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Reflecting current data on the use of programming language constructs in
systems programming, a synthetic benchmark is constructed based on the

distribution appearing in the data. The benchmark executes 100 Ada
statements that are balanced in terms of the distribution of statement types,
data types, and data locality. Pascal and C versions of the benchmark are

discussed.

DHRYSTONE: A SYNTHETIC SYSTEMS
PROGRAMMING BENCHMARK

REINHOLD P. WEICKER

In recent years, there has been growing interest in the
interaction between programming languages and com-
puter architecture (cf. [25]). As a high-level language
host, a computer architecture should execute effi-
ciently those features of a programming language that
are most frequently used in actual programs. This abil-
ity is often measured by a program known as a “bench-
mark.”

In this paper, the word benchmark refers to a single
program that reflects the frequency of source language
constructs in real programs and, consequently, in its
compiled form, the frequency of the corresponding ma-
chine language constructs. It is unavoidable that such a
benchmark will measure not only machine architec-
ture but also the ability of the compiler to generate
efficient code. There is a broader meaning of the word
benchmark, denoting a collection of programs that also
make use of the I/0 system and the Operating System
in general. However, since we are chiefly interested in
the interaction between programming languages and
computer architecture, this area is not covered here.

A typical example of a single-program benchmark is
the “Whetstone” benchmark [7], which in its original
form was developed in ALGOL 60. Whetstone reflects
mostly numerical computing, using a substantial
amount of floating-point arithmetic; it is now used
chiefly in a FORTRAN version. However, since the

© 1984 ACM 0001-0782/84/1000-1013 75¢

October 1984 Volume 27 Number 10

data for the distribution of the different statement types
in this program were collected in 1970, the benchmark
cannot be expected to reflect the features of more mod-
ern programming languages (e.g., record and pointer .
data types). Also, recent publications on the interaction
between programming languages and architecture have
examined more subtle aspects of program behavior
(e.g., the locality of data references—local versus
global) that were not explicitly considered in earlier
studies. .

In recent papers dealing with the performance as-
pects of different computer architectures, performance
is usually measured using some collection of programs
that happened to be available to the author (e.g., [22]).
However, following the pioneering paper of Knuth [17],
an increasing number of publications have been provid-
ing statistical data about the actual usage of program-
ming language features. It therefore seemed appropriate
to make another attempt at constructing a synthetic
benchmark program based on these recent statistics,
particularly in the area of systems programming. In two
steps, this paper summarizes and compares available
data on the actual use of programming languages, and
presents an easy-to-implement synthetic benchmark
program based on these data. The program is called
“Dhrystone,” an analogy to the Whetstone benchmark
program. Dhrystone’s intended ease of implementation,
however, has consequences (e.g., cache influences) that
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must be taken into account if the program is to be used
to compare different computer architectures or differ-
ent compilers.

As this paper concentrates on systems programming,
the benchmark presented is not claimed as representa-
tive for either numeric programming or business appli-
cation programming. Different classes of applications
typically use different language features: Numeric-
scientific programs frequently use floating-point arith-
metic and often operate on arrays; business application
programs are mostly dominated by I/0 activities; and
systems programs often use enumeration, record, and
pointer data types. The programming languages applied
reflect this usage (e.g., data types for single and double
precision in FORTRAN; high-level 1/0 operations in
COBOL; and pointer data types in Ada, Pascal, or C).
Even when the same language is used, numeric and
nonnumeric programs in some respects exhibit quite
different properties (cf. [2]). In fact, Clark and Levy’s
measurements [5] show that application differences
lead to remarkably different frequency distributions
even at the machine instruction level. Therefore, if a

FIGURE 1. Characteristics of the Different Data Collections (in order of publication date)

" tion contains statistics on FORTRAN programs taken from

the computing centers of Stanford University (average fength

.- 600 lines) and Lockheed Corporation (average length: 570
_lines). It contains static data for about 65 programs : and

- ydynamlc data for about 25 programs.

e xpl.oamt] et S

. XPLisa language wrth some similarity to PL]‘l The sample

iin question contains 19 programs, mostly systems ‘programs, 3

o including compilers, that were written by students at the
< University of Toronto. It contains static data only on the 1;9 :
o programs (average length 1736 statements) g

e Zelkowit’s PL/1 Data 29

':,V, At the University of Maryland an augmented PL]1 comp|ler

the PLUM compiler, developed at the University of Maryland,
168 different programs. The average program length in the -

that the longer “production” runs of programs had the data
collection feature deactivated more often than the shorter o
programs written by programmlng students : :

.-+ Elshotfs Pl./toata[ﬁ 12}

" “Elshoff’'s sample [12] contains 34 Pl_/1 programs wntten in
the data processing department of General Motors that in-
stallation personnel viewed as some of the better pro-
grams. The paper compares these programs with earlier pro-
grams (analyzed in [11]) written in the same department
before the introduction of structured programming. There-
fore, we assume that the programs included in this current

- sample represent better than average commercial PL/1 pro-
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The oldest publlcatnon in thls area, Knuth's FORTRAN: wllecf | ;

"Three—hundred procedures taken from various systems pro- &
*.grams written in the course of a project at Vrije University in

language intended for systems programming. Emphasis was
. placed on good program structuring, that is, short proce-
: dures (average length of a 'procedure 18 2 statements)

£ Frfty—three ALGOL 68 programs (average length 153 lmes)
. were collected at the Mathematisch Centrum Amsterdam. -~~~
_ They are characterized by the author as “normal run-of- the- S
.. mili programs,” and there seem to be more numericalpro- = -
- grams in this sample than in the other samples covered here.
~In addition to static data, the paper contains numbers gained

- was used to collect dynamic data on 1294 program runs of from a static evaluation of the innermost loops. Although

sample was 48.2 statements per program run. it seems likely ’ ‘.;mate the dynamac case

. PamlCompllerStabm[zq Ceen b
Static and dynamic data were wllected on several Pascal

. Berkeley “Pro)ecl for Archltectm'al Measurement 21 -
JIn this project, static and dynamic data were collected tor C

- average for six C programs used as utilities in the UNIX_

computer system is used for different types of applica-
tions, it is better to use several different benchmarks
written in different languages.

SUMMARY OF “REAL” PROGRAM STATISTICS
Several authors have published the results of data col-
lections on the use of various programming language
features; these collections have been both static and
dynamic. Although, from a performance point of view,
dynamic measurements of programs are generally more
interesting than static measurements, they are also
more difficult to collect and impose far more overhead.
Consequently, there are fewer of them. In fact, there
are no publications known to this author that report on
dynamic data collected in an industrial, as opposed to
research, environment. The languages used in develop-
ing Dhrystone cover a broad range, and the classifica-
tions used in interpreting the results vary widely. In
spite of these difficulties, we have endeavored to pro-
vide a comprehensive overview of the results. A brief
characterization of the 16 different data collections
used is given in Figure 1.

Amsterdam, were analyzed statically as well as dynamically.
The programs were written in SAL, a typeless, goto-less

these data are not dynamic, they do seem to closely approxr- R

compilers. For purposes of our calculations, an average of

the static data was used. Dynamic data were collected only
for Pascal stack machme mstructlons not for source state-
ments :

and Pascal and reported in unpublished papers by Earl T.
Cohen and Shafi Goldwasser. The C data are the overall
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Frequency of Statements

The frequencies of occurrence of the different types of
high-level language statements are given in Tables I
and I

Static Statistics. In Table I, which shows statistical
results on the static distribution of statements, “—” in-
dicates that the category does not apply (e.g., there is no
Case statement in PL/1 or FORTRAN), and “?” means
that the publication in question does not contain the
information.

In the table, assignments are counted independently
of the number of operands or operators. (A more de-
tailed breakdown is given in Table III.) For subprogram
calls, numbers are given (where available) for both calls
to user-defined subprograms and calls to standard pro-
cedures and functions. Some collections do not have
the latter since they implement, rather than use, stan-
dard subprograms. The “Return” statement is used to a
significant degree only in XPL and SAL. Other lan-
guages, for example, Pascal, use an assignment for func-
tion returns and have no explicit Return statement.

system, including the well-known “spell” (spelling correction)
and “nroff” (text formatting) programs. The Pascal data are
taken from four Pascal programs (average length: 3758
lines), a simple compiler, a pretty printer, a file comparison
program, and a CAD tooli reported to be representatuve for
scsentrﬁc computat:on& L S R

Umersity of Wsconun Pascal Data [6}

~ These data represent the largest collection for Pascal known
_ to this author (264 programs whose average length is 455
.. lines). They are evaluated using vanous criteria but unfortu- i
natety are static data oniy ~ : , '

 Manchester Pascal Data 2

Static data were collected for five numeric-scientific pro- -
grams and six other programs, all written in Pascal. In terms

of formulating Dhrystone, the percentages computed from

- the sums of the “other” programs were used (average length:
1196 statements). The Manchester collection is heavily domi- -
“ nated by a compcler (accountxng for 67 percent of all state-
ments). . R FRNAS R

lhsa statistics 191

i The Mesa statistics were presented at the Symposrum on

" Architectural Support for Programming Languages and Oper-
ating Systems [25]. They are dynamic data collected at the
Xerox Palo Alto Research Center from two programs, the
Mesa compiler (39,000 lines of code) and a VLSI Check
program (500 lines of code) e :

'CsmmmofBelLabs[S}

These C statistics were also presented at the same sympo-
sium. Theyweretakendynamicaltyfrom theCcompdercom-
pmng itself. -
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In the Elshoff data [12], it is not possible to separate
DO luops controlled by a loop variable from DO state-
ments simply bracketing groups of statements. For
Knuth’s FORTRAN collection [17], the “Other” cate-
gory includes “Continue” and “Stop,” whereas in the
Ada study [10}, most statements in the “Other” group
come from tasking (“Select,” “Accept,” . . ., together
representing 9.4 of the total 11.6 percent). In the IMAX
432 data [28], the “Other” group includes code state-
ments encapsulated in Ada procedures and calls to
such procedures.

Dynamic Statistics. Some known results from the far
fewer dynamic statistics are presented in Table II.

Further Breakdown for Assignment Statements.

Table III can be considered a refinement of the “assign-
ment statement” entry in Tables I and II. Not all
sources contain numbers for all table entries. (The re-
sults shown here overlap in part with the general statis-
tics on the data types of operands given in Table VL)

Operator Use. The statistics collected on the use of

« Pascal Statistics at the University of Colorado [4]
The data are static and come from two eources, the Univer-

sity of Colorado (61 programs, average length: 508 lines) and '
Tektronix, Inc. (28 programs, average iength: 2285 lines).

-~ Most of the programs were compilers, assemblers, editors,

or other kinds of text processors; there were only three

- numerical programs

« De Prycker's Pascal and ALGOL Statistics [8]

The side effect of a research effort on a language-
independent measurement system that coliects data by in-

- strumenting the source program, the data were collected

statically as well as dynamically for six programs—four in
ALGOL 60 and two in Pascal. In our presentation, only the
results for the Pascal programs (compiler-related tasks) are
included. it should be noted that the database for these
measurements is quite small. : 8

T-mAppumnonstudynoI

- Static data were collected in an “Ada Capability Study” at =
~ - General Dynamics, where a major subsection of the code for

a message swrtchmg facmty (7500 lines) was reprogrammed ‘ ;

A;:.,mAda

S .maszoau [28}

Static data were collected from iIMAX 432, the operatmg

~system for intel’s “Micromainframe” iAPX 432 (10,081 state-

ments, 518 procedures, and 142 packages in 131 compila-

. tion units). The system is wiritten in Ada, and the program-

ming style reflects the “object orientation” of the IAPX 432. In
Ada terms, this leads to a heavy use of packages as a'

means of data abstractton, and of access typee that refer-

ence ob]ects ‘
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i Cook& Brookes De Prycker Zeiglers  Dobbs
 Lee82 etal62 82 WeickerB2 83
® m m e

Assignment 510 45.7 . : . 440 420 493 371 337
Cal 120 169 154 249 310 403 318 343 294 268 238
_userprocedures - 50  ? 111 246 277 367 166 179 90 268 238
_ standardprocedures 7.0 ? 43 0.3 33 36 152 164 204 - -
g0 L
Retum 40 - 44 01 4.2 - - - - - 6.9 8.2
¥ 100 168 211 172 88 180 148 143 82 98 106
with else : g e 10.4 7.7 ? 2 ? 7.4 74 ? 2 2
withoutelse 100 64 134 2 2 ? 74 6.9 ? 2 2
Loop with Conditon ~ - 22 V 21 32 22 33 22 47 13
_whie - 22 | 1.6 3.2 12 26 15 37 09 | 64
Crepeat o o f o9 05 - 1.0 07 07 1.0 ?
Loopwithfor 90 34 J = 34 51 09 28 21 67 09
with B - = - 37 2.1 38 ? ?2 2
Case =~ - 08 - 03 17 07 09 08 00 04 15
Exitloop . - - - 1.4 0.0 - - - - 1.4 25
Gto 90 14 38 - 0.0 0.3 0.3 0.5 0.3 0.0 16
Other 50 - - - - - 0.1 - = 154 116

NOTE: In Tables |, Il, and V1, all figures have been rendered with fractional parts (e.g., 51.0 instead of 51) for presentational uniformity. This should not be seen as

implying a higher degree of accuracy than was found in the original source.

different operators are given in Table IV. Usually these
operators occur in assignments, but they are also found
in comparisons and other locations where expressions
are possible.

Number of Parameters. Some of the data collections
give the number of parameters in procedure calls (see
Table V). In the table, the figures from [6] and [28]
indicate the number of parameters in procedure decla-
rations, not in procedure calls. Therefore, the frequency
in actual calls (measured statically or dynamically) may
be different.

Operand Types

Another breakdown can be made according to the data
type of the operands used. In this case, it is more diffi-
cult than in the previous tables to compare the results
of the different collections, since for nonscalar data
types, several ways of counting are possible:

* Only the final data type on the access path is counted
(e.g., in Pascal notation, Pointer 1. CharArray
[Integerindex] is counted as a character operand);

* only the first data type is counted (e.g., Pointer, in
the above example);

¢ all data types are counted (Pointer, Record, Array,
Character, and Integer).

The data collections listed in Table VI all seem to count
the first data type on the access path only. However,
this is often not stated explicitly, and misunderstand-
ings concerning the rules for data type counting are

Communications of the ACM

possible. Nonetheless, Table VI tries to summarize
some of the results.

There is one data collection [8] that provides only a
breakdown between accesses to scalar data as opposed
to accesses to array elements, the relationship being
about 1:1. The collection is therefore not included in
the table.

Operand Locality

In Table VII, operands are classified according to their
class, that is, as local variable, global variable, parame-
ter, etc. In most of the papers, constants are not in-
cluded in the distribution of locality, although it would
be justified to include them there. For those papers
where constants were included, the percentages were
recomputed without constants for the sake of uniform-
ity. The numbers given for the frequency of constants
are the following:

Static Tanenbaum 78 40.0%
Percentages  Patterson 80 (C) 26.9%
Cook and Lee 82 34.1%
Zeigler and Weicker 83  31.6%
Dynamic Tanenbaum 78 32.8%
Percentages  Patterson 80 (C) 23.7%

It is obvious from Table VII that the programming
language exerts a great influence. With a language that
supports a module concept (abstract data types, sepa-

S
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Swce o Knuth71 o
Assignment 67.0
Calt 40
user procedures ‘ 3.0
standard procedures 1.0
(e.g., 1/0) ,
Return i - 30 6.0 26 - - -
if 11.0 12.1 36.0 ‘ 7.7 ) 204 13.1
with else ) - ? ? : ? ‘ 2 o
without else 11.0 7 ? ? ? ?-
Loop with Condition - 35 24 T o8
while , ' Sy 3.5 23 {see footnote] e 05
repeat - - - : 01 B 48 03
Loop with “for” ! 3.0 9.1 21 : ’ 23
With - - - - S s2 7
Case - 0.2 12 12 13 00 s
Exit Loop , - - 16 i i . R,
Goto ‘ 9.0 3.0 - 00 00 00
Other ; 7.0 - - - [ e

1In the case of [14], the numbers were not obtained by actual measurements but by a static count of the innermost loops, based on the assumption that
these loops would be executed most frequently. Because of the nature of this method, the “for” and “while” statements are missing from the data.

Left-hand side
Variable o

Array Element -
Record Component
ot ,
Right-hand side R S : St m L P e
Constant ‘ 258 210 : ot 263
Variable } . 13.6 o120 : 12 1
Array Element 52 -5 A 50 90
i 776 . Lot
Function Result o 49 90 0?7
Record Component oy 5.0 S 9.0
~ foos fosz
' \ * SR } 450 } 50.0
Expression 222 200 335 ‘
1 Operator ; 205 15.2 204
2 Operators 07 3.0 ; 6.9
3 Operators 0.7 15 59
4 Operators 03"~ 0.3 03
or more - : : =

1 Eishoff's data [12] give only the number of operators in expressions.
2The author is unable to account for the high numbers for “Other” in [26].
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Arithmetic

S 38.7 o230
L= 222 189
# R 26.6 1'5
 J(wision) 102 1.1
S dw@nt.Div) - 2
CeExpon) 24 7
md - -
Comparison BN 217
= 36
e 6.0
L 29
[ 11
Logic - 84
.~ AND i 44
SNOT 1.4
Other = o 194

(00%) 445

A ,(100%!) 2

500 574

283 255

146 13.2

? 7.0 38

2 - e
626  (100%)
413 483 506
16 22.1 186
46 1.8 102
34 95 9.0
0.7 45 84
06 38 33
52 ? ?
18 ? 2
30 ? ?

0.6 ? 2
6.5° ? 7

15.7 24.7 21.2
19.2 19.0 10.8
14.1 - 224 6.2
7.0 84 18
1.0 27 -
0.1 0.2 1.2
36.9 ~18.1 39.3
277 1.9 19.6
25 .25 10.0
27 20 36
19 08 28
08 0.5 1.2
1.4 04 21
37 22 13.7
1.3 0.8 47
11 0.7 3.2
12 0.6 58
24 25 48°

1in [17], numbers are given for arithmetic operators only.
ies within each of the two respective groups “Arithmetic” and “
3 The large number for “Other” in [1] and [12] comes from the use of a concatenation operator,

2126) gives only the fre
operator of Pascal.

rate compilation), programmers tend to use more local

variables and parameters, whereas in a language like

Pascal, with no separate compilation facilities, there are

many declarations on the global level.

In addition, a closer look at Table VII shows that the
relation “Local:Global” is heavily influenced by the
method of data collection; that is, dynamic collections
tend to have a higher percentage of local variables than
static collections. This should be taken into account

whereas in [6] the “Other” category represents the in

when interpreting static statistical data.

THE SYNTHETIC BENCHMARK PROGRAM

The Dhrystone benchmark was based on the frequency

distribution data shown in Tables I-VI], this, despite
the fact that the statistical data often provided quite
divergent results. In developing Dhrystone, we at-
tempted not to get a “superaverage” by simply averag-
ing over the different results but rather to ensure that

TABLE V. Distribution of the Number of Parameters in Calls

&Leed2

1 Parameter . 19.0
2 Parameters o 15.0
3 Parameters ) 9.3
4 Parameters 7.3
5 Parameters 53
6 Parameters 29
and more
Average Number 15
of Parameters

; ‘TPI‘I‘i\l .

47.1

276 314

23.3 14.1

108 47

8.8 20
6.6

18 08

20 09

21 13

Communications of the ACM

\
October 1984 Volume 27 Number 10




Computing Practices

Integer s ot 290
Character 10.0
Range 9.0
Enumeration e R ’ 7.0
Boolean T : o 20
Real : - 00
Other 7 o d il L f s -
Pointer T ? 180
Array o 188 140 10
Ssting e e e
Record/Structure 129 169 70
union - S
set - s 10
File e S e
Other = g8 B0

52.4 . 519

21.0 26.9 ?
- - ) 2
L - 238
DAL ‘ ' 14
11 34 ‘ o
17 16 14
2 7 150 119 1.8
g0 7 w03 M9 60
28 00 - 70 00
192 148 127 168 70
Lo e S
- 11 140 120

1in [26] and [28], files do not appear since their statistics deal with operating systems software that implements files rather than uses them. In [26], the

“Other” category denotes bit fields.

2 [21], the first data type on the access path is counted as in the other data collections. However, for arrays, the final data type (type of the array
element) seems to be counted, since the types array or array element never appear. Also, pointers do not appear, even though C programs almost

always use them, probably, pointers have been subsumed under “Integer.”

21n [6], there is one operand type table with entries indicating altematively the data type (e.g., pointer) and the locality (e.g., parameter). it is not clear
from the article which category is chosen for a given operand (e.g., & parameter or a pointer type).

“in [10], the number of declarations, not the number of accesses, is counted. This probably gives aggregate types (arrays, records) a higher relative
weight. The “Other” group consists of tasks (7.7 percent) and private types (6.3 percent) that are mostly record types.

5 The data given here from [28] provide numbers for the first data type on

the access path, if there is an access path léading to the final operand. In

addition, there are 12.0 percent occurrences of an aggregate data type (record or array) as a final operand (e.g., in assignments of whole records in-one

statement).

the benchmark reflected good programming practice
(e.g., that the number of procedure calls was not too
low). Another objective was ensuring that the data
types and operations used were representative of the
area of systems programming rather than numerical
programming or pure applications data processing (€.g.,
COBOL programming). This means that the data collec-
tions based on systems programs had a higher weight.

The full text of the Ada version of the Dhrystone
benchmark is given in the Appendix.

Detailed Distributions for the “Dhrystone” Benchmark
In the synthetic benchmark program, 100 statements
are dynamically executed between the comment lines
“start timer” and “stop timer.”

Statement Types. The distribution of statements is
given in Tables VIII-X. Twenty-two of the 53 assign-
ments (or 41.5 percent of the total) have a variable of a
constrained (sub-)type as their destination. In general,
discriminant checks will be necessary in these cases,
although the compiler may recognize cases where such
checks are unnecessary.

The average number of parameters in procedure or
function calls is 1.8 (not counting the function values as
implicit parameters). '

October 1984 Volume 27 Number 10

Operators. The distribution of operators is given in
Table XL

Operand Types. In Table XII, which shows the distri-
bution of operand types, the operand type is counted
once per operand reference. When there is an access
path leading to the final operand, only the final data
type on the access path is counted. For example, a
reference to an element of an integer array is counted
as an integer reference, not as an array reference.

In Dhrystone, there are 16 references to components
of a record; 9 of them go to a component in a discrimi-
nant part. In this case, Ada requires a discriminant
check, but for some of these references, the compiler
may recognize during optimization that discriminant
checks need not be generated. -

Operand Locality. There is no static nesting of blocks
or procedures; therefore, all variables are either global
or local (Table XIII).

Other Remarks. There may be cases where a highly
optimizing compiler may recognize unnecessary state-
ments and may not generate code for them.

No explicit effort has been made to account for the
effects of a cache or to balance the use of long or short
displacements for code or data. This is discussed fur-

Communications of the ACM
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TABLE VI,

Locality

Global Variables 420 142
Same Package s = - -
Other Package Fe o= - -
Intermediate -~ 13.0 - - 1.7
or Parameter e S
Parameter 160 161 10.9 14.6
Value 50 16.1 10.9 ?
Reference S 110 Lol - ?
Funcion ? 2 9 22
Other - - ~ -

s 520 y
7 - % - - 10.3
2 - - - 17
? et 7.0 0.0 0.3
? 19.0 ? 14.2

? 190 57.0 ? -

9 - 43.0 ? -
? ? 2 ? ?
- 210 - 2 -

TIn C, there are no intermediate-level variables and no reference parameters.

%in [6] the number of function results appears in a different table (i.e., their table for data types) and therefore appears here in addition to the other

entries, making the column add up to more than 100 percent.

2in[1 9] the numbers for local variables include value parameters as well as /ocal indirect, which may represent reference parameters or data accessed

through local pointers.

*In [9], the category “Other” includes 15 percent indirect and 6 percent argument pushes.
51n [4], the percentages given reflect only the relationships among the variables on the one hand and among the parameters on the other; the numerical

relation between variables and parameters is not given.
¢ in [8], parameters are not mentioned.

7 In [28], the access distribution within the “Parameter” group is not available. However, there are numbers available for parameter declarations: 85.5

percent in, 1.6 percent in out, and 12.8 percent out.

ther in a subsequent section, “Cache Aspects.”

There were many cases where a decision had to be
made as to how things should be counted; for example,
what exactly “execution of a loop statement” means or
how many data accesses it involves. In order to keep
this paper reasonably short, not all the details of these
decisions are discussed here. A separate paper covering
these details [27] is available from the author.

PROGRAMMING LANGUAGE ASPECTS

Although the benchmark program was written in Ada,
it was designed in a way that should make it possible to
develop versions for several different programming lan-
guages. However, it is difficult to make versions of a
program in languages that are sufficiently unrelated
and still claim that the versions are the “same” program
with respect not only to the result it delivers, but also
with respect to execution time. Translation into a lan-
guage like FORTRAN would be difficult, since FOR-
TRAN has no notion of a pointer type. Attempts to
simulate pointer types with the language features of
FORTRAN (say, with indexes) would, in fact, change
the benchmark into a different program.

Pascal Version

Since the benchmark uses in its statements only the
“Pascal subset” of Ada, a translation into Pascal is rela-
tively straightforward. Procedures Main and Proc_0 are
merged into the main program of the Pascal version.

Communications of the ACM

Within this main program, all global types and vari-
ables are defined, and all other procedures (Proc_1 -
Proc_8, Func..1 - Func_3) are declared, statically in
parallel, within the main program. Since the local vari-
ables of Proc_0 now become global variables, the distri-
bution between local and global access changes.

Ada version Pascal version
Locals 48.5% 33.3%
Globals 7.9% 23.5%

However, this change was expected; it reflects only the
different programming styles in a language with a mod-
ule concept (Ada), as opposed to a language without it
(Pascal). We therefore feel justified calling it the same
program in both the Ada and Pascal versions.

Other minor changes that have to be made for the
Pascal version are the following:

¢ “In out” and “out” parameters become reference pa-
rameters, whereas “in” parameters become value pa-
rameters, with the exception of the two string param-
eters in function Func_2, which are naturally de-
clared in Pascal as reference parameters.

* The “rename” statement in procedure Proc_3 be-
comes a “with” statement; accordingly, the part
“Next_Record” of the identifiers that follow has to be
dropped.

* The “loop” statement in procedure Proc_2 becomes a
“repeat . . until” statement.

¢ The “return” statements become assignments to the

October 1984 Volume 27 Number 10
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TABLE VHiIl. Assignment Statements in “Dhrystone”

TABLE XI. Distribution of Operators in “Dhrystone”

Vi:=V2 10 Arithmetic 27 52.9
{incl. V1 :=F{(.) + 16 31.4
V := Constant 12 - 7 137
Assignment, 7 * 3 3
with array element | (int div) 20 1
Asm 4 component 6 Comparison 302 20
! 35 35 = 9 176
X:=Y+|-|and|orZ 5 /= 4 78
X:=Y + | -] *=" Constant 6 > 1 20
X=X+]-1 3 < 3 58
X:=Ys|/Z 2 >= i 20
X := Expression, 1 <= 2 39
two operators ; Logic 4 7.8
X := Expression, i 1 AND 1 2.0
three operator$ - 18 OR 1 20
53 NOT _2 _38
Sum 99.9 51

TABLE IX. Control Statements in “Dhrystone”

oo then oee 14

without “else” T

exected 3

“not executed : : 4 :
forfint .- Nloop -+ - 6 counted every time
while ---loop =<+ , 4}theloopcondition
loop --- exitwhenA=B .. 1) isevaluated
return 5
rename- 1

32

e

TABLE X. Call Statements in “Dhrystone”

P(---) Qi

 procedure call N 10
same package ) 5. : ,
other package .5

X:=F(--) EE L S

function call . R - 5
same package S R S ‘

other package : 3

Integer ) : 131

Character i 47

Enumeration 30

Boolean 11

Pointer ' 2

(Access Type)

String_30 6

Array :

Record . : _2
R : 241

n

Global variables 19
same package 18
other package 1

Parameters 45
in_ , ‘ 27
inout. 12
out 6

Function results 5

Constants - 55

241

Local variables - 117

79

75
04
18.7
11.2
5.0
25
21 .

228

100.0

October 1984 Volume 27 Number 10

Communications of the ACM 1021




Computing Practices

1022

function name, and the statement distribution
changes accordingly. Since the function name on the
left-hand side of these assignments appears as an ad-
ditional local variable, the distributions of data types
and locality of references change slightly; the num-
bers given in Tables VII-X for the Ada version
would therefore be slightly different for the Pascal
version.

C Version

To translate the benchmark into the “C” language, the
enumeration type is mapped into integers by a suitable
“#define” declaration. (A new extension to C [23] has
enumeration types similar to Pascal and Ada.) Inout
and out parameters, and also the string parameters of
function Func_2, are mapped into parameters of type
pointer, with appropriate dereferencing inside the pro-
cedures.

C, as documented in [16], has no assignments or com-
parison for aggregate variables (arrays, structures). A
new extension of C [23] does have assignments for
structures, but no comparisons, and still no assignments
for strings. Therefore, the string comparison in function
Furic_2 and the string assignment in procedure Proc_0
have to be replaced by a call to a suitable subroutine.
The same holds true for the record assignment in pro-
cedure Proc_1, unless the C version is based on the
extension mentioned above.

The C language allows the programmer to declare
variables as register variables. Therefore, there could
conceivably be several versions of a C Dhrystone
benchmark:

» a version without register variables;

« a version that declares every local variable of a scalar
type to be a register variable, as a novice programmer
might;

« a version where the programmer optimizes carefully,
trading off the benefit of register variables in terms of
access time against the additional overhead in proce-
dure call and return.

This latter version would vary for different machines
and compilers, since the trade-off must be made care-
fully.

In C, it is not possible to define range constraints in
either type or variable declarations, as it is with the
“range” or “subrange” concepts of Pascal and Ada.
Therefore, there is nothing like an “assignment with
implicit check” for these cases as there is in Ada. Also,
because array indexing is defined in C as equivalent to
a pointer operation, C compilers cannot check array
accesses against out-of-bounds conditions. Although the
“union” concept of C corresponds to the “discriminant
record” of Pascal and Ada, the C language definition is
somewhat imprecise with regard to the question of
whether discriminant checks are required, allowed, or
forbidden in C. (Traditionally, C compilers don’t
check.) Therefore, if C results are to be compared with
Pascal or Ada results, the Pascal or Ada runs should

Communications of the ACM

have the corresponding constraint checks turned off.
As can be seen from the discussion above, it is more

difficult to translate the Dhrystone benchmark into an

“equivalent” C program than it is into a Pascal version.

CACHE ASPECTS

The time necessary to execute a program depends
heavily on the existence and usage of a cache, whether
or not the code, data, or both happen to stay in the
cache during execution of the program. (The array ac-
cesses in procedure Proc_8 are somewhat distributed in
order to result in at least some cache misses.)

The most common method of execution time meas- -
urement is to include the benchmark program in a loop
that is executed, say, 10,000 times and, for a very pre-
cise measurement, to subtract the execution times for
10,000 executions of an empty loop. However, this
method tends to heavily overemphasize the influence
of a cache. Since the Dhrystone benchmark is quite
small, the code, and to a large degree also the data, will
stay in the cache all the time if the cache size is above
a certain minimal size. A more sophisticated program
might try to balance this effect by duplicating code and
data and by forcing the flow of execution to “wander
around” the address space according to some statistics
on working set behavior. However, for this simple
benchmark program, no attempt was made to include
such a mechanism.

USE OF THE BENCHMARK

Practical benchmarks are often either proprietary pro-
grams or collections of small programs that happened to
be available to the user at the time. This is especially
true of certain microprocessor benchmarks or bench-
marks used in discussions of new architectural fea-
tures. Often, a subset of the “EDN benchmarks” [13] is
used. {The EDN benchmarks were originally written in
assembly language at Carnegie-Mellon University for
an evaluation of different computer architectures [3].)
Also popular are the programs “Puzzle,” “Sieve of Era-
tosthenes,” and “Ackermann’s function” (e.g., [15]).
However, no studies have been conducted to determine
how representative these programs are. As pointed out
by Levy and Clark [18], the performance results on
some machines varied up to 40 percent, depending on
whether just three of the above programs were used or
a fourth (Ackermann’s function) was added to the sam-
ple.

The intention of this paper has been to present a
better founded benchmark program for architecture or
compiler discussions. The program has been used inter-
nally for comparisons of different microprocessors, for
comparisons of micros with minicomputers, and for
evaluation of experimental designs. In our experience,
the results achieved with Dhrystone as a yardstick re-
flect fairly accurately the effectiveness of a particular
hardware /compiler combination for systems program-
ming applications.

Dhrystone can be easily ported and its run-time
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measured on a new machine.! However, this intended
ease of application makes mention of the following ca-
veat important: Wherever benchmarks are used, there
is an unfortunate tendency to look only at the final
number, the execution time. This tendency is nicely
paraphrased in the third of the “Not-So-Golden Rules of
Benchmarking” [20]:
Conditions, cautions, relevant discussion and even ac-
tual code never make it to the bottom line when results
are summarized.
As discussed above, there are several areas where the
details (language influence, compiler influence, meas-

! For readers interested in measurement experiments, the program is avail-
able from the author in machine-readable form on floppy disk (Ada, Pascal,
and C versions).

Computing Practices

urement method, cache influence) have to be checked
very carefully whenever a benchmark like this one is
used for a comparison of different processors or differ-
ent systems. (See [18] for more details.) There are in-
herent limitations to any single number (like a bench-
mark result) if it is used as the only criterion for the
evaluation of processor architectures or compilers.
However, if used judiciously, a benchmark like Dhry-
stone may still have value in the area of interfacing
between programming language and computer architec-
ture.

Acknowledgments. The author wants to thank Justin
Rattner and Christian Ritscher for their critical reading
and helpful suggestions.

APPENDIX: Program Text. Ada Version ,

o | “DHRYSTONE” Benchmark Program

s Version: ADA/1
Gim Date:  04/15/84

~ —  Author: Reinhold P. Weicker

(R N

Sis ass:gnments T 3%
== control statements - 32%
- proeedure, function calls 15%

- respect to the three aspects

— - statement type
=~ . - operand type (for S!mp!e data types)
-— . —operand access :

-~ operand global, local, parameter, or constant.

-~ before they are used as a source operand

- The fb!lowing program contains statements of a high-level programming
e language (Ada) ina dastnbutuon considered representatnve

-~ 100 statements are dynam:cally executed The program is balanoed with ;

—— The combination of these three aspects is balanced only approximately.

-~ The program does not compute anything meantngful but it is syntactically
-- and semantically correct. All variables have a value assugned to them o

RERERT

IR

package Global_ Def is ~
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—— Gtobal type definmons -
 type Enumeratwoms(ldent 1, Ident_2, indent_3, Ident_ 4 Ident_5);

~ subtype One_To_Thirty is integer range 1. .30;
“subtype One_To_Fifty is integer range 1. .50;
~ subtype Capital_Letter is character range ‘A2

iy ‘type String_30 is array (One_To_Thxrty) of character;
. pragma Pack (String-30); e
_ type Array_1_Dim_integer is array (One_ To_Fn‘ty) of integer;
typeArray_z Dum_lnteger is array (One_To_Fifty,
} S One_To_Fifty) of integer,;
o type Record Type (Dlscr Enumeratuon = Ident_1); o
- : type Record-Pomter is access Record_Type,
= typeRecord Type (Duscr Enumeration := Ident_ 1)|s
-~ record
' Pounter-Comp

- caseDiscris
- when ident_1 =>

Record_Pointer;

—— only this variant is used, -
—— but in some cases discriminant
-- checks are necessary

o Enum._Comp:
~Int_Comp:
String-Comp:

Enumeration;

- One_To_Fifty;
‘String_30;

when Ident_2 =>

-~ Enum_Comp_2:

~ String_-Comp_.2:

-when others => -

~ Char_Comp-1,
~ Char_Comp_2:
~end case, '
~end record,;

 end Global_Def;

Enumeration;
String-30;

character;

with Global_Def:
use Global_.Def;

4 package Pack_1is

- procedure Proc_0;
procedure Proc_1 (Pomter_Par-ln in Record _Pointer);

procedure Proc_2 (Int_Par_in_Out:  in out One_To-Fifty),
procedure Proc_3 (Pointer_Par_Out: out Record _Pointer);
Int_Giob: integer;

end Pack_1; ‘

with Global _Def;
use Global_Def;

package Pack_2 is P

procedure Proc_6 (Enum_Par_in: in Enumeration; E

October 1984 Volume 27 Number 10
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A Enum_Par_Out:

procedure Proc-7 (int_Par_-In_1,
Int_Par_in_2:
Int_Par_Out:

procedure Proc-8 (Array_Par_ln_Out_1:
Array _Par_In_Out_2:
int_Par_in_1,
Int.Par_In_2:

function Func_1 (Char_Par_in_1,
Char_Par_in_2;

function Func-2 (String_Par_In_1,
String—Par_in_2:

end Pack_2;

with Global_Def, Pack-1;
use Global_Def;
procedure Main is

e o e e i et o e

begin

out Enumeration);

in

One_To_Fifty;

out  One_To_Fifty;

in
in

in

in

in

out Array_1_Dim_Integer;
out Array_2_Dim_integer;

integer),

Capital _Letter)
returmn Enumeration;

String-30)
return boolean;

Pack_1.Proc_0; — Proc-0is actually the main program, but it is part

-- of a package, and a program within a package can '
-- not be designated as the
—— Therefore Proc -0 is activated by @ call from “Main”.

end Main;

with Global _Def, Pack_2;
use Global_Def;

package body Pack-1is

Bool_Glob: boolean;

Char_Glob_1,
Char_Glob_2: character;

Array-Glob_-1: Array_1_Dim_Integer;
Array_Glob_2: Array-2_Dim_Integer;
Pointer_Glob, S
Pointer_Glob_Next: Record_Pointer;

procedure Proc-4;
procedure Proc_5;

procedure Proc-0

is
Int_Loc-1,
Int_Loc-2,
Int-Loc_3: One.-To_Fifty;
Char_Loc: character;
Enum_Loc: Enumeration;
String-Loc-1,
String_Loc_-2: String_30;
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imtuahzattons ;o il ;,
Pack_1.Pointer_ Giob_Next —newRecOfd_Type e
Pack 1 Pomter..Glob = new Reoord_Type

£l

- Discr => |dent_1,
Enum-Comp => Ident_3,
~int_Comp ~ =>40,

%

Ponnter_Comp => Paek_1 chnter_.Giob_Next

String_Comp => “DHRYSTONE P PROGRAM SOME STRING"

String_Loc_1 := “DHRYSTONE PROGRAM,1’ST STRING': : u T}

— Start timer —

Proc.5; )
~Proc_4; : PR e T
‘em Char-Glob.1 = ’A' Char-GIob 2 ,BoOl-GIob=faIse
Int_Loc_1:=2; : S
Int_Loc_2 :=3;

- String-Loc_2 = “DHRYSTONE PROGRAM 2ND STRING'
‘Enum_Loc := Ident_2;
Bool_Glob := not Pack_2.Func_2 (Stnng_Loc 1 Stnng_Loc_2)
~— Bool_Glob = true

* while Int_Loc_1 < Int_Loc_2 loop — loop body executed once '

int_Loc.3:=5 s Int_Loc_1 —Int_ Loc_2;
— Int_Loc-3=7
Pack-2.Proc 7 (int_- Loc-1, Int_Loc-2, Jnt Loc_3),
- Int_Loc_3=7 o
int_Loc.1:= Int_Loc-1+1;
end loop;
~— Int_Loc_1=3

’ Pack-2. Proc -8 (Array-Glob 1, Array Glob-2, Int_Loc-1 Int-Loc-3)

~~ Int_Glob =5
Proc_1 (Pointer_Glob);

for Char_Index in A’ . . Char_Glob_2 loop——/oop body executed thce

" if Enum_Loc = Pack_2.Func_1 (Char_index, 'C’)

" then--not executed

“Pack-2.Proc_6 (Ident_1, Enum Loc)

end if;
end loop;

— Enum-Loc = Ident_1

— Int_Loc_1 =238, Int_Loc_-2=3, Int_Loc-3=7
Int_Loc_3 :=Int_Loc_2 = Int_Loc_1;
int_Loc_2 := Int_Loc_3 /Int_Loc_1; ;
Int_Loc_2 :=7 = (Int_Loc_3 — Int_Loc_2) — Int_Loc_1;
Proc_-2 (int_Loc_1), : '

—— Stop timer —

end Proc..0;

procedure Proc_1 (Pointer—Par_in: in Record_Pointer)
is——executed once
Next_Record: Record_Type
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renames Pointer _Par_In.Pointer_ Comp all — = Pomter._GIob Next all
begin
Next_Record := Pointer_Glob.all;
Pointer..Par_In.Int_Comp.:=5; - ‘
Next_Record.Int_Comp := Pomter_Par_ln lnt_Comp, .
Next_Record. Pomter-Comp Pointer_Par_In. Pomter_Comp
Proc_3 (Next_Record.Pairter.Compy); - .
‘—— Next_Record.Pointer-Comp = Pamter..GIob Pomter_Comp = Pomter..Glob_Next :
‘ thext Record.Discr = Ident_1 e o ‘
then -- executed o
~ Next_Record.int_Comp := 6 Tk ‘ -
Pack_2.Proc_6 (Pounter_Par_tn Enum_Comp, Next_Record Enum_Comp), -
Next_Record.Pointer_Comp := Pointer_Glob.Pointer_Comp;
Pack..z Proc_.7 (Next_Record Int_Comp, 10 Next-Reoord Int_ Comp)
else —= not executed : et AT .
Ponnter..Par_ ln all .= Next‘ Record
endif;, : .
. .end Proc_.1;

prooedure Proc_2 (lnt-Par- ln_Out in out One_To_Fufty)
is -— executedonce ‘
== In_Par-In_Out =3, becomes?
“Int_Loc: One_To_Fifty;

- Enum_Loc: Enumeratnon
beg'n ':,1 , :
o Int_Loc = lnt..Par-ln..Out-:— 10
loop —— executed once -

. if Char_Glob_-1 =='A’
then -- executed
lnt_Loc Int_Loc—-1; =~

lnt..Par_ln-Out int-Loc

; procedure Proc_4
L8 = executed once
: Booi_Loc boolean ’

Bool_Loc := Char_Giob_1 = ‘
~ Bool_Loc := Bool_ LocorBool Glo
~ Char_Glob_2::
end Proc_4;

L procedure Proc_s - w:thout param ers.
- is—executed once . '
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V "packagebodyPack 2ns :

— forward declaratron S

ure Proc..6 (Enum Par_in in Enumerabon ,
- Enum_ Par._Out out Enumerat:on)
executed once )
begm e ;
. Enum_Par_Out Enum_Par_in,
~ if ot Func-3 (Enum_.Par..ln)
then — not executed -
Enum Par-Out ident 4

~ case Enum_Par_in Bl i
" when Ident_1 => Enum_ Par_Out -ldent 1

' whenwent_z => if Pack_1.nt_Glob > 100
- then Enum.. Par_Out Ident_1;
else Enum_Par_Out := ldent 4;
end if; :

- when Ident_4 => null; ,

when Ident_5 => Enum-Par-Out ldent..3

. endcase; G . SR

~ end Proc_6; 3 %

;prooedure Proc_7 (Int— Par_in..1 e
: . Int_Par_In_2: in One-To-Flfty
SRR Int Par_Out: out One-To..me)

s — executed three times

—_ flrst call: Int_Par-in-1= 2 Inr_Par_In..Z 3

== " Int_Par.Out becomes 7 :
R second call: Int_Par-in_1 = 6, Int_Par-In-2 = 10
S - .Int_Par_Out becomes 18
- == third call: Int_Par_in_1 = 10, int_Par_in_2 = 5,
- " Int_Par_Out becomes 17
Int_Loc: One.To_Fifty;
begin

int_Loc :=Int_Par_in_1 +2;
Int_Par_Out := Int_Par_In_2 + Snt-Loc
end Proc_7;

" procedure Proc_8 (Array_Par-in-Out 1: in out Array..1 Dim_Iinteger;
Amay_Par_in_Out_2: in out Aray_2_Dim_integer;

Int_Par_In_1,
Int_Par_In_2: in  integer)
is -— executed once
— Int_Par_In_1=3

Communications of the ACM

i functlon Func_3 (Enum Par_in: in Enumerauon) retum boolean,

: - Enum-Par-ln Ident 3 Enum-Par-OutbecomesIdem 2 il

 when ident._ 3—> Enum_Par;out went 2 — executed
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L mParin2=7
Int..Loc One_To-Fiﬂy

s ,,‘Array_Par-ln Out_1 (lnt..Loc)
= Array-Par..ln-Out..‘! (lnt..Loc+1}

W i - Array_Par_in_Out_1 (int_L
) Array_Par_In_Out.t (lnt-Loc-t—SO) = w_Loc
: for int_lndex inint_ Loc lnt_LocH loop Iaop bodyaxecutéd twice

.2 (int_Loc, Int_Loc
“Anay..Par_In Out..z (fnt Lo

1029
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