104

Input /Output Optimization and Disk
Architectures: A Survey *

Alan Jay Smith **
University of California, Berkeley, CA 94720, U.S.A.

The file system, and the components of the computer
system associated with it (disks, drums, channels, mass storage,
tapes and tape drives, controllers, I /0 drivers, etc.) comprise a
very substantial fraction of most computer systems; substantial
in several aspects including amount of operating system code,
expense for components, physical size and effect on perfor-
mance. In this paper we survey the state of the art in file and
1/0 system design and optimization as it applies to large data
processing installations. In a companion paper, some research
results applicable to both current and future system designs are
summarized.

Among the topics we discuss is the optimization of current
file systems, where some material is provided regarding block
size choice, data set placement, disk arm scheduling, rotational
scheduling, compaction, fragmentation, 1/0 multipathing and
file data structures. A set of references to the literature, espe-
cially to analytic I/O system models, is presented. The general
tuning of file and 1/0 systems is also considered. Current and
forthcoming disk architectures are the second topic. The count
key data architecture of current disks (e.g. IBM 3350, 3380)
and the fixed block architecture of new products (IBM 3310,
3370) are compared. The use of semiconductor drum replace-
ments is copsidered and some commercially available systems
are briefly described.

Keywords: Disk, Drum, Rotational Scheduling, Arm
Scheduling, Input/Output, I /0, Prefetching,
Load Balancing, Compaction, Fragmenta-
tion, Data Structures.

* Partial support for this research has been provided by the
National Science Foundation under grant MCS77-28429,
and by the Department of Energy under Contract DE-
ACO03-76SF00515 (to the Stanford Linear Accelerator
Center). .

** Computer Science Division, EECS Department, University
of California, Berkeley, California, 94720, USA. The author
is also on the staff of the Lawrence Berkeley Laboratory
and is a visitor at the Stanford Linear Accelerator Center.

Performance and Evaluation 1 (1981) 104-117
North-Holland Publishing Company

0166-5316,/81,/0000-0000,/$02.50 © North-Holland

1. Introduction

We shall refer in this paper to the part of the
memory hierarchy beyond the main memory inter-
face as the ‘file system’. It consist of disks, drums,
tapes, mass storage, I /O controllers, channels, and
large parts of the operating system. These compo-
nents comprise a large fraction of the expense and
physical size of a computer system, and account
for a large fraction of the operating system code
and execution time. For these reasons, the efficient
and effective use of the file system is important to
the overall efficient use of the computer system.
We shall survey the state of the art in file system
design and use it as it applies to large data
processing installations; some relevant research re-
sults are summarized in [1].

Our concern here will not be with a general
software overview of the file system structure.
There are several papers in the literature on this
subject; operating systems discussed include Mul-
tics [2,3], MTS [4], OS [5], and others [6]. The
reader is assumed to have a general background in
this area.

Section 2 of this paper will survey the standard
optimization and tuning problems in current com-
puter systems. Throughout, our target is the large
data processing installation, although some of the

Alan Jay Smith was bormn in New
Rochelle, New York, USA. He re-
ceived the B.S. degree in electrical en-
gineering from the Massachusetts In-
stitute of Technology, Cambridge,
Massachusetts USA, and the M.S. and

Tees in computer science from
Stamfordg University, Stanford, Cali-
fornia, USA, the latter in 1974.

He is currently an Assistant Profes-
sor in the Computer Science Division,
Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley,
California, USA, a position he has held since 1974. His re-
search interests include the analysis and modeling of computer
systems and devices, operating systems, computer architecture
and data compression. He has pubhshed in these areas, and
received an award for the best paper in the IEEE Transactions
on Computer Systems in 1979.

Dr. Smith is a member of the Association for Computing

Machinery, the Institute of Electrical and Electronic Engineers,

the Soacgefor Industrial and Apphed Mathematics, Eta Kappa
Nu, Tau Beta Pi and Sigma Xi.

b L 18

irt of the
ory inter-
s, drums,
mels, and
)& compo-
sense and
1 account
tem code
: efficient
yortant to
I system.
le system
irge data
search re-

1 general
structure.
¢ on this
ude Mul-
[6]. The
rround in

standard
rent com-
the large
ne of the

n in New
A. He re-
ectrical en-
husetts In-
“ambridge,
e M.S. and
:ience from
ford, Cali-
4.
ant Profes-
e Division,
ngineering
Berkeley,
'4. His re-
! computer
rchitecture
areas, and
-ansactions

-Jomputing
Engineers,
Eta Kappa

AJ. Smith / Input /Output optimization and disk architecture - 105

CPU CcPu

o Chonnels —

Storage Storage
Controtler Controller
] L]
- - [1
L]]
String String
Controller Controiler

Disks

500

Fig..]. Portion of large data processing system configuration.

material presented applies to smaller sites. Fur-
ther, we shall stress IBM operating systems and
devices because of their prevalence, due to the
large amount of information available, and be-
cause many IBM devices have become industrial
standards for which there are several (PCM)
vendors. Specific concerns will be: block size
choice, data set placement, arm scheduling, rota-

tional scheduling, compaction, fragmentation and

file structure. A set of references to the file system
and the analytic model literature is presented and
referenced where appropriate. Further references
may be found in [7]. Changes in device architec-
ture that are occurring are discussed in Section 3,
where some of the differences between the tradi-
tional count key data disk and the new fixed block
disk are presented. The new electronic drums are
also discussed. A companion paper [1] summarizes
some research results of the author on the topics of
file migration and disk caches.

For purposes of illustration and reference, we
have provided Fig. 1. Fig. 1 is intended to diagram
part of a ‘typical’ large system IBM configuration,
and will serve as a concrete example for later
discussions.

2. Standard optimization techniques and topics
2.1. Reasons for optimization

The need for the optimization of the file system
comes from two simple observations. First, the
time to do a reference to the main or cache mem-
ory in most computer systems ranges from 50
nanoseconds to 1.0 microsecond, whereas the time
to read or write from any sort of secondary storage
(disk, drum, tape) is at least 10 milliseconds; thus
the ratio of access times is from 10000 to 1000000.
This very large ratio in access times is known as
the access gap and implies that frequent 1/0
operations could result in the CPU (and most of
the rest of the system) remaining idle while 1/0
operations complete. Second, 1/0 operations are
in many systems quite costly as well in terms of
CPU time. The portions of the operating system
related to input/output are large and complex,
and even in a fast machine (e.g. IBM 3033 or
Amadahl 470) as much as 1-5 ms of CPU time
may be required for an 1/0. This includes all of
the related operations such as: building a channel
program, page fixing, setting up any necessary
control blocks, starting the 1/0, executing the
dispatcher, processing the I1/0 interrupt and ex-
ecuting the dispatcher again. This second reason
therefore also suggests that the frequency and cost
of 1/0 operations must be minimized.

2.2. Characteristics of current systems

In order to have an understanding of the opti-
mization issues involved, in this subsection we
summarize some previously published information
[8] describing the installation characteristics for a
number of large IBM MVS user sites. This survey
is only a sample of IBM installations, and the sites
were chosen primarily on the basis of willingness
to participate. Nevertheless, it does suggest the
characteristics of large data processing centers (but
not necessarily minicomputer systems).

Forty-seven IBM customers were queried. Pro-
grams were run to read the on-line VTOCs (volume
tables of contents) for the 2314, 2305, 3330 and
3350 disks and the on-line VSAM catalogs. Statis-
tics were gathered on DASD volumes, data sets
and block sizes. The customers had business in the
following areas: finance (3), government (2), in-
surance (16), manufacturing (7), IBM internal (2),
service bureau (3), transportation (1), utility (3),

106 AJ. Smith / Input/Output optimization and disk architecture

distribution (3) and process (7).

There were 2154 DASD volumes, 250 VSAM
catalogs and 265613 data sets. 80% of the
customers had 50 or fewer volumes (i.e. disk spin-
dles). 6% of the volumes were 2305, 2314 or 3340,
12% were 3330, 38% were 3330-II and the 3350’s
accounted for 44%. The 2305’s (drums) tended to
be almost fully allocated (99%); the disks generally
had about 75% of their space in use.

Data sets were most frequently sequential (67%)
although sequential data sets accounted for only
39% of the disk space. Direct data sets (2.1% of
data sets, 8% of space), partitioned data sets (18%,
23%), ISAM data sets (2%, 7%) and VSAM (2.5%,
14%) were also common. A significant fraction of
the sequential data sets were small, whereas the
other files were usually larger.

Record formats were distributed as follows:
71% of the files had fixed length records, 16% had
variable length records and 10% had undefined
block formats. Block sizes tended to be small; the
average block sizes, by file organization were:
sequential (1861 bytes), direct (1682 bytes), parti-
tioned (961 bytes) and ISAM (1925 bytes). Those
files with fixed block sizes and larger average
block size per file (1745 bytes) than the variable
block size files (1226 bytes). The overall average
was 1530 bytes. The number of blocks above 8 K
was very small, which suggests that full track

blocking is rare. 24% of the block sizes were under

100 bytes (usually 80 bytes).

The data for this study was collected in two
stages: the first was early 1977, and the second,
late 1978. Six of the customers collected data both
times. For these six customers, the following was
observed: the number of DASD volumes increased
33% but there were about 30% fewer data sets per
volume; thus the number of data sets in total
remained about the same. There was little change
in data set access methods, other than a 26%
increase in VSAM data sets and an 18% decrease
in ISAM data sets.

2.3. Block size optimization

There are some tradeoffs between large and
small block sizes. Small block sizes have the fol-
lowing two advantages: they require small buffers
and are quickly transferred, once located on disk.
Conversely, to process a large amount of data, a

large number of small blocks will have to be

fetched, and with each fetch is associated operat-

ing system overhead and extra disk latency. Fur-
ther, small blocks make inefficient use of physical
space on the disk, due to interrecord gaps. These
disadvantages for small block sizes outweigh the
advantages in most circumstances, most especially
for sequential data processing, and therefore large
block sizes are usually preferred. Using some real-
istic assumptions, in [9] it is shown that block sizes
should be at least 2-4 K. The use of block sizes
larger than the optimum is usually almost equally
good. Despite this, in [8] it was noted that very
small block sizes are common. For this reason,
many systems could significantly improve their
operation by reblocking their files. Such reblock-
ing might be best managed by moving block size
choice from the user to the system as is done by
many non-IBM operating systems.

Among the papers that consider block size
choice are [10-12).

2.4. Data set placement and 1/0 balance

Data set placement can affect system efficiency
in two ways: the placement of data sets within a
single volume and the location of data sets on
different volumes. If different data sets are in use
on the same volume, efficiency can be improved
by locating them near each other; thus seek dis-
tances are minimized. This issue is discussed briefly-
in [13] where the so-called ‘organ pipe’ arrange-
ment is suggested. In that case, the most fre-
quently used files are placed near the center of the
disk and the least used near the inner and outer
edges.

It is much better to locate data sets that are

used concurrently on different volumes; that tends
to reduce congestion and improve access time. The
access time is improved particularly by the follow-
ing phenomenon: if a sequentially allocated data
set is the only one in active use on a volume, most
1/0’s will find the arm already positioned at the
correct cylinder [14,15], which eliminates most
secks. In any given system, measurements can be
made to determine which files are likely to be open
and used concurrently. A cost function then can
be set up which assigns a cost every time two files
are assigned to the same spindle. Math program-
ming methods can be used to select a desirable or
optimal file assignment.

In [16] some figures are given which may be
used to detect when I/0 congestion may require
moving data sets. In particular,

rat
shc

tra

is
no |
rel |
th

mo

(r:
Tt

ar
ag
th
ex

is
to
fis
b
Ie f
b
tt

ti

ti

se

E

e

ency. Fur-
>f physical
aps. These
tweigh the
especially
efore large
some real-
block sizes
slock sizes
st equally
that very
1S reason,
rove their
‘h reblock-
block size
is done by

block size

 efficiency
s within a
ta sets on
are in use
improved
s seek dis-
ssed briefly
¢ arrange-
most fre-
nter of the
and outer

s that are
that tends
. time. The
the follow-
>ated data
ume, most
ned at the
ates most
1ts can be
‘0 be open

then can
2 two files
program-
ssirable or

1 may be
1y Tequire

AJ. Smith / Input/Output optimization and disk architecture 107

(a) more than 30% channel busy,

(b) DASD utilization above 40%.

(c) a device activity count above 15 1/0’s per
second, or

(d) a mean DASD queue length of 0.05 or
more.

Some systems have disks of varying perfor-
mance characteristics. In that case, it is not correct
to use each DASD equally frequently; in [17] it is
shown that the faster units should have a load that
is higher by an amount that exceeds the speed
ratio. Le. the utilization of the higher speed units
should be higher.

A difficulty with attempting to dynamically
track the use of various data sets and disk spindles
is that in a multiple CPU system, one CPU may
not have an accurate idea of the aggregate rates of
reference. There are several possible solutions to
this problem: among them are to maintain a com-
mon data base or to have each CPU periodically
(randomly) sample for device or control unit busy.
This issue should always be considered.

2.5. Arm scheduling

A large component of disk access time is the
arm seek time (see Fig. 2). For example, the aver-
age seek time on a 3350 disk is 25 ms [18] whereas
the latency averages 8.4 ms. Therefore, to the
extent that seek time can be minimized, perfor-
mance improves. One method to reduce seek time
is to consider all of the I/O requests outstanding
in the queue to a given device and select an order
to process them that minimizes the total seek time.
Typical algorithms are SSTF (shortest seek time
first), SCAN (an ‘elevator like’ algorithm that scans
back and forth across the disk surface servicing
requests as it passes the target cylinder), and
CSCAN (which scans the disk, much like SCAN,
but only in one direction. When a scan is finished,
the arm returns to its starting position). The objec-
tives of these algorithms are several:

(a) minimize mean access time,

(b) minimize the variance of the I/0 access
time and '

(c) avoid discriminating against certain data
sets in unfavorable locations (e.g. at edge of disk).
The classic study of this problem is [19] (see also
[20]); more recent results (one of which recom-
mends SSTF) are in [21,22]. These later papers
observe that SSTF reduces the mean access time
enough that even though it has a large coefficient

Disk Arms

Arm Movement

Fig. 2. Disk module.

of variation, the magnitude of the variance is still
small. Other papers which consider aspects of this
problem are: [23-31]..

Despite the large amount of research on arm
scheduling, it has been found that it is very seldom
necessary to schedule the arm at all [32], since

(a) queue lengths at the disk are usually short
(one or less) and

(b) the disk arm seldom has to move.

(See also [14,15,33].) The latter is because most
disks have only one open file, and that file is
usually allocated and accessed sequentially. In fact,
only about 30% or 40% of the time is a seek
required. Thus arm scheduling is rarely an inter-
esting problem, and any reasonable arm schedul-
ing algorithm (e.g. FCFS) is likely to be satisfac-
tory. The increasing density of disks (see Section 3
and [1]) may indicate, however, that the proba-
bility of multiple open files on one spindle will
increase. (The author has no appropriate data, but
believes that there has been only a small increase
thus far. In most large installations, the number of
disk spindles has grown almost as quickly as the
CPU power over the last few years.)

In addition to the papers noted which deal with
arm scheduling, there are additional articles which
model disk systems. The following may be of some
interest: [34-37].

2.6. Rotational scheduling

Rotational scheduling has to do with scheduling
the processing of 1/0 requests at the same seek
address on rotational storage media, i.e. disks and
drums. For disks, rotational scheduling is usually
unnecessary, since it is rare to have more than one
1/0 request outstanding for the same cylinder.
The issue is more important for drums and fixed

108 AJ. Smith / Input/Output optimization and disk architecture

top view
= O
(g
Read/Write —,
Heads (-
= 2l3la 5 Records
~——

Sectors

Fig. 3. Paging drum.

head disks (see Figs.3 and 4). We will refer to
fixed head disks henceforth as drums.

2.6.1. File drums

Drums can be either ‘sector drums’ or ‘file
drums’. File drums have arbitrary length records
(blocks) placed at arbitrary locations (angular
positions). (Throughout most of this paper, the
terms record and block are used interchangeably,
as is done frequently in the literature. When neces-
sary, we will distinguish between logical records
and physical blocks.) When a queue of requests
exists to such a drum, the requests in the queue
can be scanned and an optimal algorithm for
processing them can be constructed. It has been
shown [38-40] that simply using SSTF (Shortest
Seek Time First; i.e. select the first record to pass
under the read head position) always performs
within one revolution of the optimum. It seems
clear that in practice, SSTF should be satisfactory.

2.6.2. Sector or paging drums

Sector drums, also called paging drums, are
simpler. These drums are organized so that records
are fixed length and begin at only certain pre-
specified angular positions. In the simplest case,
sectors do not overlap, and all records starting at
the same angular position constitute a sector. In
this case, a separate queue is set up for each sector,
and is serviced first come, first serve. By inspect-
ion, this is optimal. When sectors overlap (as they
do on the IBM 2305 fixed head disk [41]), the
solution is not quite as simple, but sector queueing
and FCFS service are still efficient.

2.6.3. Hardware implementation

There are two types of hardware implementa-
tion for rotational scheduling that the author is
aware of. IBM has a primitive method known as
‘RPS’ or rotational position sensing. For RPS, the

" top view
Records
Read/ Write
Heads

Record Number

Fig. 4. File drum.

string and storage control units and channel be-
come free while the disk is rotating; when the
correct angular position is reached, the disk, stor-
age controller and string controller attempt to
reconnect. (See [42] for some analysis.) If the
reconnect fails because one of those units is busy,
another full rotation must occur. Depending on
block size and specific record location, this scheme
can lead to poor performance for files with small
block sizes.

The other implementation is one by Burroughs,
which uses a ‘disk file optimizer’. The optimizer is
a single hardware controller which can control
several fixed head disks. It maintains a queue in
hardware of up to 32 outstanding requests. The
queue is kept sorted in SLTF order, and the
requests are handled accordingly [43].

There is a large body of literature that considers
rotational scheduling. Among those papers are
[20,25,31,44-52]. ‘

2.6.4. Skip sector allocation

Three other optimization methods can also be
included in the category of rotational scheduling.
First, we note that a process which is sequentially
processing a file will generally have some mini-
mum time between 1/0 requests, and this time is
usually larger than the time to pass the inter-record
gap on a disk. The result is that such processes
experience latencies that are frequently close to a
full disk or drum rotation, rather than the ex-
pected one-half. The solution is ‘skip sector’ alloc-
ation, by which the sectors (from 1-9) might be
numbered 1, 6,2, 7, 3, 8,4, 9, 5. Thus, if a process
reads a block and a very short time later issues a
request to read the next sequential block, with
high probability the next block to start to pass
under the read head will be the desired one. In
many cases, this will cut the mean latency substan-
tially [53]. :

S U—

' view

O

innel be-
/hen the
isk, stor-
empt to
) If the
is busy,
iding on
s scheme
th small

rroughs,
imizer is
control
|ueue in
sts. The
and the

onsiders
ers are

also be
eduling.
entially
€ mini-
time is
-record
"ocesses
ise to a
the ex-
¢ alloc-
ight be
process
ssues a
¢, with
O pass
me. In
ibstan-

AJ. Smith / Input/Output optimization and disk architecture ‘ 109

2.6.5. Track offset for head switching

A related problem is that of head switching
when a process reads the last block on a track and
then the first block on the next track. The head
switching time is usually significantly larger than
the time to pass the interrecord gap; thus if the
track start position is aligned on all tracks in the
cylinder, rotational latency will often be almost a
full rotation time. The IBM 3310 disk (discussed
below) solves this problem by offsetting the start
of track position in consecutive tracks by eight
sector positions (4 track). Therefore, a read can
continue on the next track without missing a rota-
tion. (See also [54].) A similar scheme is used for
the 3370 [55).

2.6.6. Folding

Finally, a third rotational optimization is ‘fold-
ing’ [56,57]. This is a means of trading space for
time. Frequently used pages on a drum are repli-
cated at different angular positions, so that a
request is serviced by the first copy to pass a read
head. Now that main memory has become so
cheap, such pages can almost always be kept mem-
ory resident.

2.7. Look ahead fetch and allocation

Because many or most files (certainly most user
files) are read sequentially, look ahead fetches to
files being read can reduce or eliminate the need to
wait on I1/0 operations. This idea is particularly
valuable for very fast machines which run very
large programs (e.g. the Cray I), since the degree
of multiprogramming usually cannot be increased
sufficiently to overlap most I1/0 waits.

Two different and interesting schemes for look
ahead fetching are described in the literature. In
[58] data for the IBM IMS data base system was
studied. See also [59,60]. Information was collected
on sequences of references to consecutively located
blocks on the disk. It was found that disk blocks
tended to be read in sequential runs, with the run
length distribution being highly skewed. Therefore,
a prefetch algorithm could be designed to fetch a
variable number of blocks ahead, depending on
the length of the current sequential run. Dynamic
programming was used to develop an algorithm
which prefetched the correct number of blocks,
such that the costs associated with both demand
fetches and unnecessary prefetches were mini-
mized.

Different considerations motivated the work
done by Powell [6] on the DEMOS operating
system for the Crayl. For that machine, it is
typical to have one program or a small number of
programs at a time running on the machine in
batch mode. Frequently, one or more sequential
files are being processed. The buffer space that is
available must be dynamically allocated among all
of the files that are being read or written, and the
space may also be used for other operating system
functions. The problem therefore is to dynamically
allocate just enough buffer blocks to a file to
reduce to a minimum the probability that it will
run out of data, without over allocating buffer
blocks and therefore wasting them.

There is some other literature relating to look
ahead fetch and allocation. The interested reader
might look at [61].

2.8. Compaction and fragmentation

There are several ways to allocate space on disk
for files. A simple method is to divide the disk
surface into fixed size sectors, and to assign these
sectors randomly as space is required; this method
is used in UNIX [62]. Unfortunately, since most
files are read and written sequentially, this results
in a disk seek being required for almost every 1/0,
even though seeks might not have been required
had the file been allocated sequentially. Further, it
makes look ahead fetch very difficult, since the
next block in the file can be located anywhere on
the disk surface, and must be found (via tables or
links)- before it can be accessed. Therefore, even
though this scheme has no problem with external
fragmentation or compaction, it is not very desira-
ble for large scale machines, and doesn’t even
work very well for small ones. Fixed block alloca-
tion has the additional problem of internal frag-
mentation, by which the last block in the file is
only partially in use. If the blocks are large and
the files small, this can be significant effect.

Much more efficient is the idea of allocating
data sets in extents. That is, when a file is being
written, a block of space is allocated to it; usually
several tracks or cylinders. If that amount of space
is insufficient, another block (extent) is allocated;
if possible, the next sequential block, otherwise
wherever convenient. If a block of the desired size
(e.g. 10 cylinders) is not available, two or more
smaller blocks may be supplied to fill the space
request. The only constraint is that some systems

110 A.J. Smith / Input/Output optimization and disk architecture

limit the number of extents that can be recorded.
(E.g. in IBM systems, the limit is 16 extents.)
When the file is deleted, the space that it occupied
(one or more extents) is returned to the free space
list.

When allocating by extents, external fragmenta-
tion can become a problem; i.e. after a period of
time, the space available for file allocation be-
comes fragmented into a large number of small
blocks (separated by space in use) and large ex-
tents are not available. Since files can be allocated
in several segments, most files can still be placed.
The problems that arise are the following:

(a) some files cannot be allocated because the
desired amount of space cannot be obtained with
the limited number of extents permitted, and

(b) when the file is allocated in noncontiguous
segments, there is significantly reduced physical
sequentiality and the optimizations mentioned
above (arm scheduling, block size selection, look
ahead fetching) are no longer as effective.

Internal fragmentation can also be a problem in
two different ways when using extents. First, a
user may specify too large an extent. If that extra
space isn’t released, significant amounts of disk
space may be wasted. Similarly, if fixed physical
block sizes are in use, the last physical block may
also contain empty space.

There are several steps to be taken to minimize
the fragmentation problem. One of the more inter-
esting is discussed in [6]. In the DEMOS system,
file blocks can be allocated one at a time as the file
is written, much as in Unix. Powell suggests that
when a pattern of sequential writing is observed, a
number of blocks ahead of the point of writing is
observed, a number of blocks ahead of the point
of writing be reserved (to be released later if
necessary). IBM operating systems, conversely, ask
the user to specify an extent size, all of which is
initially reserved (to be optionally released later).

The most general solution to fragmentation is
compaction; that is, the partial or total reorganiza-
tion of the information on the disk, so that frag-
mentation is temporarily eliminated. Compaction
is undesirable for several reasons:

‘(a) It is slow and time consuming, thus using
system resources.

(b) It will usually prevent access to the area
being compacted, thus disrupting system use.

(c) It is necessary to reset any pointers that
refer to the file (or to locations within the file) by
physical address; this may not always be possible.

Despite these problems with compaction, it is

practical, especially when used on a partial basis. .

The author has been informed that the algorithms
suggested in [63] have been operational on a daily
basis in more than 50 installations for almost two
years. Apparently five minutes per volume per day
keeps 3330-11 or 3350 volumes essentially free of
fragmentation problems.

A general discussion of the compaction /frag-
mentation problem is available in [64]. More re-
cent work relating directly to file systems is in [65]
and [66].

2.9. 1/0 congestion and multiple paths

It is not intuitively obvious, but it is the under-

standing of the author that congestion in the I/O
system most frequently manifests itself not at the
device, but at the channel, storage controller or
string controller. This happens because one chan-
nel may interface with two or more storage con-
trollers, each of which will control two or more
strings, each string having a head of string con-
troller and several disk spindles. A significant de-
crease in such congestion can be obtained by
allowing multiple paths; ie. a storage controller
might interface to two channels, and a string might
have two string controllers. Two published perfor-
mance analyses of these strategies exist, [67.68],
and show that multiple pathing can yield signifi-
cant benefits.

2.10 File structure

A very important aspect of file system optimi-
zation is the structuring (and searching) of files in
a way that reflects the observed or anticipated use
of that file. Tree structured files (e.g. ISAM,
VSAM, B-Trees, etc.) are particularly useful for
files with random insertion or deletion. Other
structures are used under other circumstances. A
good discussion of the general data structure issues
is provided in [13]. More recent research relating
specifically to file systems may be found in [69].

2.11. Other file system tuning

Additional methods for improving I/O and file
system performance are discussed in [16] and we
summarize some of them here:

on, it is

ial basis. .

gorithms
n a daily
nost two
: per day
y free of

on/frag-
More re-
is in {65]

1¢ under-
the I1/0
ot at the
roller or
ne chan-
age con-
or more
ing con-
icant de-
ined by
ontroller
ng might
1 perfor-
{67,68],
1 signifi-

optimi-
f files in
ated use
ISAM,
eful for
. Other
mnces. A
re issues
relating
1 [69].

and file
and we

A.J. Smith / Input/Output optimization and disk architecture 1

2.11.1.

There should be several paging data sets and
those data sets should be spread across as many
devices, controllers and channels as possible to
minimize congestion. ‘

2.11.2.

Other frequently used data sets (user catalogs,
spool data sets, scratch data space and user data
bases) should also be widely distributed.

2.11.3.
Frequently used system modules should be

either made main memory resident or should be

placed in a special paging data set, such that the
modules can be immediately located. Modules
should also be packaged (as densely as possible)
on page boundaries. Modules used together should
be stored together.

2.11.4.

Pages used just frequently enough to be faulted
on frequently (e.g. timing routines) may be fixed
in memory.

2.12. Paging 1/0

It should be pointed out that paging 1/0 dif-
fers from user initiated I1/0 in that it is almost
totally under the control of the operating system.
Thus each of the optimizations described above
can be employed in the desired manner by chang-
ing only a small amount of supervisor code rather
than by forcing users to change their habits and
individual programs. In particular, if devices, con-
trollers and channels are dedicated solely to pag-
ing, congestion can be controlled and minimized.

2.13. 1/0 for real time systems

Real time systems are those that must respond
in ‘real’ or wall clock time. Typical examples are
process control, robots and military applications.
Such real time systems are almost always run on
dedicated minicomputers, and hence we mention
them only briefly. Most important, we note that

_certain 1 /0 events may require very fast response;

the usual scheme is to hardwire a priority interrupt
mechanism with a large number of priority levels.
A discussion of some of the considerations and
some implementations appear in [70}.

3.0. Current and forthcoming device architecture

An important influence on both the design and
performance of the file and I1/0 systems is the
architecture of the I /O devices. Since Direct Access
Storage Devices (DASD) such as disks and drums
are the primary components in most large machine
1/0 configurations, we shall concentrate on their
architecture and future development. Further, since
IBM is the dominant force in large data processing
installations, we shall also discuss primarily IBM
or IBM compatible devices, and aspects of the
IBM 1/0 system architecture. We also note that'a
large number of IBM 1/0 devices have become
industry standards, in that they are available from
several vendors other than IBM [71-74].

First, we shall consider current IBM device and
system architecture, its problems, and the new
fixed sector disks (3310, 3370) which solve some of
these problems. Other problems are addressed by
the semiconductor drums that are being made by
STC and Intel. Finally, we shall discuss some of
the future directions for the 1/0 and file system as
they affect device architecture and 1/0 system
operations.

There are some topics related to the material in
this section which we shall not discuss in any
detail. IBM channel architecture is covered to
some extent in [75]. Disk technology is discussed
in [76]. For control units, see {73,77-79}.

3.1. Count-key-data disk architecture and use

Up until recently, all IBM large disk products
(i.e. excluding things such as floppy disks) were of
the ‘count key data’ (CKD) architecture. By this, it
is meant that data blocks on the disk are com-
posed of three parts (Fig. 5). The first part of each
block is the COUNT, which contains the physical
address of its own block and defines the size of the

COUNT-KEY-DATA RECORD FORMAT

COUNT KEY DATA
Trock defect Key Dato

Info. Error Correction Error Correction
Physica! address Bits " Bits

Trock stotus

Record sumber

Key length

Dota length

Error Correction
Bits

Fig. 5. Count-key-data record format.

112 AJ. Smith / Input/Output optimization and disk architecture

key and data areas of the block. The KEY area is
optional, and contains a key associated with the
block. It is possible to search a track, or more
general portions of a file, for a specific record by
using search commands that look for certain key
values [80]. Finally, the DATA area contains the
actual programmer defined data in the file. There
is a gap between each of the three components of a
block and between blocks. Because of the ex-
istence of these gaps, the storage capacity of a disk
is a function of the block length; short blocks
result in far more gaps which occupy disk area
without containing data. For example, the maxi-
mum track capacity of an IBM 3350 disk [18,74]
with one block is 19069 bytes; this shrinks to 5840
bytes when using 80 byte blocks, as is common
(see above). (Our example for standard CKD disk
architecture shall be the IBM3350. At the time
this is being written, the 3380 [81] has been an-
nounced, but no details are available. The 3340
[82] is not typical and is a poor example.)

An 1/0 operation takes place as the result of
the execution of a channel program. A channel
program is constructed by the operating system as
the result of some I/0 request. A typical channel
program might appear as in Table 1.

A given channel program can repeat the last
two commands several times so that several adjac-
ent blocks can be read or written, or it can even
repeat the whole sequence so that a large number
of scattered blocks may be transferred.

In the IBM 370 architecture, a channel program
may be initiated with either of two instructions:
Start 10 (SIO) or Start IO Fast Release (SIOF).
The SIO instruction initiates a channel program,

Table 1
Channel program
Command Parameters Purpose
Seek Cylinder and Move read /write head
track address to correct track
Set sector Sector number Release 1/0 path
during rotation
Search Block identifier Find identifier of
or key the desired block
Read or write Buffer address Read or write data

and then keeps the CPU waiting while it is de-
termined that the channel, control unit and device
are all available. The SIOF instruction basically
waits only to determine if the channel is available;
if the rest of the 1/0 path is not free, the channel
program will have to be restarted. The SIOF in-
struction is generally a lot faster, since an SIO can
take on the order of 100 ps to complete.

A discussion of some of the material above may
be found in [18,80].

3.2. Shortcomings of current architectures

The description in Section 3.1 of the nature of
IBM device and I/0 system design should im-
mediately suggest some problems. First we note
that the sequence of commands for most CKD
channel programs does not permit much flexibility
or optimization. Because each command contains
very little information, it is very difficult to look
ahead and sequence requests, nor can buffering be
set up in the correct direction, since it is not
known in advance whether the operation is read or
write.

The record format also inhibits many kinds of
optimization. First, since records are of variable
size (and may span several tracks, up to a maxi-
mum record size of 32768 bytes), it is difficult to
provide general purpose fixed size buffers. (This is
different from some other computer systems; may
other manufacturers have long since chosen to
implement only fixed size blocks located at fixed
sector addresses.) Second, when doing a read or
write, the actual data address may not be known,
since a key search may be needed to determine
which record is actually desired. It is possible to
set up a channel program that searches a large
number of tracks looking for the desired record.
The need to examine many blocks before locating

the correct target may interfere with buffering

strategies.

The way in which the CPU starts channel pro-
grams is inherently inefficient. Even with the SIOF
instruction, the CPU must wait to determine
whether the channel is free; if the rest of the path
is not free, the start 10 must be reissued. Ideally,
an 1/0 operation could be unconditionally ini-
tiated, and would then be queued by the hardware
until it either completed or failed in such a way
that software intervention was required.

Similar complaints may be made about current
small disk designs.

P L e e L
R e o Aep e

it is de-
ad device
basically
awvailable;
: channel
SIOF in-
. SIO can

»ove may

nature of
iould im-
we note
»st CKD
flexibility
contains
t to look
‘fering be
it is not
is read or

kinds of
" variable
) a maxi-
ifficult to
5. (This is
:ms; may
hosen to
| at fixed
' read or
¢ known,
letermine
sssible to
s a large
d record.
: locating
buffering

nnel pro-
the SIOF
letermine
the path
. Ideally,
aally ini-
hardware
‘h a way

t current

AJ. Smith / Input/Output optimization and disk architecture 113

FIXED BLOCK ARCHITECTURE SECTOR FORMAT

Identification Data
Field Field
38 Bytes 562 Bytes

Dato (512 Bytes)
Error Correction Bits

Sector Status

Sector Address

Error Correction
Bits

Fig. 6. Fixed block architecture sector format.

3.3. Fixed sector disks

Within the last year, IBM has begun shipping
two new disk products, the 3310 disk [83] and the
3370 [84] disk, which have what is called the fixed
sector (FS) architecture. Because these new disks
have certain advantages over the older designs
[85], and because they represent a significant
change over the older disks, we believe that they
indicate the future direction of IBM disk architec-
ture. The recently announced 3380 [81] and 3375
[86] are believed by this author to be the end of
the line, rather than indicating a continuation of
the CKD architecture for computer systems be-
yond the System 370.

We concentrate here on the 3310 disk which
was the first to be shipped. The 3310 is designed
with exactly 32 blocks per track, each block of
which has exactly 512 data bytes and no key field.
There are also 88 bytes per block for the record
address, error correcting codes, etc. (See Fig. 6.)

The sectors are numbered in such a way that on .

each successive track, the sector numbers are offset
by 8. This is so that a multiblock transfer which
spans consecutive tracks can continue without in-
terruption despite the time to switch heads, which
is never more than the time to rotate 8 sectors.
The commands accepted by a 3310 disk are
significantly different from those used for the 3350.
All reading or writing occurs in what is referred to
as an extent (not the same ‘extent’ as noted above
in Section 2.8). The first command in all channel
programs is ‘define extent’ which specifies a se-
quence of consecutive blocks. Typically, the next
command is ‘locate’ which indicates the starting
block, the block count (number of blocks) and the
operation to be performed. Locate does not, how-
ever, actually initiate the operation. The final com-
mand is ‘read’ or ‘write’ with a buffer address. We
note that the all of the relevant information is
received by the time of the second command; that

is, the locate specifies the operation, i.e. which
blocks are to be transferred and whether they are
to be read or written. There is no uncertainty such
as occurs when there is a keyed search. '

The advantages of this simplified architecture
are several. The fixed block size significantly mini-
mizes data management problems; that is, all
buffers can be a fixed size. External fragmentation
on the disk surface is eliminated, since there is
always an integral number of blocks per track. The
management of any sort of 1/0O cache [1] is sim-
plified, since all blocks are of fixed size. The
number of interrecord gaps is limited to 32; thus a
certain level of storage utilization is guaranteed.

The nature of the commands accepted by the
3310 permit future changes in the structure of the
1/0 system. Specifically, only the final command
(read or write) requires a response; thus the entire
channel program could be accepted and queued in
the channel or control unit without any attention

- from the CPU.

Some of the features of the 3370 disk are also
notable. In order to minimize arm contention, the
disk has two arms, each serving a different set of
disk surfaces. The data rate is 1.859 mbytes/s
which is higher than can be accommodated on a
single byte wide standard IBM channel. Finally,
the data density on the disk is much higher than
on earlier disks.

3.4. Electronic drums

Disks have an inherent shortcoming: they are
mechanical and there are limits to the performance
of mechanical systems. For example, the rotation
time of the 3350 disk, which is designed for high
performance machines, is 16.7 ms, and for the
much newer 3310 disk, it is 19.1 ms. The perfor-
mance of the 3370 is only slightly better than that
for the 3310. Even the 3375 and 3380 are not
significantly faster. It is generally known [76] that
improvements in the mechanical access times of
disks and drums are difficult to obtain and changes
will be small. Therefore, if fast 1/0 response is
required, mechanical delays must be eliminated.

Two companies produce electronic replace-
ments for the IBM 2305 fixed head disk. Intel [87]
is making its Fast 3805 electronic drum, which is
in several customer sites undergoing tests at the
time of this writing. It is about 10 times faster than
the 2305 [41] and offers greater data capacity
(12-72 mbytes) at lower cost and higher transfer

114 _ AJ. Smith / Input/Output optimization and disk architecture

rate. It is composed of MOS RAM chips. Storage
Technology Corporation is making the 4305 Solid
State Disk. Originally designed with CCD’s, it has
been redesigned using MOS RAM, since CCD’s
were not available in the desired quantity. Al-
though random access memory can normally be
used more effectively as main memory, it may still
be cost effective for electronic drums. There are
several reasons why main memory is not simply
expanded; some of them appear in [1]. Most
significant is the fact that major changes in the
operating system would be required.

Both of the electronic drums (or electronic disks)
discussed here are likely to sell in good volume,
since many high end machines have heavy paging
loads which are currently serviced by a combina-
tion of 2305 fixed head disks, also referred to as
drums, which are expensive and small, and 3330
and 3350 disks which are slow. There are not yet
many of these devices in the field, and their success
in improving system performance has not yet been
shown. The importance of electronic drums is that
their high speed and data transfer rates may avoid
1/0 bottlenecks [1] that are likely to occur as
increasing CPU speeds result in higher levels of
1/0 traffic than can be accommodated by current
or future mechanical 1 /0 systems.

3.5. Future directions for I1/0 device and system
architecture

Several changes are likely in 1/0 device and
system architecture in IBM-like systems over the
next few years. These changes will be the result
not only of improvements in the technology di-
rectly applicable to the I1/0 system, but are also
due to changes in the rest of the system which
make 1/0 system improvements important.

Currently the CPU in an IBM operating system
requires a detailed knowledge of the 1/0 transac-
tion and spends a significant amount of time
ensuring that the 1/0 operation occurs as in-
tended. Specifically, it writes the channel program,
translates virtual to real addresses, fixes pages,
provides physical device addresses (track, cylinder),
receives 1/0 condition codes (often after every
step), etc. It is reasonable to expect that the CPU
will eventually be able to issue a command of the
form: {(virtual) buffer address, logical data ad-
dress (i.c. byte range within file), read /write} and
the rest will all occur asynchronously. There will
be no delay for channel, controller or device busy;

the command will be accepted and queued in
either the channel, controller, or device. All I /0
interrupts possibly excepting the final one will be
suppressed. In fact, the I1/O interrupt could be
placed on a memory resident queue which would
be periodically examined by the CPU rather than
actually interrupting the CPU.

Current physical protocols between the chan-
nels and the controllers are too slow for upcoming
systems. Even a double wide data path permits
only a 3 mbytes /s transmission rate because of the
handshaking required. (The IBM channel interface
protocol is of the form: ‘please’, ‘here it is’, ‘thank
you’, ‘you’re welcome’ [88].) Faster CPU’s will
mean new and faster data transfer protocols [89].
Further, higher data densities on the disk surface
means that data will have to be transmitted faster.
This has already happened to some extent with the
IBM 3380 which due to its high bit density has to
transmit at 3 mbytes/s. This is accommodated by
bypassing the standard channel protocol and wir-
ing the storage controller into the channel director
rather than to the standard channel interface.

1/0 transfers could benefit from additional
buffering and parallelism. Controllers and chan-
nels should be able to transmit more than one 1/0
data streamat a time, especially since a controller
may be shared by more than one CPU. (The new
IBM 3880 Storage Controller [78] contains two
‘storage directors’, each of which is really an inde-
pendent controller. We are suggesting that each
effective controller, whether it is called a director
or controller, have the capacity to pass multiple
data streams.) High data rates suggest that more
buffering at each end of each transmission line
could improve performance. In particular, the
limited buffering currently (of only a few bytes)
means that all events must be responded to quickly
or the operation aborted. A significant amount of
buffering already exists in the Cray disks, which
can buffer an entire disk sector and then transmit
it as needed at a much higher data rate than the
inherent disk data rate. This feature is used ad-
vantageously in the DEMOS operating system for
the Cray [6], in which the next physical sequential
block is buffered.

It might be useful to permit larger 1/0 block
sizes. Current 32 K limitations are smaller than
might sometimes be desired for high density tapes.
(The author has been informed that the basic 370
I1/0 architecture allows up to 64 K records with a
single channel command word. The 32K restric-

O e e D T M, D DD e Q)

wwed in
\a11/0
will be
uld be
1 would
er than

¢ chan-
)}coming
permits
ie of the
nterface
', ‘thank
U’s will
ols [89].
surface
d faster.
with the
y has to
lated by
ind wir-
director
ice.
Iditional
d Cha.ﬁ'
me 1/0
mtroller
[he new
ins two
an inde-
1at each
director
multiple
\at more
ion line
dar, the
v bytes)
» quickly
nount of
s, which
transmit
than the
used ad-
stem for
»quential

‘O block
der than
ty tapes.
»asic 370
is with a
{ restric-

AJ. Smith / Input/Output optimization and disk architecture 115

tion is imposed by the access methods.)

We therefore expect that the following changes
will take place:

(a) Controllers and/or channels will become a
lot more intelligent. They will be able to take
simple commands and execute long and complex
sequences of operations from them. They will be
able to execute simultaneously several different
1/0 operations and will be able to perform com-
mands out of order when that is desirable.

(b) Much more buffering will be introduced.
Not only will 1/0 streams be transfer buffered to
a greater extent, but cache buffers will appear [1].

(c) Devices will have higher transfer rates, more
local buffering, both for 1/0 transfers and to hold
data while data paths are busy, and will have
substantial local error correction facilities [901.

4. Summary

In this paper we have surveyed the state of the
art in large 1/0 system architecture and optimiza-
tion. Section?2 considered most of the possible
1/0 system optimizations and provided a survey
of the relevant literature, including analytic mod-
eling papers. Section3 examined disk and 1/0
architecture. The nature of current count-key-data
disks and the new fixed block disks was discussed.
Shortcomings of IBM 1/0 architectures were e€x-
amined, and some likely changes were indicated.
In the companion paper to this [1], we go one step
further, and summarize some of our research re-
sults which will lead to improved 1/0 system
performance.

References

[1] AJ. Smith, Optimization of 1/0 systems by cache disk
and file migration: a summary, in Performance Evaluation
(1981) to appear.

[2] R.C. Daley and P.G. Neumann, A general purpose file
system for secondary storage, Proc. FICC (1965) 213-229.

[3] R.J. Feiertag and E.L Organick, The multics input/output
system, Proc. Third SIGOPS, Oct. 1971, Stanford Univer-
sity, Stanford, CA, pp. 35-41.

[4] G. Pirkola, A file system for a general purpose time
sharing environment, Proc. IEEE 63 (6) (1975) 918-924.

[5] W.A. Clark, The functional structure of OS/360, Part 111,
Data management, IBM Systems J. 5 (1) (1966) 30-51.

[6] M. Powell, The DEMOS file system, Proc. Sixth ACM
Symp. on Operating Systems Principles, Nov. 1977, pp.
33-42.

[7} AJ. Smith, Bibliography on file system and input/output
optimization and related topics, submitted for publication.

[8] S. Berbec, A. Shibamiya, S. Togasaki and H. Yoshida, Use
of direct access storage devices by MVS customers— guide
survey results, Proc. Guide 47 Conference, Nov. 1978,
Chicago, IL, pp. 1121-1138.

{9] T. Peterson, Criteria for optimal blocksize selection: Com-
puter measurement and evaluation, selected papers from
the SHARE project, Vol. 111, Dec. 1973~Mar. 1975, pp.
454-465.

[10] R.E. Paulhamus and G.E. Ward, A study on the effective-
ness of data blocking in an MVS environment, Proc.
Computer Performance Evaluation Users Group Meeting,
Oct. 1977, New Orleans, Louisiana, pp. 143-138.

{11] O. Nevalainen and M. Vesterinen, Determining blocking
factors for sequential files by heuristic methods, Comput.
1.20 (3) (1977) 245-247.

[12] C. Lazos and A. Vafladis, A method to estimate the I/O

buffer size in a computer system, Comput. J. 22 (4) (1979)
323-327.

{13] D.E. Knuth, The Art of Computer Programming, Vol. 3,
Sorting and Searching (Addison-Wesley, Reading, MA,
1973).

[14] A.J. Smith, A locality model for disk reference patterns,
Proc. IEEE Comput. Soc. Conf., Feb. 1975, San Francisco,
CA, pp. 109-112.

[15] A.J. Smith, Analysis of a locality model for disk reference
patterns, Proc. 1976 Conf. Information Sci. and Syst,
Mar. 1976, The Johns Hopkins University, Baltimore,
MD, pp. 593-601.

{16] T. Beretvas, Performance tuning in OS/VS2 MVS, IBM
Systems J. 17 (3) (1978) 290-313.

[17] W. Piepmeier, Optimal balancing of 1/0 requests to disks,
Comm. ACM 18 (9) (1975) 524-527.

{18] IBM Corp., Reference manual for IBM 3350 direct access
storage, GA26-1638, IBM Corp., Armonk NY.

[(19] T. Teorey and Tad B. Pinkerton, A comparative analysis
of disk scheduling policies, Comm. ACM 15 3) (1972)
177-184.

{20} EG. Coffman and PJ. Denning, Operating Systems The-
ory (Prentice-Hall, Englewood Cliffs, NJ, 1973).

{21] EG. Coffman and M. Hofri, On scanning disks and the
analysis of their steady state behavior, Proc. Conf. on
Measuring, Modelling and Evaluating Computer Systems,
Oct. 1977 (North-Holland, New York) 251-263.

[22] M. Hofri, Disk scheduling: FCFS vs. SSTF revisited, Proc.
Second Colloque International Sur Les Systems D’Exploi-
tation, IRIA, Oct. 1978. Republished, Comm. ACM 23
(11) (1980) 645-653.

[23] J. Abate, H. Dubner and S. Weinberg, Queueing analysis
of the IBM 2314 disk storage facility, JACM 15 (4) (1968)
577-589. .

[24] E.G. Coffman, L.A. Klimko and B. Ryan, Analysis of
scanning policies for reducing disk seck times, SIAM J.
Comput. 1 (3) (1972) 269-279.

[25] P. Denning, Effects of scheduling on file memory opera-
tions, Proc. SJICC 1967, pp. 9-21.

{26] D.W. Fife and J.L. Smith, Transmission capacity of disk
storage systems with concurrent arm positioning, IEEEEC

14 (8) (1965) 575-582.

{27] H. Frank, Analysis and optimization of disk storage de-
vices for time sharing systems, JACM 16 (4) (1969) 602-
620.

116 A.J. Smith / Input/Output optimization and disk architecture

{28] C.C. Gotlieb and G.H. MacEwen, Performance of mova-
ble head disk storage devices, JACM 20 (4) (1973) 604-623.

{29] T.J. Teorey, Properties of disk scheduling policies in multi-
programmed computer systems, Proc. FICC (1972) 1-11.

[30] N.C. Wilhelm, An anomaly in disk scheduling: a compari-
son of FCFS and SSTF seek scheduling using an empirical
model for disk accesses, Comm. ACM 19 (1) (1976) 13-17.

{31] CK. Wong, Minimizing expected head movement in one-
dimensional and two dimensional mass storage systems,
Comput. Surveys 12 (2) (1980) 167-178.

[32] W.C. Lynch, Do disk arms move?, Performance Evalua-
tion Review 1 (4) (1972) 3-16.

{33] AJ. Smith, On the effectiveness of buffered and multiple
arm disks, Proc. Fifth Annual Symp. on Computer Archi-
tecture, Apr. 1978, Palo Alio, CA, pp. 242-248.

[34] M. Franklin and A. Sen, An analytic response time model
for single- and dual-density disk systems, IEEE Trans.
Comm. 23 (12) (1974) 1269-1276.

{35] D.L. Stone and R. Turner, Disk throughput estimation,
Proc. ACM Annual Conference, Aug., 1972, pp. 704-711.

{36] P.H. Seaman, R.A. Lind and T.L. Wilson, On teleprocess-
ing system design, Part IV, An analysis of auxiliary storage
activity, IBM Systems J. 5 (3) (1966) 158-170.

[37] N.C. Wilhelm, A general model for the performance of
disk systems, JACM 24 (1) (1977) 14-31.

[38] S. Fuller, An optimal drum scheduling algorithm, IEEE
Trans. Comm. 21 (11) (1972) 1153-1165. _

{39] S. Fuller, Minimal total processing time drum and disk
scheduling disciplines, Comm. ACM 17 (7) (1974) 376~
381

{40] H. Stone and S.H. Fuller, On the near optimality of the
shortest— Latency time first drum scheduling discipline,
Comm. ACM 16 (6) (1973) 352-353.

{41] IBM Corp., Reference manual for the IBM 2835 storage
control -and the IBM 2305 fixed head storage module,
GA26-1589, (IBM Corp., San Jose, CA, 1972).

[42] A. Rafii, Study of the performance of RPS, Performance
Evaluation Review 5 (4) (1976) 21-38.

[43] Burroughs Corp., Burroughs B6700 information process-
ing systems reference manual, (Burroughs Corp., Detroit,
M1, 1978).

{44] C. Adams, E. Gelenbe and J. Vicard, An experimentally
validated model of the paging drum, Acta Informat. 11
(1979) 103-117.

[45] 1. Abate and H. Dubner, Optimizing the performance ofa
drum-like storage, IEEE Trans. Comm. 18 (11) (1969)
992-997.

{46] W.H. Burge and A.G. Konheim, An accessing model,
JACM 18 (3) (1971) 400-404.

[47] R.A. Cody and E.G. Coffman Jr., Record allocation for
minimizing expected retrieval costs on drum-like storage
devices, JACM 23 (1) (1976) 103-115.

[48] E.G. Coffman, Jr., Analysis of a drum input/output queue
under scheduled operation in a paged computer system,
JACM 16 (1) (1969) 73-90. Also see Errata, JACM 16 (4)
(1969) 646. ‘

{49] E. Gelenbe, J. Lenfant and D. Potier, Response time of a
fixed head disk to transfers of variable length, SIAM J.
Comput. 4 (4) (1975) 461-473.

[50] S. Ghosh, File organization: Consecutive storage of rele-
vant records on drum-type storage, Information and Con-
trol 25 (1974) 145-165. .

[51] P.J. Denning, A note on paging drum efficiency, Comput.
Surveys 4 (1) (1972) 1-3.

{52] W. Oney, Queucing analysis of the scan policy for moving
head disks, JACM 22 (3) (1975) 397-412.

[53] H. Chorosz, System allowing direct access to sequential
files, IBM Technical Disclosure Bulletin 19 (6) (1976)
2105-2107.

[54] JE. Guest, R.W. King and R.C. Kiscaden, Logical sector
interleave, IBM Technical Disclosure Bulletin 17 (5) (1974)
1460-1463.

{55] IBM Corp., Disk storage technology, (IBM Corp., San
Jose, CA, 1980).

[56] L.J. Scheffler, Optimal folding of a paging drum in a three
level memory system, Proc. Fourth SIGOPS Conf. York-
town Heights, NY, Operating Systems Review 7 (4) (1973)
58-65.

{57} R. Baird, Rapid access method for fixed block DASD
record, IBM Technical Disclosure Bulletin 20 (4) (1977)
1565-1566.

[58] A.J. Smith, Sequentiality and prefetching in data base
systems, ACM Trans. Database Systems 3 (3) (1978) 223
247.

{59] A.J. Smith, Sequential program prefetching in memory
hierarchies, IEEE Trans. Computers 11 (12) (1978) 7-21.

[60) J. Rodriguez-Rosell, Empirical data reference behavior in
database systems, Comput. J. 9 (11) (1976) 9~13.

{61] D.E. Gold and D.J. Kuck, A model for masking rotational
latency by dynamic disk allocation, Comm. ACM 17 (5)
(1974) 278-288.

[62] D. Ritchie and K. Thompson, The UNIX time sharing
system, Comm. ACM 17 (7) (1974) 365-375.

[63] P.A. Franaszek and J.P. Considine, Reduction of storage
fragmentation on direct access devices, IBM J. Res. De-
velop. 23 (2) (1979) 140-148.

[64] D.E. Knuth, The Art of Computer Programming, Vol. 1,
Fundamental Algorithms, 2nd edition (Addison-Wesley,
Reading, MA, 1973).

[65] J.P. Considine, A computable measure of fragmentation
for direct access volumes, IBM Res. Rep. 6241 (1976).

{66] K. Maruyama and S.E. Smith, Optimal reorganization of
distributed space disk files, Comm. ACM 19 (11) (1976)
634-642.

{67] Y. Bard, A model of shared DASD and multipathing,
Comm. ACM 23 (10) (1980) 564-583.

[68] A.J. Smith, An analytic and experimental study of multi-
ple channel controllers, IEEE Trans. Comm. C-28 (1)
(1979) 38-49.

[69] P. Quittner and D. Kotsis, Comparison of different disk
searching methods, Software-Practice and Experience 8
(6) (1978) 673-679.

[70] K.J. Thurber, R.C. DeWard, T.W. Petschauer, M.P. Fedde,
and D.G. Kaminski, I/O concepts for a real time system,
Proc. Compcon, 1976, Washington, DC, pp. 190-195.

[71] Computerworld, Plug-compatible drives: What to look for,
Computerworld (1980) 10.

[72] M. Blumenthal, PCMs braving ups and downs in disk
market, Computerworld (1980) 1.

{73] Memorex Corp., 3674 storage control unit theory of opera-
tions manual; PN 3674.21-01, (Memorex Corp., Santa
Clara, CA, 1979).

[74] Memorex Corp., 3650 direct access storage subsystem,
theory of operations manual, PN 3650.21-02, (Memorex
Corp., Santa Clara, CA, 1978).

g

cy, Comput.
y for moving

o sequential
) (6) (1976)

dgical sector
17 (5) (1974)

Corp., San

m in a three
Conf. York-
7(4) (1973)

lock DASD
) 4) (1977

| data base
(1978) 223~

in memory
1978) 7-21.
behavior in
13.

g rotational
CM 17 (5)

me sharing

1 of storage
I. Res. De-

ing, Vol. 1,
on-Wesley,

gmentation
(1976).

nization of
(11) (1976)

ltipathing,

y of multi-
. C28 (1)

ferent disk
perience 8

LP. Fedde,
ne system,
)-195.

o look for,

1s in disk

y of opera-
p., Santa

subsystem,
(Memorex

A.J. Smith / Input/Output optimization and disk architecture 117

[75) D.T. Brown, R.L. Eibsen and C.A. Thomn, Channel and
direct access device architecture, IBM Systems J. 8 (3)
(1972) 186-199.

[76] K. Haughton, An overview of disk storage systems, Proc.
IEEE 63 (8) (1975) 1148-1152.

{77] IBM Corp., Reference manual for IBM 3830 storage con-
trol and IBM 3330 disk storage, GA26-1592, (IBM Corp.,
Armonk, NY 1972).

(78] IBM Corp., IBM 3880 storage control description, GA26-
1661, (IBM Corp., San Jose, CA, 1980).

[79] G.R. Ahearn, Y. Dishon and R.N. Snively, Design innova-
tions of the IBM 3830 and 2835 storage control units,
IBM J. Res. Develop. 16 (1) (1972) 11-18.

{80} J. Buzen, I/O subsystem architecture, Proc. IEEE 63 (6)
(1975) 871-879.

[81] IBM Corp., IBM 3380 direct access storage, IBM DPD
Product Announcement (June, 1980).

{82] R.B. Mulvany, Engineering design of a disk storage facility
with data modules, IBM J. Res. Develop. 18 (6) (1974)
489-505.

[83] IBM Corp., IBM 3310 direct access storage reference
manual, GA26-1660, (IBM Corp., Armonk, NY 1979).

[84] IBM Corp., IBM 3370 direct access storage description,
GA26-1657, (IBM, General Products Division, San Jose,
CA, 1979).

(85) W.F. Jurist, FBA disks faster, cheaper, Computerworld 14
(28) (1980) 1.

[86] IBM Corp., IBM 3375 Direct Access Storage, IBM DPD
Product Announcement (June, 1980).

[87] Intel Corp., FAST-3805 functional description, PN 19-
1619-006, Aug. 1979, Intel Commercial Systems Division,
Phoenix, AZ.

[88] IBM Corp., IBM system /360 and system /370 1/0 inter-
face channel to control unit original equipment manufac-
turers information, PN GA22-6974-3, (IBM Corp., Jan.
1976, Poughkeepsie, New York).

[89] D. Hillman, Intelligent buffer reconciles fast processors
and slow peripherals, Electronics 53 (20) (1980) 131-135.

[90} M. Feller, Intelligent disk: The next generation, Proc.
IEEE Comput. Soc. Conf. Sept. 1977, pp. 306-310.

