time on most mass storage devices, such as the IBM
3850, the Ampex Terabit memory, the CDC 38500, etc.,

Table II1. Parameter Values.

MISS RATIB VS, SIZE

0
10 a ‘Y T T T LA T T T T 1 T T T T 1 T
F - \'I 1 ! I E
SN CONDITIBN BN HALF OF FILES, p
- NN MEASURE BN BTHER HALF .
| ".’\.“’..\'\.\ . B
SN
. T '\,/STP"1-4
s 100 = NS —
= o . /"\‘.\ . 3
< r RO RN 7
o r STECHEPT /-\.\'\ 1
» o BN T
a ETNR(LSIZE&CLASS) N i
S >y
10-2 — ‘\"'_"\ —
E e 3
C N 4
T WORKING DAYS o]
i @
i 1 1 l 1 i 1 X I 1 4 1 L I 1 3 1 1 I i 1 \‘:2\‘
8000 10000 12000 14000

MEAN NUMBER BF DISK TRACKS

is on the order of 1 minute or less.) For example, at the
Lawrence Livermore Laboratory, access times, including
queueing and device malfunction delays, can stretch to
hours to get a data set off of the photostore and tens of
minutes are typical. We note in particular a batch arrival
phenomenon, by which most users will log on early in
the day and attempt to read several of their files; thus
the mass storage device would be very congested early in
the day. Our intuitive feeling is that miss ratios on the
order of 1 percent to 10 percent would be the maximum
tolerable by most users.

For several of our algorithms, the approximate pa-
rameter values that yield 10 percent, 5 percent, and 1
percent miss ratios are given in Table III. Thus the
reader wishing to implement one of our algorithms can
just use the figures given. The policy K(Sopt, Sz) ap-
peared earlier in Table II.

A more complete mapping of parameter values into
miss ratios is given in Figure 12 for the Working Set,
STWS, and STP**1.4 algorithms.

D. Variable Space Buffering and Fixed Space Imple-
mentation

Figure 13 shows the volume of on-line files vs. time
using the working set agorithm with a parameter P = 30,
the STWS algorithm with a parameter P = 200, and the
total volume of on-line files in the original, unmigrated
system. As is evident, the volume of on-line files varies
considerably from day to day and month to month. We
note that the figures for Working Set and STWS do not
become stationary (i.e., reach warm start) until 30 and.
200 days, respectively, from the start of the measurement
period. Initially, all files are assumed to be off-line.

The difficulty with this day-to-day variation in the
volume of on-line files is that (a) the parameter value
used to reduce the number of on-line files may have to
change from day-to-day, and (b) enough space has to be
left on the disks after a migration run so that user file
fetches are unlikely to cause space to run out during the

Miss ratio

Algorithm 1 percent 5 percent 10 percent
Working Set 57 15 7
STWS 540 225 140
Etnr (Lsize & Class) 570 200 110
Etnr (Lsize) 520 200 120
Etnrf (Lsize & Class) 620 210 105
Etnrf (Lsize) 700 210 100
STP** 14 1800 460 260
530

Communications August 1981
of Volume 24
the ACM Number 8

Fig. 12. A More Complete Mapping of Parameter Values into Miss
Ratios for the Working Set. STWS, and STP** 1.4 algorithms.

MISS RATIC VO, DARAMETER VALUE
}:C T T -
Eoowerking DAYS N T N E
r \ T N T \ 1
s + \ 4
o \ T \ ! \ I
i — — * —_ A\ —
- z \ E | |
= : I » = \ 3
— . I \ + A -
< e + ‘.\ + \ -
& - \ + v+ 3 4
[C2 RN \ i | i \ i
Cct e \ = \ = \ -
bl : Vooz V2 \ 3
- Voo \ - \od
r \ + + 4
- VT T \ A
- + e
" WBRING SET | | SPACE-TIME T sTPmia \ |
103 — —L WBRKING SET d .
E AN TR . B
| WA i _;‘ s ST ik % S T NI T R
it ot 107 T T Y At

PARAMETER VALUE

following day. We also note that many of our file migra-
tion algorithms favor the larger files for replacement;
thus the files fetched are also likely to be large.

In actual fact, computer systems do not have a vari-
able amount of space available for file buffering, but
instead have a fixed number of disk tracks available.
Therefore, in practice, a migration run would leave only
a fixed volume of files, with some extra space available
for files fetched or created during the subsequent day.
Although the algorithms presented are all variable space
and were developed on that basis, each has a straight-
forward fixed space analogue. Specifically, each algo-
rithm described has a cost: The cost for the Etnr algo-
rithms is the product of file size and expected time to
next reference. The cost for Working Set is just the time
since last reference, and so on. The cost for Stochopt is
obtained explicitly from the dynamic programming for-
mulation, which has been omitted for brevity; see Sec.
V.A. A single pass through the list of on-line files can
associate the cost for retaining each file (according to the
algorithm in use.) The list of files can then be sorted,
and the most costly removed.

Variable space replacement algorithms generally im-
ply significant variations in the amount of space in use.
Figure 13 shows 10 percent t0 20 percent variations in
the number of tracks required; measurements of paging
algorithms (see {23]) show much greater variation still.
Despite the very large variation observed in paging (€.g.,
+ 100 percent, — 50 percent), the performance of the
fixed space versions of algorithms (LRU for Working
Set) is usually very close. The much smaller variation in
space requirements for files should result in little or no
performance differences between fixed and variable
space algorithms. Direct comparisons, however, have not
been made. -

Table IV shows the approximate mean volume of the
files fetched/day for several of the algorithms discussed
and for three different miss ratio values. The volume of
files fetched as a ratio to the mean volume of on-line
files is also given.

531

Fig. 13. Volume of On-Line Files vs. Time.

VOLUME BF BN-LINE FILES
50000 [11IX%III!‘,|(!TI—-]'—T—’T_!'—T_T—’—_T—;_F_E

%
|

40000 TeTAL WS, T-30
!

T

© i
S |
é 30000 W Mv\/v __){
l “
= - ’f)\f"‘ W !
r STWS, STP-200 j
20000+
[1
: 1
10000 >-l 1 1 1.4] i 1 1 1 ‘ 1 1 1 i % i 1 1 i ‘ 1 1.1 §
0 50 100 150 200 250
DAY

E. Adaptive Algorithms

Different computer systems will have different user
communities and different applications running. There-
fore, there will be differences in file reference patterns.
These patterns may change over time. This suggests that
in practice file migration algorithms should be imple-
mented adaptively. All of the good algorithms (Stochopt,
Etnr) use cost functions which are parameterized and
which are derived from parameterized interreference
time distributions. By maintaining a time weighted run-
ning average for the interreference times (using exponen-
tial weighting [7]), the cost functions and the retention
times for files can be recalculated periodically in order
to track system workload changes. Evaluation of such
adaptive algorithms is left for further research.

VIL Conclusions, Applicability of Results, Future
Work

We have presented a methodology for the creation
and evaluation of file replacement algorithms. Our ap-
proach has been as follows: (1) assume a model in which
files are accessed independently, (2) examine file refer-
ence patterns and aggregate these data into groups based
on file size and class, (3) use these data (in some way) to
predict when the file will next be used, and (4) then
select for replacement files whose expected cost of reten-
tion to next use is high. Not all of the algorithms consid-

Table IV. Tracks Transferred per Day/Fraction of Volume of On-
Line Files.

i o i o i e e e o £ S bt

Miss ratio
Algorithm 1 percent 5 percent 10 percent
STWS 540/0.020 3500/0.140 5900/0.252
Etnr (Lsize & Class) ~ 600/0.033 1600/0.073 3500/0.200
Etnrf (Lsize & Class) 540/0.019 1400/0.060 3400/0.155
STP** 14 300/0.015 2200/0.090 5000/0.220
Stochopt 370/0.013 1440/0.061 2100/0.101
Communications August 1981
of Volume 24
the ACM " Number 8

RSV

ered have been based on the data; ad hoc methods have
been used in the less sophisticated algorithms.

Most of the algorithms considered have been of the
class that use a reference as a renewal point; that is,
history prior to the most recent reference is not used. We
found that the Stochopt algorithm which uses the (entire)
measured file interreference time distribution, performed
well, and the Etnr algorithm, which uses some of this
information, did almost as well. Algorithms which used
less or no information about file reference patterns gen-
erally performed poorly. About the best of the other
algorithms was the STP**1.4 algorithm, which might
provide an acceptable performance.

The evaluation of the algorithms was done using file
reference data taken at SLAC for Wylbur text editor
data sets. (As noted earlier, though, this includes essen-
tially all user disk files.) There is no reason to expect that
text editor or time sharing data sets (e.g., TSO) would be
referenced very differently in another system; we there-
fore believe that our results are applicable to such sys-
tems. Our data, however, are not concerned with large
data files, system files, or scratch files, and no conclusions
can be drawn about migrating such files based on the
experiments described in this paper. Further, our results
are for “long term” file migration, that is, migration that
occurs over periods of days, weeks, or months. In many
systems, it would be necessary for migration to occur
over time periods of hours (as is done at Lawrence
Livermore Laboratory), and our experiments here pro-
vide only methodological guidance for such systems.

An important point which must be noted is that if
the user is significantly inconvenienced by file migration
(with respect to the availability of his data sets), he will
develop methods, such as synthetic file references, to
maintain his files on line. This could impair the effec-
tiveness of file migration.

We found that if file migration is properly imple-
mented, it can substantially reduce the volume of on-line
files without inflicting an unacceptably high miss ratio
on most users.

A number of things have been left for future research.
Adaptive algorithms have not been experimentally eval-
uated, nor have the fixed space analogues of the variable
space algorithms discussed in this paper. Algorithms
which use the file age intelligently should be studied.
Prefetch algorithms, based on more sophisticated policies
than the class of demand policies that we consider, may
be worthwhile. Placement algorithms can be considered
1o some extent. Some marginal improvements can be
obtained by investigating these additional items; we be-
lieve, however, that in this paper we have presented the
bulk of the useful information. We very much hope that
similar data will become available for other computer
systems in order to make comparisons possible and in
order to investigate the range of applicability of our
results.

532

Acknowledgment. Many thanks to E. Stritter, who
collected these data and made them available to the
author for this research.

Received 10/78; revised 2/80; accepted 3/81

References

1. Boyd, D.L. Implementing mass storage facilities in operating
systems. Computr 11, 2 (Feb. 1978), 40-45.

2. Chaffee, R.B., Challenger, M.A., and Russell, E.S. File migration
task force study. Stanford Linear Accelerator Center, June 1977.

3. Chu, W, and Opderbeck, H. Program behavior and the page
fault frequency replacement algorithm. IEEE Computr (Nov. 1976),
29-38.

4. Coffman, E.G., and Denning, P.J. Operating Systems Theory.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

5. Considine, J.P.,, and Myers, J.J., MARC: MYVS archival storage
and recovery program. 1BM Syst. J. 16, 4 (1977), 378-397.

6. Denning, P.J. The working set model for program behavior.
Comm. ACM 11,5 (May 1968) 323-333.

7. Denning, P.J., and Eisenstein, B. Statistical methods in
performance evaluation. Proc. ACM Workshop on Computer
Performance Evaluation, Harvard University, Cambridge, Mass.,
April, 1971, 284-307.

8. Denning, P.J, and Slutz, D.R. Generalized working sets for
segment reference strings. Comm. ACM 21, 9 (Sept. 1978), 750-759.
9. Proc. DOE/NCAR mass storage workshop, Dec. 1977, National
Center for Atmospheric Research, Boulder, Colo., published May,
1978.

10. Fajman, R., and Borgelt, J. Wylbur: An interactive text editing
and remote job entry system. Comm. ACM 16, 5 (May 1973), 314-
322.

11. IBM. MVS hierarchical storage manager release 1 is available.
DPD Program Product Announcement, 1BM Corp., Armonk, N.Y,,
April, 1978.

12. Klorer, C.J. MSS/DASD space/dataset management system.
Proc. Share 51 Conf., Boston, Mass., Aug. 1978, 1090-1096.

13. Knight, J. CASHEW—A proposed permanent data storage
system. Computer Center Rept., Lawrence Berkeley Laboratory, May
1976.

14. LeHeiget, J.P., and Reich, D.L. MSSCOM, A conversational
MSS command processor. IBM Res. Rept. RC 7167, Dec. 4, 1978.
15. Lum, V.Y, Senko, M.E., Wang, C.P,, and Ling, H. A cost
oriented algorithm for data set allocation in storage hierarchies,
Comm. ACM 18, 6 (June 1975), 318-322.

16. Mattson, R.L., Gecsei, J., Slutz, D.R., and Traiger, 1. Evaluation
techniques for storage hierarchies. JBM Syst. J. 9,2 (1970), 78-117.
17. Michael, G.A. MASS archival storage: Some trends, needs and
plans at DOE Laboratories. Lawrence Livermore Lab. Rept. UCRL
82354, May 21, 1979.

18. Morgan, H., and Dan Levin, K. Optimal program and data
locations in computer networks. Comm. ACM 20, 5 (May 1977), 315~
322

19. Prieve, B.G., and Fabry, R.S. VMIN—An optimal variable space
replacement algorithm. Comm. ACM 19, 5 (May 1976), 295-297.

20. Reich, D.L. Page fault model of staging for mass storage
volumes. IBM Res. Rept. RC 7430, Nov. 30, 1978.

21. Revelle, R. An empirical study of file reference patterns. IBM
Res. Rept. RJ 1557, April 1975.

22. Smith, A.J. Analysis of the optimal look-ahead, demand paging
algorithms. SIAM J. Computing 5, 4 (Dec. 1976), 743-757.

23. Smith, A.J. Bibliography on paging and related topics. Oper.
Syst. Rev. 12, 4 (Oct. 1978), 39-56.

24. Smith, A.J. Long term file reference patterns and their
application to file migration algorithms. IEEE TSE (in press).

25, Smith, A.J. Sequentiality and prefetching in data base systems.
1BM Res. Rept. RJ 1743, March 19, 1976, and ACM Trans. Data
Base Syst. 3,3 (Sept. 1978), 223-247.

26. Smith, A.J. Bibliography on file and 1/0 system optimization
and related topics. Oper. Syst. Rev., 1981.

27. Stritter, E.P. File migration. Stanford Computr Sci. Rept. STAN-
CS-77-594, Ph.D. Disseration, Jan. 1977.

28. Zehab, D., and Boies, S. J. The SFS migration system. IBM Res.
Rept. RC 6944, Jan. 1978.

Communications August 1981
of Volume 24
the ACM Number 8

