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Analysis of Long Term File Reference Patterns for
Application to File Migration Algorithms
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Abstract—In most large computer installations files are moved be-
tween on-line disk and mass storage (tape, integrated mass storage device)
either automatically by the system and/or at the direction of the user.
In this paper we present and analyze long term file reference data in
order to develop a basis for the construction of algorithms for file
migration. Specifically, we examine the use of the on-line user (pri-
marily text editor) data sets at the Stanford Linear Accelerator Center
(SLAC) computer installation through the analysis of 13 months of file
reference data. We find that most files are used very few times. Of
those that are used sufficiently frequently that their reference patterns
may be examined, we find that: 1) about a third show declining rates of
reference during their lifetime, 2) of the remainder, very few (about
5 percent) show correlated interreference intervals, and 3) interreference
intervals (in days) appear to be more skewed than would occur with the
Bernoulli process. Thus, about two-thirds of all sufficiently active files
appear to be referenced as a renewal process with a skewed interrefer-
ence distribution. A large number of other file reference statistics (file
lifetimes, interference distributions, moments, means, number of uses/
file, file sizes, file rates of reference, etc.) are computed and presented.
Throughout, statistical tests are described and explained. The resuits
of our analysis of file reference patterns are applied in a companion
paper to the development and comparative evaluation of file migration
algorithms.

Index Terms—File migration, mass storage, memory hierarchies, re-
placement algorithm, time series analysis.

I. INTRODUCTION

LMOST all computer installations (excluding hobby com-
puters) employ a memory hierarchy much like that in
Fig. 1. Each of the levels of storage from cache to mass storage
is successively larger, slower, and less expensive per bit. By
dynamically moving information between levels of the hier-
archy, the system can usually arrange to have each level capture
a vastly larger fraction of all memory references than the levels
below it. In effect, the user sees a system in which the total
storage capacity is the combined capacity of all levels of the
memory, while the average access time is very close to that of
the fastest. The success of such dynamic information move-
ment derives from the empirically observed “principle of
locality” [7], which essentially states that: 1) information in
recent use is likely to be reused, and 2) information logically
adjacent to recently used information is likely to be referenced
soon.
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An important factor in the effectiveness of this dynamic
movement among the levels of the hierarchy is the selection
of algorithms for when/where to move the information. Con-
siderable study has been devoted to the movement of informa-
tion to/from cache memories [3], [9], [17], [16], [14] and
main memories [6], [15], [18]. The problem of the transfer
of files between mass storage and disk has been largely ne-
glected, however, almost certainly due to the lack of suitable
data. The only previous useful study of this problem was by
Stritter [20] who studied the same data as is analyzed here.
In a paper based on the work presented here [19], we derive
and evaluate a number of file replacement algorithms. A more
complete review of the literature and discussion of the problem
is also provided in that article.

In this paper we study and analyze data on the use of user
text editor data sets at the Stanford Linear Accelerator Center
over a period of 13 months. We look at questions of how and
when files are used. Some statistical analysis is performed on
file reference patterns in order to determine what stochastic
process models might be appropriate to represent the individ-
ual or aggregated file reference patterns. The statistical meth-
odology is explained for the benefit of the reader. A large
variety of statistics are gathered and presented, but particular
attention is paid to those aspects of file reference behavior
that relate to construction of effective file migration algo-
rithms. Throughout, our emphasis is on “data derived” models
and algorithms. The intent is to give the reader a good overall
understanding of the file reference process, both as an aid in
the development of file migration algorithms and for a general
understanding of how users use the file system.

The next section of this paper describes in some detail the
nature of our data and its limitations. The actual tabulation,
charting, and analysis of this information is presented in Sec-
tion I}, which comprises the bulk of this paper. We provide
an overview of our findings and discuss some of the implica-
tions of our measurements in the conclusions section. In a
companion paper to this [19] the results of our analysis here
are applied to the development of file migration algorithms.
A general framework for such algorithms is given, and then the
space of possible alogrithms is reduced to those predicted to
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be effective. These algorithms, as well as one appearing in
the literature, are evaluated in that paper using trace driven
simulation.

II. DATA DESCRIPTION

It is very important to understand both the nature of the
data that we analyze and the type of system from which it
was collected. As will be evident below, our information does
not include some parameters of interest; thus we are unable
to make some studies. The utility of our results will be con-
strained by the similarity between the system we discuss and
the system to which the results are to be applied. In this
section a relatively detailed description is given of the nature
of the data and the system from which it was taken.

The data that we analyze in this paper were collected at the
Stanford Linear Accelerator Center by Dr. E. P. Stritter. His
analysis of these data appears in his doctoral dissertation [20] ;
our analysis here goes well beyond that already presented and
in some cases reaches different conclusions. The measurement
period was 384 days beginning August 2,1974. Our discussion
below, although phrased in the present tense, is descriptive of
the system at that time; there have been changes since.

SLAC has a large computer system consisting of two 370/
168-I’s running VS2 release 1.6 and an IBM 360/91 running
MVT release 21.8. These three machines are loosely coupled
using ASP and share most of the 1/O devices. The 360/91 has
been in service since 1968; the two 370’s were added in the
early Spring of 1974. The user interface has been essentially
stable for several years preceding our measurements. Most of
the computing activity is concerned with the study of high
energy physics and the dominant programming language is
Fortran. Most of the programmers are themselves either
physicists or scientists in some closely related discipline.

The vast majority of user interaction with the computer sys-
tem is accomplished through Wylbur [8], which is an interac-
tive text editor system with the capability to submit jobs into
the batch job queue and later fetch the output. Each user
with a Wylbur account is allocated a fixed number of 2314
Disk tracks (@7K bytes/track) which can be used to store
Wylbur data sets. Most users have allocations ranging from
10-200 tracks (70K-1.4M bytes). (For a standard of reference,
a 2500 line Fortran program occupies 12 tracks in standard
Wylbur compressed format.) Our data are limited to these
Wylbur data sets, and exclude two important classes of files:
system data sets (paging data sets, VTOC’s, catalogs, etc.) and
all files on tape. The size of most user space allocations con-
strains users to keep mostly computer programs in their
Wylbur data sets; input to these programs (which often con-
sists of huge volumes of data from accelerator experiments)
is usually kept on tape. Several scratch disks are used for
temporary and staged (by the user) tape data sets; these disks
are cleared every night and no record is available of their use.

Users are not charged for their disk space, but they are not
allowed to exceed their allocation. The user is therefore in-
clined to ignore inactive data sets until the space is needed
for some other purpose, at which time the file may or may
not be copied to tape before being scratched. This particular
accounting and allocation system probably affects user refer-
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ence patterns. There is no automatic file migration on the
SLAC system, and therefore the users have no incentive to
generate spurious file references in order to prevent automatic
file migration programs from moving their files to mass storage.
This is different from another system that has been measured
[13], and thus we believe that in that respect our data is
“uncontaminated.”

Information has been recorded for every Wylbur data set
which was seen to exist over the 384 day measurement period
indicated above. For each file, one bit is recorded for each
day indicating whether that file was used by any user on that
day. The date on which the file was created is available, as is
the date on which the file was scratched, if it ever was. The
name of the file, the user account ID and the file size (in
tracks) were also recorded.

We have grouped files into three “classes,” as follows. When
a user session is suddenly interrupted (automatic logout, sys-
tem crash), the system creates a file for the user containing his
currently active Wylbur data set and saves it under the name
“AcTIVE.” Files with this name were considered to be one
class.

Wylbur data sets can exist physically in one of two forms: a
standard OS sequential data set or a partitioned data set (PDS).
A PDS is usually used to hold a collection of small (less than
one track), often unrelated data sets, since one track is the
quantum size for file allocation. Our data do not directly
distinguish PDS’s from standard files but most users name their
first and largest PDS “LIB” (for “library”). Those files whose
first three characters were “LIB” were considered to be a class.
It is also possible (but unlikely) that some files which were not
PDS’s were considered to be such.

All files which were not placed in the class “active” or the
class “library” were placed in the class “other” or “other files.”
As will be noted below, the three file classes have significantly
different reference patterns.

Files were also grouped according to their size. The size
class is denoted “LSIZE” or “LOGSIZE” on the illustrations and
is calculated from the logarithm base 2 of the file size in tracks.
Thus, file size class O consists of files of size 1 track, class 1 of
files of sizes 2 and 3 tracks, etc., up to size class 6, which is all
files of at least 64 tracks. Users can be expected to treat files
of different sizes rather differently because large files occupy
such a large fraction of a user’s allocated space.

Because SLAC is a “scientific shop” located in the midst of
an academic community, there is considerable user activity at
night and on weekends and holidays. Nevertheless, activity is
still a great deal lighter at those times than during first shift
on weekdays. We have therefore studied file reference patterns
and file migration algorithms both for the entire period of
observation (“all days”) and then for only the working days
during that period (“working days™). In the case of “working
day” analysis, all file activity during weekends or holidays
was mapped onto the next following working day. Thus, use
of a file on both Saturday and/or Sunday would be treated
as a use of the file on the following Monday. The logic behind
this is the following: 1) file migration would most reasonably
occur only on working days, ie., a file migration program
would run late at night on work nights and move files off line
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as necessary, 2) by avoiding holidays and those days with
missing data, some aspects of the analysis are simplified and/or
improved, and 3) data taken only on working days should be
less affected by day of the week periodicities. This paper
presents data for both cases (but with the stress on “all days”
rather than “working days™). The companion paper [19] con-
siders working days only, since file migration would most
reasonably occur only on working days.

II1. DATA PRESENTATION AND ANALYSIS

In this Section we present the results of our study of the
data discussed above. First, various terms and symbols are
defined to aid in the unambiguous presentation of the material.
Second, a large variety of basic descriptive statistics are given.

In a number of cases statistical tests are applied to the data.

These tests are briefly described, and if any aspect of the meth-
odology requires comment, some explanation is given. Both
statistical tests and simple observation are applied to data
about the system activity over time, and individual file use
over time. File lifetime distributions are presented. Finally,
file reference patterns are analyzed carefully in order to deter-
mine how to construct file migration algorithms.

A. Definitions and Symbols

In order to be clear about the meaning of our data presenta-
tion and analysis, in this subsection we define some terms and
symbols. Let:

Nfiles be the number of files observed (24 898).

Nref be the number of file-day references, ie., the sum
over all files of the number of days that file was referenced
(238 871).

Nref(i) be the number of days on which file i is referenced.
(Reference to a file on a specific day will henceforth be called
a “reference” to that file, although the file may have been
referenced many times on that day.)

I(i,j),i=1--- Mfiles,j=1--- 384 is the indicator function
for file i, That is, if file i is referenced on day j of the measure-
ment period, I(i,j) = 1; otherwise I(,j) = 0.

F is the date of the first day of measurement.

F(i) is the first day (within and relative to the measurement
period) on which file i exists.

L is the date of the last day of measurement.

L(i) is the last day (within and relative to the measurement
period) on which file 7 exists.

S(i) is the size of file 7 in tracks.

B(i) is the date on which file i is created (birth).

D(i) is the date on which file i is scratched (death). If the.
file is never scratched, D(i) is undefined, except that it is
known to be greater than L.

C(i,j), i=1---Nfiles, j=1---Nref(i) - 1 is the sequence
of interreference intervals for file i That is, if file 7 is refer-
enced on a total of Nref(i) days, C(i, *) will be the sequence
of the number of days between uses. (Use on successive days
yields an interreference interval of 1.)

A(,j), i=1---Nfiles, j=1---D(i) - B@E) + 1 is equal to
1 if file 7 is referenced on day j - 1 after its creation (valid only
during the period of measurement) and is zero otherwise.

A(i,1)=1,A(,DG) - B@)+1)=1.
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TABLE 1
BASIC STATISTICS

Total Days: 384
Working Days: 256
Number of files: 24,898
Number of accounts: 710
Number of file/day/uses 238,871
Files on line initially: 3977
Files on line at end: 5320
Ave. number of files used/day: 622
Ave. number of files created/day 54.48
Ave. number of files scratched/day 50.98
Ave. number of tracks referenced/day. 11,727
Ave. number of tracks allocated/day 351.7
Ave. number of tracks scratched/day: 343.5
Ave. volume of online files: 44,489 tracks
Ave. number of references/file: 10.6
Median number of referenced/file: 2
Average number of users/day: 183.5
Median number of users/day: 214
Max. number of users/day: 29
Ave. number of files used by logged

on user per day: 2.41

TABLE 11

Total Total Total

Day ! Files | Files | Files
Used Created Scratched

Monday 40458 3643 3614

Tuesday 42532 3629 3254

Wednesday 43632 2842 3554

Thursday 40767 3694 2418

Friday 35714 3044 3009

Saturday 17061 1454 1304

Sunday 17004 1483 1222

Holidays 1703 131 103

Total 238871 20921 19578

B. Basic Numbers

Some of the basic numbers relating to our data are collected
in Table I; we also discuss them throughout this section. A
total of 24 898 different files existed over the period of ob-
servation and they belonged to 710 different accounts. The
average (mean) number of accounts showing activity per day
was 183.5, the median number was 214, and the maximum was
291. For an account showing activity on a given day, a mean
of 3.41 files owned by that account were referenced. A total
of 238 871 file-day-uses (references)(=Z; ; I(i,])) took place.

Table 11 shows the file activity distributed by day of the
week and holidays. We note that the level of activity was
about 2% times higher during the week than on weekends.
This fact will be relevant to some of our later discussion.

C. Activity Over Time

1) Tabulation: Let: Used(i) = ZxI(k,i) be the number of
files referenced on day 7, »

New (i) be the number of files created on day i,

Scr(i) be the number of files scratched on day #,and

NS(7) = New(i) - Scr(i) be the excess of new files over
scratched files.

The four functions defined immediately above are plotted in
Fig. 2. The mean values are given in Table I; day of the week
averages can be computed from Table II. Immediately visible
from Fig. 2 is the weekly periodicity; activity is generally high
for five days and then low for two. The empirical distributions
for Used(7), New(i) and Scr(i) appear in Fig. 3, where we see
that the distributions each have three modes. The rightmost
one reflects workday activity, the middle one weekend/holiday
activity, and the spike at O the days when the system was
down or no data were collected (15 days). Plotting this same
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data for working days only (not shown) leaves only the single
rightmost mode.

The number of tracks referenced is generally proportional
to the number of files accessed. In Table I we note that the
average number of tracks referenced per day is 11 727, the
average number of tracks in files allocated per day is 352, and
the number of tracks in files scratched is 343.

As noted, the uppermost curve in Fig. 2 is the net accumula-
tion of files. Over the period of measurement, there is an
increase of 1343 files occupying an additional 3160 tracks. It
appears from these numbers and the shape of the curve that an
additional disk spindle was added during the middle of the
measurement period. Disk space allocations for users seem to
have gone up gradually during this time. Comparing these
figures to the 41 349 tracks occupied at the start of the mea-
surement period (mean of 44 489 over the measurements),
we see an increase of 7.6 percent in the total occupied file
space. We note that in this system increases in the number
of files and occupied disk tracks should only occur when the
capacity of the system is increased. This is in contrast to the
system at IBM Research, San Jose, CA [13], where the file
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system is open-ended and automatic file migration occurs. In
that system a fairly steady accumulation of new files was
noted, the rate being considerably greater than that observed
here.

2) Chi Square Test: A factor affecting some uses of our
data for some purposes is whether or not the level of activity
on the system is stationary over time. We have already seen
that the number of files and allocated tracks increased signifi-
cantly over this period. We also choose to look at the time
series Used(7), New(7), and Scr(i). We do this as follows.

First, we define the chi-square test for goodness of fit; this
test will also be referred to later, so we make our definition
general, (See [1] for further information.) Let y(i) be the
empirical distribution of interest and let z(7) be the distribu-
tion against which it is being compared for fit. (Both y(i) and
2(7) are discrete, i=1---k.) Let n be the total number of
(independent) samples used to form the empirical distribution.
Then we compute

o & 200 -2OF
z(i)

i=1
x* should be distributed as the chi-square distribution with
k-1 degrees of freedom if y(i) is indeed drawn from the
distribution z(7).

We let x(i) represent the time series of interest. (One of
the three noted above either for all days, as shown in Fig. 2, or
just for working days. Thus, we have six time series.) We
divide the total measurement period T into ten sections of '
duration T/10,and count the number of events y(;) of interest
in each section, i.e.,

(1

jT/10
y(i)= >

i=(j-1)T/10+1

x@), j=1,---,10. @)

y(j) was computed for all three series of events, for both all
days and working days. (The all days test for stationarity is
relatively worthless because of the nonuniform occurrence of
holidays and days with missing data.) If the file activity were
actually stationary, all values of y(j), j=1"--- 10 should be
about the same.

3) Overall Activity Slightly Nonstationary: The y(j) dis-
tribution was tested for uniformity (y(j) = Y) using the chi-
square test for goodness of fit, and the hypothesis was rejected
in every case at the 99.9 percent significance level. This statis-
tical test simply confirms casual observation—from the numbers
it is clear that there is a generally higher level of activity during
the second half of the measurement period. The change in the
rate of activity is only moderate, however, and amounts to
10-20 percent. We therefore do not believe that this is likely
to have a major effect on most of the remainder of our analysis
and no effort has been made to correct the data for changes in
the level of overall activity.

4) Serial Correlation Statistiscal Tests: It is also interesting
to determine to what extent user or system wide activity is
correlated from day to day. That is, if the level of activity
is high on day i, is it likely to be high on day i + 1? The usual
procedure for determining this from a nonstationary time
series (such as we have) is to remove the trend from the data
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and then compute the seridl correlation coefficient, since
correlation coefficients are statistically meaningful only in
the case of a stationary time series. Detrending the data is a
laborious process which did not seem worthwhile, considering
that this particular question is peripheral to the major thrust of
this paper (but see [12] for an example of such a procedure).
We did compute the serial correlation coefficient for lags of
1,2, and 3 and also the partial correlation coefficient of orders
2 and 3 using the original nonstationary data. This was done
for general information only, since the results obtained are
useful qualitatively rather than quantitatively. It is important
to point out here that even though a standard statistical test
may only apply exactly under certain limited circumstances,
qualitative information or approximate results can frequently
be obtained over a much larger set of cases. We adopt this
approach, but warn the reader when the results need to be
interpreted with care.

The expressions used to calculate these values are as follows.
Let s(i) be the serial (or auto) correlation of order i for a time
series x(7), t = 1 - - - n, with mean X. Let sp(i) be the partial
autocorrelation coefficient of order i; that is, sp(i) is the corre-
lation between elements x(#) and x(t + i) of the time series,
having removed the effect of all correlations between x(f) and
x(t+j)and x(r +j) and x(r+1),for 1 <j <i Then

n

‘_.

L (- D) - )

L S

s(i) T n , ©)
L3 a)-#p

J

1

2) - s(1)?
() = 220 @

p(3) = s(1)® - 2s(1)s(2) + s(1)s(2)* +s(3)(1 - s(1)*)

PO)= {601 - 5(2)) - st (D) - s(Ds(2) + (1 - s(1))
)

These expressions are drawn from [2] and the reader is referred

to that text for further discussion. We also consider the prob-

lem of estimating s(7) further in Section 111-F2b.

5} Serial Correlation Results: The values obtained from
these expressions are presented in Table I11. Interpretation of
these results should be done with care, since nonstationary
data tend to yield spurious positive serial correlations. That
is, if there are trends in the data, then consecutive samples are
likely to both be in either a high or low trend and thus similar
to each other relative to the mean. T herefore, we shall largely
ignore positive serial correlations in this case; negative ones are
almost certainly meaningful. Looking at the working days
results in Table 111, it is difficult to interpret the high positive
correlations for the number of files used for the reason men-
tioned, although it does make sense to believe that if the sys-
tem is busy today, it will be busy tomorrow. Periods of high
system usage generally continue for several days for a given
user and this should be reflected in these positive serial corre-
lations. The negative correlations for New and Scr activity are
much more meaningful, since they would not be produced by
long term trends in the data. The author believes that this
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TABLE 111
SERIAL CORRELATION COEFFICIENTS

A11 Days Working Days
Used | New | Scr ii Used ! New , Ser
s{1)} .39z . .269 106 L3150 -.122 -1
s{z) -.092 -.114 -.108 .295 -.114  -.05€
s(3)  -.252 -.230  -.112 Lo24 -.122 -.120
sp(2) -.28% -.199  -.120 218 -.132  -.07C
sp{?) -.095 -.144 -.088 087 -.159 =137
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TABLE 1V
NUMBER OF REFERENCES PER FILE
Number ! Praction : Cumulative
[¢] .015 015
1 .069 .084
2 411 .495
3 .152 647
4 .084 T3
5 .047 7178
6 .035 .812
7 .023 .835
10 Jot1 878
20 .0025 .930
50 .00048 .962
100 .00012 .980

indicates a basically steady underlying rate of file creation or
destruction. If a large number of files are created today, this
implies that very few will be created tomorrow. Similarly for
scratching files. The correlations for the all days data are
largely due to day of the week effects (e.g., days 1 appart are
both likely to be either working or nonworking days; days 3
appart are not, etc.) and therefore are not very useful.

D. Individual Files

1) Files Found to be Used Infrequently: Fig. 4 and Table
IV show the empirical distribution of the number of times each
file was used during the measurement period. The average file
is used two or fewer times, but the average number of refer-
ences per file is 10.6 (see Table I). The distribution is thus
highly skewed; most files are used very little and a few are
accessed a large number of times. A note of explanation is
needed for these data, however. It is detected that a file has
been scratched by looking for it late at night (since it existed
24 hours earlier) and not finding it. This implies that the file
is always shown as not having been referenced on the day on
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which it is scratched. We have assumed (by setting I(i, L({)) =
1) that when a file is scratched, it must be referenced, that is,
the user probably copied it to tape or at least made a listing
of it. Thus, any file which was both created and scratched
during the measurement period must be referenced at least
twice. This does not necessarily always happen, but our feeling
is that setting J(i, L({)) = 1 is closer to being accurate than not
doing so.

The small number of references to most files was rather
‘surprising to the author, but there appears to be a reasonable
explanation (which will also be important later). A user’s
perception of his file activity tends to be heavily weighted
towards those files which are actively used, but in fact most
files seem to be created as temporaries, €.g., to hold a modified
version of a program. They are created, left unreferenced until
the user needs the file space, and then destroyed. The number
of files which contain information in regular use or which
follow the intuitively appealing pattern of intensive use during
development followed by occasional use later is relatively
small.

2) File Size Distribution: Measurements of file size distri-
butions are given in Fig. 5 and in Tables Vand VI. It is possible
to define the distribution of file sizes in three ways. Let SU(7)
be the unweighted empirical file size distribution, SWU(i) be
the file size distribution as weighted by use, and SWL(i) be the
file size distribution as weighted by lifetime. Then

Nfil
SUG)="5 (I ifS(j)=i;0 otherwise)/Nfiles  (6)

j=1

Nfiles
SWUGY= > (Nref())

j=1
if S(j) =i; 0 otherwise)/Nref (0]
Nfiles
SWL@)= > (LG)-F3G)+1)
j=1
ifS(H)=i;0 otherwise)/
Nfiles
> AH-FMH+H. ©®

j=1

The unweighted distribution is simply that obtained by con-
sidering the file sizes of all those files in existence during the
period of measurement. The weighted by use distribution is
that seen by an observer picking an arbitrary file reference and
observing the size of the file referenced. The weighted by life-
time distribution is that which would be observed by selecting
a random file (on the disks) at a random time. Table V lists
the unweighted file size distribution and Table VI gives the
mean and median for all three cases. It is evident that larger
files are used more heavily. This observation is intuitively
reasonable. Large files are “expensive” to keep since they use
a large amount of scarce disk space, and therefore if a file is
not used frequently enough, it is likely to be scratched.

We noted earlier that files were classified both as to size and
class. Table VII shows the average file size within each class.
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TABLE V
UNWEIGHTED FILE S1ZE DISTRIBUTION
Size | Fraction
1 <391
2 162
3 .078
4 .052
5 .053
6 .03C
7 021
TABLE VI
MEAN/MEDIAN FILE S1ZE
Weighted by | Mean | Median
Unweighted 7.08 1.7
Lifetime 8.99 2.3
Use 18.85 8.3
TABLE VII
File Size ., Average File Size Weighted By
Range H Lifetime | Use | Unweighted
1 1 1 1
2-3 2.34 2.35 2.33
4-7 5.12 5.21 5.12
8-15 10.74 11.22 13.52
16-31 22.09 22.30 21.86
32-63 44.57 45.22 44.76
>=64 117.7C 118.16 114.95
Total 9.02 13.85 7.08

Interestingly, the mean file size by the three measurement
methods are almost the same for each size class, but very dif-
ferent overall. This suggests (but does not in any sense prove)
that within the particular size groupings that we have selected,
files are referenced relatively uniformly with respect to size.
Additional data arranged by file size and class appear in Table
VIII, which we discuss below.

E. File Lifetime

1) Deﬁnition of File Lifetime: An interesting aspect of
file behavior is file lifetime, that is, how long the file exists
between creation and being scratched. Let LF(i) be the em-
pirical file lifetime distribution. Then

Nfil
LFG)="5 (1 ifD(j)- B(j)+1=1;0 otherwise)/Nfiles.
j=1

®
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TABLE VIl
ALL Days
Size Class Mumber PFraction Number Fraction Number Mean Coef. Fit Parameters Mean Mean Fraction
‘tracks’ of of of Inter- Inter- of a b ¢ Lifetime Rate of Died
Files Refs. reference reference Varia- Reference
Intervals Interval tion
1 Library 52 .00C48 256 00107 244 4.30 3.34 .94C .551 .023 31t A1 4T
2-3 29 L0016 1022 .00428 944 4.65 3.16 .%H6 3% 019 186 167 310
4-7 120 .00482 4926 020 4828 4.13 2.77 .9%0 .494 .C31 319 475 .24z
815 249 .01000 17253 07223 17005 2.99 2.73 .976 .472 .026 330 271 .265
16-31 232 L0032 24591 .102% 24360 2.26 2.36 .982 .562 .0%4 347 382 .27
3263 €7 .00269 9424 03945 9357 1.77 1.61 .9%4 .707 .089 86 534 .33
>=64 14 L00056 2129 .00891 2115 1.86 2.37 .99 .636 .03 422 47T 286
1 Dther 62 .27922 33249 JAZNg 26421 g.58 2.56 .851 .348 .021 &1 .068 787
2-3 5180 .20805 33185 .13892 28092 8.51 2.67 .888 .317 .020 63 0718 .T55
4T 2394 L3622 3076 .1301C 27733 6.36 2.88 .925 .351 .020 &4 130 .T76
8135 2421 .09724 278 11677 25508 5.04 2.91 .6 373 .022 67 L1430 .78
16-%1 1087 L04366 18546 .C7764 17471 4.%5 2.00 .59 .425 023 TS A8 LT
32-63 456 01831 12892 05397 12442 2.05 3.23 .982 .473 .018 8! . 261 ST
>=64 285 L0154€ 12191 05104 11807 2.14 2.68 .984 6082 .03C T4 374 .805
1 Active 2777 11154 6622 02773 3884 14.01 2.24 .8%1 202 017 34 064 .924
2-3 T4 .03100 1838 .00769 1073 12.24 2.19 .808 .256 .021 28 073 943
4-7 406 01631 958 . 0041 555 g.98 2.68 .9%32 .193 .013 23 087 .93
815 182 00735 412 00172 231 €.97 3.48 .960 .279 .01 16 L1130 L9945
16-31 116 00456 2N 00113 155 5.06 2.93 .80 .639° .030 13 200 1.00
22-63 43 0T 105 .00C44 62 3.1 1.46 - - - 8 274 .93C
=64 1 00004 4 . 00002 3 11.67 1.23 - - - 37 111 1.00
1 ALl 9741 .39124 40134 16802 30549 10.10 2.52 .82 317 .020 52 067 .825
2-3 Files 5967 .24030 36045 . 15090 30159 8.52 2.66 .887 .316 .020 58 079 LTTT
4-7 3920 15744 36980 15481 33116 6.09 2.9 .9%0 .353 .20 6! A17 0 TT6
15 285 11459 45552 AN0T3 42744 4.23 2.97 .959 .403 .02 T A7 T52
1631 1435 5764 43408 18172 41986 3.02 2.96 .975 .49 .025 & .263  .693
32-63 566 Q2273 22421 .09386 21861 2.50 3,17 .988 .523 .019 74 332 686
>=64 400 L01607 14324 .05997 13925 2.10 2.65 .985 .612 .03t 79 387 188
A1l Library 722 L0204 59621 24959 58903 2.58 2.70 .979 .529 .029 303 2321 272
Other 19875 .79826 169033 L7076 149474 6.23 2.94 .92 .36 .21 64 108 .T74
Active 4300 17270 10212 04277 5%3 12.70 2.33 .853% .209 .017 30 0710 9N
A1l ALl 24898 1.0 238871 1.0 214340 5.41 2,08 .938 .399 .020 59 126 .T86

" There is one problem with this definition. D(i) is undefined
for files which have not been scratched at the end of the mea-
surement period, and from Table 1 we see that this is 21 per-
cent of all files. There appear to be three ways to deal with
this difficulty, but none of the three is completely satisfactory.
These are as follows. 1) Consider only files which are actually
scratched during the period of observation. The difficulty
is that this will give an incorrect estimate unless the system is
completely in steady state. This is because if files are being
created more quickly than they are scratched, the file lifetime
distribution will be overweighted towards short lived files; the
long lived files will not have had a chance to die yet. 2) Assume
that all files are destroyed on the last day of observation. This
does not appear to make any sense statistically. 3) Assume
that since the last day of observation is a random point in time,
it happens to exactly bisect the lifetime of all files in existence
on that day. This argument is closely related to that used to
derive the distribution of time to the next event in a renewal
process when the process is observed at a random point in time
[4]. The expected time to the next event (i.e., file death) is
equal to the time since the last event (file birth). This ap-
proach is satisfactory if all files have finite lifetimes and if
there is a large number of such files, so that a distribution may
be collected. We have selected 1) as our means of estimating
the file lifetime distribution; there are arguments to be made
for 3) as well.

2) File Lifetime Measures: The measured file lifetimes are
presented in Fig. 6 (by size) and Fig. 7 (by class). The file life-
time appears to be only slightly related to size, but is strongly
influenced by class. Active files get scratched relatively quickly
(see Fig. 7) and libraries tend to never be scratched. The mean
lifetime is shown in Table VIII for each size/class combination.
Also shown in Table VIII is the fraction of files of each size/
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0.0

class that died (were ever scratched). Among the libraries, a
full 73 percent were still in existence at the end of the measure-
ment interval. For the reasons noted above, our measurements
of file lifetimes may be biased, and considering the large num-
ber of files not scratched, that bias may be quite significant.

Further study of file lifetimes seems to have only slight pay-
off in terms of file migration, which is the ultimate aim of this
study. Therefore, no attempt has yet been made to model file
lifetimes. An effort in this direction is being considered for
future research.

F. File Reference Patterns

1) Interreference Times:
a) Definitions and Tabulation: A very important aspect
of file reference behavior from the point of view of this paper
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is the actual sequence of referenced-nonreferenced days, and
in particular, the distribution of times between references.
Let g(i, logsize, class) be the empirical probability mass func-
tion for the times between references to files belonging to size
class “logsize” and type class “‘class.” Let “+” denote the sum
over all possible entries for that argument and let “-” denote
an unspecified entry for that argument. Then

g(i, logsize, class)

2 2

Nrefs(j)-1 1
(0 otherwise

if C(j, k)= 1;)

_ j€ (logsize, class) k=1
> (Nrefs(j) - 1 if Nrefs(j) > 1)
jE(logsize, class) :
(10)
g(i, *, class)
Nrefs(j)-1
> S (1 ifC(j,k)=i;0 otherwise)
_ jE€ class k=1
S (Nrefs(j)- 1  if Nrefs(j)>1)
jE class
1€ an
g(i, logsize, *)
Nrefs(j)-1
S S (1 ifC(j,k)=1;0 otherwise)
_ jE€ logsize k=1
S (Nrefs(j)-1 i Nrefs(j) > 1)
j€ logsize
(12)
£G,*. ")

Nfiles Nrefs(j)-1
> Y (1 ifC(,k)=10otherwise)
j=1 k=1

N files

> (Neefs(j) - 1 if Nrefs(j) = 1)
i=1 (13)
We let G(i, logsize, class) be the cumulative distribution. In
Fig. 8 we show as solid lines the distributions G(i, logsize, *)

and in Fig. 9 the distributions G(, * class). (The lines showing
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fitted results are discussed below.) The number of interrefer-
ence intervals and the mean interreference times are given in
Table VIII for each size and class combination.

b) Coefficient of Variation of File ‘Interreference Times:
Another column in Table VIII shows the coefficient of varia-
tion of the interreference time distribution, as aggregated over
all of the files in a size/class combination. Let CV(logsize,
class) be the coefficient of variation for a size/class case. Then

2\1/2
(Zg(i,_:_) (l— Zig(l,_al)) )
Zig(in_$')

1

CV(-,-)= (14)

We observe that these coefficients of variation are all over 1.0
and the mean [ie., for g(,*, *)] is 3.08. The distribution is
thus moderately skewed, but this implies nothing about the
reference pattern to individual files. Such a skewed distribu-
tion could equally well be obtained from either of two circum-
stances (among many others): 1) each file is referenced with
the same skewed interarrival time distribution peculiar to its
size and class, or 2) each file is referenced as a Bernoulli pro-
cess, but with the rate of reference varying between different
files. (The Bernoulli process is the discrete time analog of




éMITH: LONG TERM FILE REFERENCE PATTERNS

the Poisson process,by which a file 7 has a constant probability
p(i) of being referenced each day. The interevent times are
geometric.)

¢) Hazard Rate for File Interreference Times: Another
important statistic which has been measured is the hazard rate
of the empirical interreference time distribution. The hazard
rate is defined as

h(i’-a-)‘:g(i’_:-)/(l_G(i- 17_)—))' (15)

Examination of the hazard rate function (see Figs. 10 and 11)
indicates that it declines sharply for a while and then becomes
(after 20 days or so) relatively flat.

d) Fit With Two Part Geometric: A distribution that is

frequently used to model discrete empirical distributions of .

the form we have described (moderately skewed, declining
but eventually flat hazard rate) is the weighted sum of geo-
metric distributions. We have selected a two part geometric to
fit g(i,-,-). Letgf(i,-,-)and Gf(i,-,-) be the appropriate
fitted distributions. Then

g, -,-)=ab(1 - b)Y ' +(1 - a)e(l - o)
(16)

for some a, b, and ¢ to be selected in each case.

There are three methods in common use used to fit the
parameters of a fitted distribution to empirical ones: least
squares, maximum likelihood, and method of moments. The
method of moments is by far the simplest to use, but is vul-
nerable to instability in the case that the number of points in
the sample distribution is small. That does not appear to be a
problem with our data, since there are a large number of inter-
reference intervals in almost every size/class combination. We
have therefore used the method of moments to estimate the
parameters a, b, and ¢ in each case. The method of moments
involves calculating the moments (in this case, the first three)
of the empirical distribution and selecting the set of values of
the distribution parameters (2, b,c) that yield the same mo-
ments. This was done and the results appear in Table VIIIL.
We note that in two cases, no set of parameters a, b, and ¢
existed that yielded the observed moments.

In Fig. 8 the overall fitted distribution Gf(i, *, *) is shown
asa dot-dash line and in Fig. 9, the fitted distributions Gf(i, *,-)
are shown as dotted lines. As may be seen, the quality of the
fit is at best fair. This observation is confirmed by the chi-
square test for goodness of fit, which rejected the fit in almost
all cases at the 99 percent confidence level. No attempt has
yet been made to fit the observed distribution with other
postulated distributions; we are considering doing so at a
later time. Use of this fitted distribution is made in [19],
however, and despite the fair to poor quality of the fit, sur-
prisingly good results are obtained for its use with file migra-
tion algorithms.

2) Statistical Testing of File Reference Patterns:

a) Introduction: In the last section we obtained the dis-
tribution of times between references to a file aggregated over
all files in a size/class combination. As we noted, this says
very little about the reference pattern to individual files. In
particular, there are three questions that should be answered
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with regard to individual file reference patterns: 1) is the rate
of reference to a file stationary, 2) are successive interreference
intervals correlated, and 3) is the reference pattern to a file the
Bernoulli process with a parameter specific to that file? (The
Bernoulli process, as described below, is of interest for three
reasons: it is a standard null hypothesis, its memoryless prop-
erty has implications for file migration algorithms, and it has
been found in previous research [20].) Testing a time series to
obtain the answers to 1), 2), and 3) would be straightforward
were it not for the fact that most of the sequences of inter-
reference intervals for the files are very short. As noted earlier,
50 percent of the files were referenced two or fewer times. It
makes absolutely no sense to test a time series of 2 elements
(or even 3 or 4). Further, results do not appear to be available
in the published literature for the distributions to be expected
when applying standard statistical tests to such small samples.
Our basic methodology, which we summarize below, consists
essentially of restricting our tests to those file reference pat-
terns which can reasonably be tested, and then testing them
against distributions obtained through pseudorandom number
driven simulation.

b) Selection of Files to Test: The only files tested were
those that 1) were referenced at least six times, 2) had a value
of (Nref(i) - 1)/(L(i) - F(i)) less than 0.95, and 3) for which
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L(i) - F(i) was greater than or equal to 10. The idea was to
eliminate those files that either were referenced too few times,
or were referenced over such a short period of time that the
number of possible reference patterns was too small to allow
for statistical testing. We found that this elimination procedure
left us with 5334 (21.4 percent of all) files for all days and
4818 (19.4 percent of all) files in the working days case. Ap-
proximately 80 percent of all of the file references remained,
however, since those files eliminated were those which were
referenced very few times. .

¢) Generation of Null Hypothesis Distributions: We tested
for monotonic trend, serial correlation, and skewness of the
distribution. The null hypothesis in each case was that of a
stationary, uncorrelated Bernoulli process. The statistics used
are explained below. For short discrete-time time series, there
appear to be very few results known, and so the means and
confidence intervals for the statistical tests were determined
by generating a large number of random Bernoulli processes
(of appropriate rates and lengths) and applying the statistical
test to those time series. That is, a large number of Bernoulli
time series were generated using a pseudorandom number
generator. For each of these time series, each of the statistics
given below in (17)«19) were calculated. This yielded the
distribution of the statistic in the case of the null hypothesis,

1 n-k 1
2 (xi_n—k
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TABLE IX
TREND TEST

Fraction That Reject (99% Confidence Level)
For Increasing/Decreasing Trend

All Days Working Days
Unweighted .052/.282 .051/.274
Weighted by
Lifetime .087/.323 .077/.304
TABLE X

SERIAL CORRELATION TEST

Fraction That Reject (99% Confidence Interval)
For Excessive Correlation

All Days .042
Working Days .066

less after it has been around for a while. We comment that a
skewed but stationary distribution will display a larger variance
in Tr than the Bernoulli process; thus the 99 percent confi-
dence level was used rather than the more usual 95 percent in
order to minimize false rejection.

e) Testing for Serial Correlation—Test and Results: - The
usual estimator (and usually the most powerful; see [11]) for
serial correlation is given in (3); that estimator, however, isan
approximation that is acceptable only for long time series.,
The correct estimator is (from [10])

-1

n-k n-k
Z Xi J\Xisk = 2 Xisk
i=1 n i=1

S(k) =

n-k /5
n-k n-k 2
)3 x,-)
i=1

( 1 1
n-k 5 (x‘ n-k
i.e., the Bernoulli process.

We do note one problem with our statistical procedure.
Because of the short length of most of the time series we deal
with, the values of the statistics (17)-(19) used will vary widely
even in the case that the null hypothesis is valid. Thus, it will
be difficult to determine that our sample time series are not
Bernoulli, and the test procedure may not actually be very
powerful. An alternative approach is to find some way of
aggregating the data from several time series, but we leave this
for future research. :

d) Testing for Trend—Test and Results: Lewis and Shedler
[11] (see also [5]) give a statistic for testing a continuous-time
time series for being a stationary uncorrelated Poisson process
against the alternative of a Poisson process with monotonic
trend. As adapted for discrete-time series, it is

Tr= z-T/2
T/\/12Nref(i)

where T=L(i)- F@i)+1,

LG
z= 3 IG,))(j- F@)/Nref(). an

i=F@®
This statistic is simple to calculate and seems to be equally
suitable for testing discrete time series.

As shown in Table IX, approximately 35 percent of the file
reference patterns displayed significant trend (at the 99 per-
cent confidence level); the vast majority of such cases were
of declining trend. This is as one might expect—a file is used

(18)

1 n—k( 1
x. -
-kil i+k n-k

n-k 2\1/2 *
Z xi+k) )

i=1

We warn the reader that this estimator is biased to the approxi-
mate extent of 1/n, where # is the number of elements in the
time series. Thus, knowledge of the actual mean and distribu-
tion of the estimator is essential. ’

The serial correlation was estimated using (18) for all files
showing no significant trend. The fraction of files which dis-
played significant serial correlation is shown in Table X, where
we see that only about 5 percent of all files rejected the hy-
pothesis of no correlation at the 99 percent confidence level.
(Our earlier comment about skewed distributions holds here
also.) In almost all cases, those significant correlations found
were positive ones, not negative ones. Most correlation coef-
ficient values observed were small (65 percent were less than
0.25) so that independent of their significance, their predictive
power is low.

An additional test was made to look for possible serial corre-
lations in interreference intervals. Fig. 12 showsanx -y plot
of successive interreference intervals taken over all interrefer-
ence intervals for all files. Each entry is the (truncated) loga-
rithm base 2 (in hexadecimal) of the number of points at that
location. There is no pattern apparent to the author in this
figure.

The cross correlation (between x and y) was computed over
all of the points in this figure and a value of 0.295 (0.307 for
working days) was obtained. This is a high and significant
value, but it presumably reflects the fact that we have lumped
all files together, rather than actual correlations within indi-
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Fig. 12.
vidual file reference processes. That is, files referenced at a  use (development or production), it is likely to be referenced

given rate are likely to continue being referenced at
rate; this rate may be characteristic of the file or its
class.

f) Clustering of References to Files Found:
collected data to look at the extent of clustering in
ence pattern to a file. For every perio

file in 15 working day
there is substantial clustering;
is just as likely to have been used on many more

d of 15 days during
which a file existed, the number of references to that file was
counted. The distribution of the number of references to a
s is given in Table XL As can be seen,
if a file is used a few times, it
days. This
confirms one’s intuitive idea of file use—if a file is in active

a similar
size or its

with high probability each day overa several day period.

g) Testing for the Bernoulli Process: Testing an inter-
arrival process against aknown statistical distribution is usually
done with the chi-square goodness of fit test [see (1)] using
the empirical interarrival distribution. This is only feasible,
however, if the number of events in the arrival process is quite
large (at least 25 or 50 in this case). We choose instead to
measure the coefficient of variation of the interarrival intervals
for each file and then determine whether that coefficient
of variation is an acceptable one under the hypothesis of 2
Bernoulli process.

The estimator fo

We also
the refer-

r the coefficient of variation used is
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Nref(i) - 2

1 Nref(i)-1 Nref(i) -1 \24\1/2
(—————- 5 (C(i,f)-( 3 C(i,i)/(Nref(i)-l)))) '

j=1

i1

Nref(i) -1

(19

C(@,j)/(Nref(i) - 1)

i=1

We again warn the reader that this estimator does not approach
its asymptotic distribution until the time series becomes quite
long. We found (see Table XII) that about 40 percent of all
files tested (those with no trend) showed unacceptable coef-
ficients of variation at the 99 percent confidence level. In

almost every case, this was because the coefficient of variation -

was too large (i.e., the distribution was skewed). Thus, our

-earlier caution in the trend and correlation tests regarding

skewed distributions appears to have been appropriate.

It also happens that 96 percent of all coefficients of variation
are below 2.0, whereas the mean coefficient of variation when
computed over all interreference intervals for all files is 3.08.
Similar high coefficients of variation are observed for individ-
ual size/class combinations (see Table VIII). Thus, the inter-
reference distribution for a size/class combination may not be
a very good estimate of the distribution for an individual file.

h) Conclusions and Summary of Tests of File Reference
Patterns: From our tests in this Section we can see that files
are frequently used less as they age, and that the interreference
time distribution is more skewed than the Bernoulli. There is
little if any significant serial correlation within the reference
process to one file. A file migration algorithm would therefore
find it useful to condition on the time since the last reference
and perhaps the age of the file; conditioning on previous inter-
reference intervals does not appear to be helpful.

It is worth mentioning that different results were reported
by Stritter [20] who analyzed the same data. His descriptions
of the tests he ran are vague, but he found that the number of
files displaying either trend or large coefficients of variation to
be small enough that he was willing to describe the file refer-
ence process as “Poisson.” It appears that he tested only a
subset of the file reference processes (selection process un-

“specified); thus, from his description of his results (which are

not quantified) it is not clear if there is actually a conflict with
our results or not. We believe that our methodology has been

~more thorough and that the results presented here are correct.

3) Rates of Reference to Files by Size and Age: Another
interesting statistic is the measured rates of reference to files.

" The rate of reference to a file i, R(f), is just Nref(i)/(L(i) -

F(i)+1). That is, it is just the number of times the file is

" .referenced over the period of observation divided by the life-
‘time of the file during the period of observation.

We have computed the cumulative distribution of R(i) in

four ways. RU(x) is the unweighted distribution

Nfiles
RU(x)= 3 (1 if R({) <x)/Mfiles. (20)
i=1
This distribution can be weighted by file lifetime as

RLG) =5 (LG)-FG)+1 RG)<x;

i=1

0 otherwise) / NS Lo - Fo+ 1) @1
i=1

TABLE XI
DisTRIBUTION OF NUMBER OF TIMES A FILE 1s USED IN 15 WORKING Days
Number ! Probsbility | Cumulative
o] .600 . 600
1 112 L7132
2 . 060 773
2 .037 .BOQ
4 .025 e3¢
5 .020 .854
6 017 871
7 .015 .886
8 013 .899
g9 012 .91
10 .01 .922
1 .012 .934
12 012 . 946
13 013 .959
14 .014 .97%
15 .027 1.00

or by use as

Nfiles

RUS(x)= > (Nref(i) ifR(i)<x;'

i=1
0 otherwise)/Nref (22)

or by file size as

Nfiles
RS(x)= > (SG) fRG)<x;

i=1

Nfiles
0 otherwise) / Z S@). (23)
i=1

The measured values for RU(x), RL(x), RUS(x), and RS(x) all
appear in Fig. 13. The mean and median rates of reference are
given in Table XIII. '

It is also interesting to compute the rate of reference to a
file as a function of its age. The age of a file is defined to be
the number of days since it was created. We compute the
mean rate of reference RA(i, -, -) to a file as a function of its
age i by considering those files which were created during the
period of observation.

RAG,-,-)= 2 AGH [ X QO if@y)

i€Co) €A
- F(j)+1)>i;0 otherwise). (24)

Note that RA(1,-,-)=1. The function RA(i, -, -) is rather
irregular for moderately large values of i, so we have smoothed
it by using a five day rectangular window. The smoothed
function RA(,-,-) is shown in Figs. 14 and 15. The up-
down regular oscillation of RA is due to the interaction of the
smoothing window with weekends. Since most files are created
during working days, a file of age 19 is less likely to be refer-
enced than a file of age 21. (Since a file of age 21 is very likely
to be in existence on a working day.) A smoothing window of
a multiple of 7 days would have removed this oscillation, but
was judged to be too wide.

Also shown in Figs. 14 and 15 is the value of RAf(i,-,-)
obtained from our fitted two part geometric distribution of
(16). We assume that the file is referenced as a renewal process
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TABLE XIi1

MEAN/MEDIAN RATE OF REFERENCE
Weighted By | Mean | Median
Unweighted .30¢8 .19
Use .410 . 386
Lifetime 21 .030
Size .380 .29¢8

with the gf(i, -, -) interarrival distribution, and that the file
was referenced on the day of its birth. Then from the renewal
_equation [4] one has

RAf(ia—5—)= '-Zl RAf(ks—9_)g(i— k’_’—),i> 1,
k=1

where RAf(I,-,-)=1. (25)

We note that because a file is referenced on the day it is cre-
ated, the predicted rate of reference declines with age. The
fact that the process is stationary (e.g.,a renewal process) does
not imply that the rate of reference need be constant as a
function of age.

This declining rate of reference to a file with age is consistent
with our earlier determination that about 35 percent of all
tested files showed a declining rate of reference during their
lifetime.

4) Expected Time to Next Reference Increases with Time
Since Last Use: In performing file migration, one would
generally like to remove that file with the largest space-time
product to the next reference((size of file) x (time to next
reference)). (Criteria for file migration are discussed in detail in
the companion paper to this.) One can estimate the time to the
next reference by conditioning on the time since the last refer-
ence, among other things. Let E(i,-,-)be the expected time
n +hoa mavt reference. given that the file has not been refer-
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enced for i days. If there have been i days elapsed since the
last reference (i =0 means that the reference was that day),
then by conditioning only on the time since last reference

EG-)= 3 glk,= )= DI - GGo).

i=k+1 -

(26)

In Figs. 16 and 17 we show the expected time tonext reference,
both as calculated from the empirical distributions gi,-,-)
and from the fitted distributions gfGi,-,-). The dotted lines
in each case are the fitted distributions.

The important observation to be made from Figs. 16 and 17
is that the expected time to next reference is a generally in-
creasing function of the time since the last reference. Thus,
one is more likely to want to migrate a file which has not been
used for a long period of time than a file which has been
recently referenced. This issue is considered further in [19].

IV. SuMMARY, CONCLUSIONS, AND PLANS FOR
FURTHER RESEARCH

We have observed that most files are referenced very few
times. Of those files susceptible of statistical testing, we found
that about one-third showed 2 declining rate of reference.
Almost half of the files showing no trend displayed reference
patterns which ruled out a Bernoulli process model for the
reference process; almost no serial correlation was detected
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between successive interreference intervals. Thus, for those
files displaying no trend, a renewal process model with a
moderately skewed interreference time distribution would
appear to be appropriate. Agreeing with the observed frequent
decline in the rate of reference to a file with its age is the over-
all decrease (when aggregated over all files) in the rate of refer-
ence to a file with age. We also note that we were not able to
fit the interreference time distribution with a two part geo-
metric. Our interpretation of the results enumerated in this
paragraph is that a Markov chain model for the file reference
process, if one exists, is likely to require a minimum of three
or four states (including a state which represents file death).
A very simple renewal process model or even a two state Semi-
Markov Process model [11] seems insufficient to represent the
observed properties of the data. Further research to develop
a satisfactory model for the file reference process is planned.
The goal of our data analysis in this paper has been twofold:
1) describe and characterize to whatever extent reasonable
the file behavior patterns observed, and 2) develop a basis
for the specification of file migration algorithms. For a file
migration algorithm, it appears to be useful to use: the time
since last reference, the file size, the file class, and the file age
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in order to predict the time to next reference for a file. The
lack of serial correlation suggests that conditioning on previous
file interreference intervals will not be useful.

In [19] we use the data analysis in this paper as a basis for
the construction and evaluation of a number of file migration
algorithms. There we find that the size of the file and the time
since it was last used are most important in determining when
to migrate that file. Algorithms are generated that specify
how long to keep a file after it is last used based on the file
size, age, type, etc. These algorithms include both those based
on the analysis given here and those obtained from the litera-
ture. The algorithms are evaluated using trace driven simulation.

For our description and analysis of file reference data in this
paper to be useful in the sense of being applicable to other
installations, there must be some reason to think that file be-
havior will be similar across users and computer systems. Until
data is gathered and analyzed for other systems, it is, of course,
impossible to say, but we believe the following. Users use text
editor files in much the same manner everywhere, subject to
the distortions induced by the accounting or file migration
algorithms. User access patterns to nontext editor files, such
as data files or databases, are still unknown and it is not rea-
sonable to claim that our results here will apply.
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Proofs of Networks of Processes

JAYADEV MISRA, MEMBER, 1EEE, AND K. MANI CHANDY

Abstract—We present a proof method for networks of processes in
which component processes communicate exclusively through mes-
sages. We show how to construct proofs of invariant properties which
hold at all times during network computation, and terminal properties
which hold upon termination of network computation, if network
computation terminates. The proof method is based upon specifying a
process by a pair of assertions, analogous to pre- and post-conditions
in sequential program proving. The correctness of network specifica-
tion is proven by applying inference rules to the specifications of com-
ponent processes. Several examples are proved using this technique.

Index Terms—Communication networks, distributed systems, message
passing systems, program proofs.

I. INTRODUCTION

E propose a proof technique for networks of processes
W in which component processes communicate exclu-
sively through messages, as in Hoare [8]. The technique is
based upon specification of a process h by a pair of assertions
r and s, analogous to pre- and post-conditions in sequential
program proving. The specification is denoted by r|k|s, which
means: 1) s holds initially in # and 2) if holds at all times
prior to any message transmission of A, then s holds at all
times prior to and immediately following that message trans-
mission, where a message transmission of process A could be
either A sending or A receiving a message. '

The proof technique is built around a few inference rules. .

These rules allow us to deduce the specification of a network
from the specifications of its component processes. The
advantages of such a proof technique are the following.

1) A network specification is obtained solely from com-
ponent process specifications and not from the details of
process implementation.

Manuscript received May 23, 1979; revised August 18, 1980. This
work was supported by the National Science Foundation under Grant
MCS79-25383 and ARPA Grant Systems Performance Modeling Part
11 N00039-78-G-0080. |

The authors are with the Department of Computer Sciences, Uni-
versity of Texas, Austin, TX 78712.

2) The proof technique supports the hierarchical decom-
position of networks. Starting with R, S for network H, we
construct r;, s; of component processes h;’s, such that the
component process specifications yield the desired network
specifications. The k;’s may in turn be networks themselves,
in which case decomposition of k;’s into component processes
proceeds hierarchically in the same manner.

We give several examples which demonstrate the power and
convenience of using r, s to specify a process. Our inference
rules are built upon Hoare’s theory of traces [9].

1. A MopEL OF A NETWORK OF PROCESSES

We are not concerned with the definition of an entire pro-
gramming language in this paper. We are concerned only with
proving properties about message communication among
processes. . We consider the message communication mecha-
nism proposed by Hoare [8]. The example programs will be
written in Hoare’s CSP with the following minor differences.
CSP uses an explicit process addressing mechanism in message
communication. For instance, process A may have commands
of the form B?x to receive a message from process B and put
its content in local variable x; similarly B!x denotes transmis-
sion of a message to process B, where the content of the mes-
sage is the value of x. For autonomous proofs it is preferable
to avoid explicit process naming. Hence, we will only allow
process A to communicate using commands of the form C?x
or Clx, where C denotes a channel (see Section II-B). As
Hoare has noted, addressing via channels is semantically equiva-
lent to explicit process addressing.

We expect the reader to know CSP because our model is
derived from it. We briefly summarize below concepts related
to message transmission that we use in this paper.

A. Process

A process communicates only by sending or receiving mes-
sages. A process is either a sequential process, i.e., a sequential
program with commands for message transmission, or a
network of processes, as described next.
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