CS 268: Graduate Computer Networks - Spring 2003	
- Instructor: - Ion Stoica (istoica@cs.berkeley.edu, 645 Soda Hall) - Lecture time: TT, 12:30-2:00 pm - Place: 310 Soda Hall - Office hour: Tu, 2-3 pm	
${ }_{\text {ben Soceas Spinge }}$	1

Overview	
- Administrative trivia	
- Overview and history of the Internet	
- A Taxonomy of Communication Networks	
- Router Architecture in Packet-Switching	
Networks	

Administrative Trivia's
- Course Web page:
- http://inst.eecs.berkeley.edu/~cs268/sp03
- Check it periodically to get the latest information
- Deadline means deadline
-Unless otherwise specified, it means 12:20pm on the date (10 minutes before lecture) -Special circumstances should be brought to my attention way ahead of deadlines - Exams are close-book

Goals of this Course

- Understand how the Internet works
- Get familiar with current Internet research efforts
- Understand solutions in context
- Goals
- Assumptions
- Appreciate what is good research
- Problem selection
- Solution \& research methodology
- Presentation
- Apply what you learned in a class project

Ion Stocka, Spring 2003

| Research Project |
| :---: | :---: |
| - Investigate new ideas and solutions in a class |
| research project |
| - Define the problem |
| - Execute the research |
| - Work with your partner |
| - Write up and present your research |
| - Ideally, best projects will become conference |
| papers (e.g., SIGCOMM, INFOCOM, MOBICOM) |

Research Project: Steps	
- I'll distribute a list of projects - You can either choose one of these projects or come up with your own - Pick your project, partner, and submit a one page proposal describing: - The problem you are solving - Your plan of attack with milestones and dates - Any special resources you may need - A midterm presentation of your progress (five minutes) - Final project presentation (ten minutes) + poster session - Submit project papers	
lon Soica, Sprimg2033	7

Paper Reviews

- Goal: synthesize main ideas and concepts in the papers
- Number: up to two papers per class
- Length: no more than half page per paper
- Content
- Main points intended by the author
- Points you particularly liked/disliked
- Other comments (writing, conclusions...)
- Submission:
- Submit each review via e-mail before 12:20 pm on lecture day
- See class web page for details
lon Stocica, Spring 2003
8

Grading	
\qquadTerm project 50% Final exam 15% Midterm exam 15% Class participation 10% Paper reviews 10%	
- This is a graduate networking class: more important is	
what you realize/learn than the grade	

Enrollment Policy	
- Graduate students get highest priority	
- Among other students, priority given to those who	
- Have backgrounds in networking, operating systems	
- Have relatively light course load	
- Procedure of enrollment for undergraduate	
students	
- Be officially on the waiting list	
- Send me an email with URL that has pointers to	
- Your resume	
- A short statement of relevant courses (textbook,	
university, grade) and experiences	
- Other courses you are taking this semester	

Send the Following Information
- Please send me (istoica@cs.berkeley.edu) an e-
mail with the subject "cs268 registration" and the
following information:
- Last and first name
- Student ID
- Your department
- Preferred email address
- URL of your home page
- Please indicate explicitly if we can add you to the
on-line web page that lists each student enrolled in
the class (only your name and URL will be made
publicly available here).
lonsioca sping 200s

Overview
- Administrative trivia > Overview and history of the Internet - A Taxonomy of Communication Networks

What is a Communication Network? (End system view)

- Network offers a service: move information
- Bird, fire, messenger, truck, telegraph, telephone, Internet ..
- Another example, transportation service: move objects
- horse, train, truck, airplane .
- What distinguish different types of networks?

The services they provide

- What distinguish the services?

Latency
Bandwidth

- Loss rate

Number of end systems

- Service interface (how to invoke?)
- Other details
- Reliability, unicast vs. multicast, real-time, message vs. byte
lon Stoica, Sping 2003

What is a Communication Network?

 (Infrastructure Centric View)- Electrons and photons as communication medium
- Links: fiber, copper, satellite, ...
- Switches: electronic/optical, crossbar/Banyan
- Protocols: TCP/IP, ATM, MPLS, SONET, Ethernet, PPP, X.25, FrameRelay, AppleTalk, IPX, SNA
- Functionalities: routing, error control, congestion control, Quality of Service (QoS)
- Applications: FTP, WEB, X windows, ...

Types of Networks	
- Geographical distance - Local Area Networks (LAN): Ethernet, Token ring, FDDI - Metropolitan Area Networks (MAN): DQDB, SMDS - Wide Area Networks (WAN): X.25, ATM, frame relay - Caveat: LAN, MAN, WAN may mean different things - service, network technology, networks - Information type - Data networks vs. telecommunication networks - Application type - Special purpose networks: airline reservation network, banking network, credit card network, telephony - General purpose network: Internet	
bon Sivas. Sping 200s	15

Types of Networks

- Right to use
- private: enterprise networks
- public: telephony network, Internet
- Ownership of protocols
proprietary: SNA
open: IP
- Technologies
- terrestrial vs. satellite
- wired vs. wireless
- Protocols
- IP, AppleTalk, SNA

The Internet
- Global scale, general purpose, heterogeneous-
technologies, public, computer network
- Internet Protocol
- Open standard: Internet Engineering Task Force (IETF) as
standard body
- Technical basis for other types of networks
• Intranet: enterprise IP network
- Developed by the research community
lonsoias, sping 200s

History of the Internet	
- 70's: started as a research project, $56 \mathrm{kbps},<100$ computers - 80-83: ARPANET and MILNET split, - 85-86: NSF builds NSFNET as backbone, links 6 Supercomputer centers, $1.5 \mathrm{Mbps}, 10,000$ computers - 87-90: link regional networks, NSI (NASA), ESNet(DOE), DARTnet, TWBNet (DARPA), 100,000 computers - 90-92: NSFNET moves to $45 \mathrm{Mbps}, 16$ mid-level networks - 94: NSF backbone dismantled, multiple private backbones - Today: backbones run at 10 Gbps , 10 s millions computers in 150 countries	
${ }^{\text {ben Sobeas Spmana } 2003}$	18

Recent Growth (1991-2002)	
Internet Domain Survey Host Count	

Internet Standardization Process	
- All standards of the Internet are published as RFC (Request for Comments). But not all RFCs are Internet Standards ! - available: http://www.ietf.org - A typical (but not only) way of standardization is - Internet Drafts - RFC - Proposed Standard - Draft Standard (requires 2 working implementation) - Internet Standard (declared by IAB) - David Clark, MIT, 1992: "We reject: kings, presidents, and voting. We believe in: rough consensus and running code."	
bor Soca. Speing 2003	23

Services Provided by the Internet

- Shared access to computing resources
- Telnet (1970's)
- Shared access to data/files
- FTP, NFS, AFS (1980's)
- Communication medium over which people interact Email (1980 's), on-line chat rooms, instant messaging (1990's) - Audio, video (1990's)
- Replacing telephone network?
- A medium for information dissemination
- USENET (1980's)

WWW (1990's)

- Replacing newspaper, magazine?
- Audio, video (2000's)
- Replacing radio, CD, TV?

David Clark, MIT, 1992: "We reject: kings,

Page 7

Overview	
- Administrative trivia	
- Overview and history of the Internet	
> A Taxonomy of Communication Networks	

Broadcast vs. Switched Communication Networks
- Broadcast communication networks - information transmitted by any node is received by every other node in the network - examples: usually in LANs (Ethernet, Wavelan) - Problem: coordinate the access of all nodes to the shared communication medium (Multiple Access Problem) - Switched communication networks - information is transmitted to a sub-set of designated nodes - examples: WANs (Telephony Network, Internet) - Problem: how to forward information to intended node(s) - this is done by special nodes (e.g., routers, switches) running routing protocols
Ion Sioica. Sping 2003 31

Circuit Switching	
- Three phases 1. circuit establishment 2. data transfer 3. circuit termination - If circuit not available: "Busy signal" - Examples - Telephone networks - ISDN (Integrated Services Digital Networks)	
	33

Circuit Switching: Multiplexing/Demultiplexing	
- Time divided in frames and frames divided in slots - Relative slot position inside a frame determines which conversation the data belongs to - Needs synchronization between sender and receiver - In case of non-permanent conversations - Needs to dynamic bind a slot to a conservation - How to do this?	
	36

Packet Switching	
- Data are sent as formatted bit-sequences, so-called packets. - Packets have the following structure: Header Data Trailer - Header and Trailer carry control information (e.g., destination address, check sum) - Each packet is passed through the network from node to node along some path (Routing) - At each node the entire packet is received, stored briefly, and then forwarded to the next node (Store-and-Forward Networks) - Typically no capacity is allocated for packets	
Lon Stica, Spering 2003	38

Multiplexing/Demultiplexing	
- Data from any conversation can be transmitted at	
any given time	
• How to tell them apart?	
- use meta-data (header) to describe data	

Datagram Packet Switching
. Each packet is independently switched
-No resources are pre-allocated (reserved) in advance - Example: IP networks

Datagram Packet Switching

Virtual-Circuit Packet Switching
- Hybrid of circuit switching and packet switching
- data is transmitted as packets
- all packets from one packet stream are sent along a
preestablished path (=virtual circuit)
- Guarantees in-sequence delivery of packets
- However: Packets from different virtual circuits
may be interleaved
- Example: ATM networks

| Virtual-Circuit Packet Switching |
| :--- | :--- |
| . Communication with virtual circuits takes place |
| in three phases |
| 1. VC establishment |
| 2. data ransfer |
| 3. VC disconect |
| - Note: packet headers don't need to contain the |
| full destination address of the packet |
| |

Summary
- Course administrative trivia - Internet history and trivia - Rest of the course a lot more technical and (hopefully) exciting

