
1

CS 268: Route Lookup and
Packet Classification

Ion Stoica
March 11, 2003

isto ica@cs.berkeley.edu 2

Midterm Exam (March 13): Sample
Questions

� E2E principle
- Describe the end-to-end principle. Give one example in which

implementing a particular functionality at a lower layer breaks
this principle, and one example in which it does not. Explain.

� Fair Queueing
- (a) What problem does Fair Queueing address? Describe the

Fair Queuing algorithm.
- (b) What is the system virtual time and what it is used for?

� Differentiated Services
- Compare Assured and Premium services. How is each of

them implemented at edge and core routers?

isto ica@cs.berkeley.edu 3

Overview

� Packet Lookup
� Packet Classification

isto ica@cs.berkeley.edu 4

Lookup Problem

� Identify the output interface to forward an incoming
packet based on packet’s destination address

� Forwarding tables summarize information by
maintaining a mapping between IP address prefixes
and output interfaces

� Route lookup
�

find the longest prefix in the table
that matches the packet destination address

2

isto ica@cs.berkeley.edu 5

Example
� Packet with destination address 12.82.100.101 is

sent to interface 2, as 12.82.100.xxx is the longest
prefix matching packet’s destination address

……

312.82.xxx.xxx

1128.16.120.xxx

1

2128.16.120.111

12.82.100.101

12.82.100.xxx 2

isto ica@cs.berkeley.edu 6

Patricia Tries

� Use binary tree paths to encode prefixes

� Advantage: simple to implement
� Disadvantage: one lookup may take O(m), where

m is number of bits (32 in the case of IPv4)

001xx 2
0100x 3
10xxx 1
01100 5

0 1

0

1 0

1

1

0

0

0

0

2

3

5

1

isto ica@cs.berkeley.edu 7

Lulea’s Routing Lookup Algorithm
(Sigcomm’97)

� Minimize number of memory accesses
� Minimize size of data structure

- Small size allows to fit entire data structure in the cache
(why do you care about size?)

� Solution: use a three-level data structure

isto ica@cs.berkeley.edu 8

First Level: Bit-Vector

� Cover all prefixes down to depth 16
� Use one bit to encode each prefix

- Memory requirements: 216 = 64 Kb = 8 KB

genuine heads

root heads

3

isto ica@cs.berkeley.edu 9

First Level: Pointers

� Maintain 16-bit pointers to (1) next-hop (routing)
table or (2) to two level chuncks

- 2 bits encode pointer type
- 14 bits represent an index into routing table or into an

array containing level two chuncks
� Pointers are stored at consecutive memory

addresses
� Problem: find the pointer

isto ica@cs.berkeley.edu 10

Example

…

pointer
array

Routing
table

Level two chunks

0006abcd

bit vector …

000acdef

1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1
Problem:
find
pointer

isto ica@cs.berkeley.edu 11

Code Word and Base Indexes Array
� Split the bit-vector in bit-masks (16 bits each)
� Find corresponding bit-mask
� How?

- Maintain a16-bit code word for each bit-mask (10-bit value; 6-bit offset)
- Maintain a base index array (one 16-bit entry for each 4 code words)

number of previous ones in the bit-vector

Code word array

Base index array

Bit-vector

isto ica@cs.berkeley.edu 12

First Level: Finding Pointer Group

� Use first 12 bits to index into code word array
� Use first 10 bits to index into base index array

address: 004C
first 12 bits

4
1

first 10 bits

13 + 0 = 13

Code word array

Base index array

4

isto ica@cs.berkeley.edu 13

First Level: Encoding Bit-masks

� Observation: not all 16-bit values are possible
- Example: bit-mask 1001… is not possible (why not?)

� Let a(n) be number of non-zero bit-masks of length 2n

� Compute a(n) using recurrence:
- a(0) = 1
- a(n) = 1 + a(n-1)2

� For length 16, we get only 677 possible values for bit-
masks

� This can be encoded in 10 bits
- Values ri in code words

� Store all possible bit-masks in a table, called maptable

isto ica@cs.berkeley.edu 14

First Level: Finding Pointer Index
� Each entry in maptable is an offset of 4 bits:

- Offset of pointer in the group
� Number of memory accesses: 3 (7 bytes accessed)

isto ica@cs.berkeley.edu 15

First Level: Memory Requirements

� Code word array: one code word per bit-mask
- 64 Kb

� Based index array: one base index per four bit-
mask

- 16 Kb
� Maptable: 677x16 entries, 4 bits each

- ~ 43.3 Kb
� Total: 123.3 Kb = 15.4 KB

isto ica@cs.berkeley.edu 16

First Level: Optimizations

� Reduce number of entries in Maptable by two:
- Don’t store bit-masks 0 and 1; instead encode pointers

directly into code word
- If r value in code word larger than 676

�
direct

encoding
- For direct encoding use r value + 6-bit offset

5

isto ica@cs.berkeley.edu 17

Levels 2 and 3

� Levels 2 and 3 consists of chunks
� A chunck covers a sub-tree of height 8

�
at most

256 heads
� Three types of chunks

- Sparse: 1-8 heads
• 8-bit indices, eight pointers (24 B)

- Dense: 9-64 heads
• Like level 1, but only one base index (< 162 B)

- Very dense: 65-256 heads
• Like level 1 (< 552 B)

� Only 7 bytes are accessed to search each of
levels 2 and 3

isto ica@cs.berkeley.edu 18

Limitations

� Only 214 chuncks of each kind
- Can accommodate a growth factor of 16

� Only 16-bit base indices
- Can accommodate a growth factor of 3-5

� Number of next hops <= 214

isto ica@cs.berkeley.edu 19

Notes

� This data structure trades the table construction
time for lookup time (build time < 100 ms)

- Good trade-off because routes are not supposed to
change often

� Lookup performance:
- Worst-case: 101 cycles

• A 200 MHz Pentium Pro can do at least 2 millions
lookups per second

- On average: ~ 50 cycles
� Open question: how effective is this data

structure in the case of IPv6 ?

isto ica@cs.berkeley.edu 20

Overview

� Packet Lookup
� Packet Classification

6

isto ica@cs.berkeley.edu 21

Classification Problem

� Classify an IP packet based on a number of fields
in the packet header, e.g.,

- source/destination IP address (32 bits)
- source/destination port number (16 bits)
- TOS byte (8 bits)
- Type of protocol (8 bits)

� In general fields are specified by range

isto ica@cs.berkeley.edu 22

Example of Classification Rules

� Access-control in firewalls
- Deny all e-mail traffic from ISP-X to Y

� Policy-based routing
- Route IP telephony traffic from X to Y via ATM

� Differentiate quality of service
- Ensure that no more than 50 Mbps are injected from

ISP-X

isto ica@cs.berkeley.edu 23

Characteristics of Real Classif iers
(Gupta & McKeown, Sigcomm’99)

� Results are collected over 793 packet classifiers
from 101 ISPs, with a total of 41,505 rules

- Classifiers do not contain many rules: mean = 50 rules,
max = 1734 rules, only 0.7% contain over 1000 rules

- Many fields are specified by range, e.g., greater than
1023, or 20-24

- 14% of classifiers had a rule with a non-contiguous
mask !

- Rules in the same classifier tend to share the same
fields

- 8% of the rules are redundant, i.e., they can be
eliminated without changing classifier’s behavior

isto ica@cs.berkeley.edu 24

Example
� Two-dimension space, i.e., classification based on two

fields
� Complexity depends on the layout, i.e., how many distinct

regions are created

7

isto ica@cs.berkeley.edu 25

Hard Problem

� Even if regions don’t overlap, with n rules and F
fields we have the following lower-bounds

• O(log n) time and O(nF) space
• O(log F-1 n) time and O(n) space

isto ica@cs.berkeley.edu 26

Simplifying Assumptions

� In practice, you get the average not the worst-
case, e.g., number of overlapping regions for the
largest classifier 4316 vs. theoretical worst case
10 13

� The number of rules is reasonable small, i.e., at
most several thousands

� The rules do not change often

isto ica@cs.berkeley.edu 27

Recursive Flow Classification (RFC)
Algorithm

� Problem formulation:
- Map S bits (i.e., the bits of all the F fields) to T bits (i.e.,

the class identifier)
� Main idea:

- Create a 2S size table with pre-computed values; each
entry contains the class identifier

• Only one memory access needed
- …but this is impractical

�
require huge memory

isto ica@cs.berkeley.edu 28

RFC Algorithm
� Use recursion: trade speed (number of memory

accesses) for memory footprint

8

isto ica@cs.berkeley.edu 29

The RFC Algorithm

� Split the F fields in chuncks

� Use the value of each chunck to index into a
table

- Indexing is done in parallel
� Combine results from previous phase, and repeat
� In the final phase we obtain only one value

isto ica@cs.berkeley.edu 30

Example of Packet Flow in RFC

isto ica@cs.berkeley.edu 31

Example

� Four fields
�

six chunks
- Source and destination IP addresses � two chuncks each
- Protocol number � one chunck
- Destination port number � one chunck

isto ica@cs.berkeley.edu 32

Complete Example

indx=c02*6+c03*3+c05

indx=c10*5+c11

9

isto ica@cs.berkeley.edu 33

indx=c10*5+c11

isto ica@cs.berkeley.edu 34

RFC Lookup Performance

� Dataset: classifiers used in practice
� Hardware: 31.25 millions pps using three stage

pipeline, and 4-bank 64 Mb SRAMs at 125 MHz
� Software: > 1million pps on a 333 MHz Pentium

isto ica@cs.berkeley.edu 35

RFC Scalling

� RFC does not handle well large (general) classifiers
- As the number of rules increases, the memory requirements

increase dramatically, e.g., for 1500 rules you may need over
4.5 MB with a three stage classifier

� Proposed solution: adjacency groups
- Idea: group rules that generate the same actions and use same

fields
- Problems: can’t tell which rule was matched

isto ica@cs.berkeley.edu 36

Summary

� Routing lookup and packet classification
�

two of the
most important challenges in designing high speed
routers

� Very efficient algorithms for routing lookup
�

possible to do lookup at the line speed
� Packet classification still an area of active research
� Key difficulties in designing packet classification:

- Requires multi-field classification which is an inherently hard
problem

- If we want per flow QoS insertion/deletion need also to be
fast

• Harder to make update-lookup tradeoffs like in Lulea’s
algorithm

10

isto ica@cs.berkeley.edu 37

RFC Algorithm: Example
� Phase 0:

- Possible values for destination
port number: 80, 20-21,
>1023, *

• Use two bits to encode
• Reduction: 16 � 2

- Possible values for protocol:
udp, tcp, *

• Use two bits to encode
• Reduction: 8 � 2

� Phase 1:
- Concatenate from phase 1,

five possible values: {80,udp},
{20-21,udp}, {80,tcp},
{>1023,tcp}, everything else

• Use three bits to encode
• Reduction 4 � 3

