Midterm Exam (March 13): Sample
Questions

CS 268: Route Lookup and
Packet Classification

lon Stoica
March 11, 2003

= EZ2E principle
- Describe the end-to-end principle. Give one example in which
implementing a particular functionality at a lower layer breaks
this principle, and one example in which it does not. Explain.
= Fair Queueing
- (a) What problem does Fair Queueing address? Describe the
Fair Queuing algorithm.
- (b) What is the system virtual time and what it is used for?
= Differentiated Services
- Compare Assured and Premium services. How is each of
them implemented at edge and core routers?

istoica@cs.berkeley.edu

Overview

> Packet Lookup
= Packet Classification

istoica@cs.berkeley.edu

Lookup Problem

= |dentify the output interface to forward an incoming
packet based on packet’s destination address

= Forwarding tables summarize information by
maintaining a mapping between IP address prefixes
and output interfaces

= Route lookup - find the longest prefix in the table
that matches the packet destination address

istoica@cs.berkeley.edu

Example

= Packet with destination address 12.82.100.101 is
sent to interface 2, as 12.82.100.xxx is the longest
prefix matching packet’s destination address

128.16.120.xxx
12.82.3xx. XXX | 3
12.82.100.xxx | 2

-

12.82.100.101
128.16.120.111

istoica@cs.berkeley.edu 5

Patricia Tries

= Use binary tree paths to encode prefixes

001xx
0100x
10xxx
01100

G wN

= Advantage: simple to implement

= Disadvantage: one lookup may take O(m), where
m is number of bits (32 in the case of IPv4)

istoica@cs.berkeley.edu 6

Lulea’s Routing Lookup Algorithm
(Sigcomm’97)

= Minimize number of memory accesses

= Minimize size of data structure

- Small size allows to fit entire data structure in the cache
(why do you care about size?)

= Solution: use a three-level data structure

A Lave] 1
T

istoica@cs.berkeley.edu 7

First Level: Bit-Vector

= Cover all prefixes down to depth 16

= Use one bit to encode each prefix
- Memory requirements: 2:6= 64 Kb = 8 KB

w oo /O“\

4 \O LN o/

LB Y
O e
i\

123]‘456/‘/‘3:11011113145

ON.,,/

\
& depth 16
root heads

(oLl

genuine heads
istoica@cs.berkeley.edu 8

First Level: Pointers

= Maintain 16-bit pointers to (1) next-hop (routing)
table or (2) to two level chuncks
- 2 bits encode pointer type

- 14 bits represent an index into routing table or into an
array containing level two chuncks

= Pointers are stored at consecutive memory
addresses

= Problem: find the pointer

istoica@cs.berkeley.edu

Example
0006abed ———————=——7""——___
000acdef - > R
_ AR AR A
. e 9 2 OO e @ geomu
bnveTtor|1|o|o|o|1|o|l,1|1|1tl'01'0|0|1|1|1|1|"' Problem:
pointer L~ N find
array, .-~ o ."/ " \”* pointer

(-

T
AN

Level two chunks

Routing
table

istoica@cs.berkeley.edu

Code Word and Base Indexes Array

= Split the bit-vector in bit-masks (16 bits each)

= Find corresponding bit-mask

= How?
- Maintain a16-bit code word for each bit-mask (10-bit value; 6-bit offset)
- Maintain a base index array (one 16-bit entry for each 4 code words)

number of previous ones in the bit-vector

OIO I0000000C0OO0000 I00O00COL 0000000 L 00000001

Bit-vector | IPEOLOGOLOGOMCOD LOLLLOCD!

oLoLoos

First Level: Finding Pointer Group

= Use first 12 bits to index into code word array
= Use first 10 bits to index into base index array

first 12 bits

address: 004C
first 10 bits

1D00LOOOIOO00000 L0 L LO0OL00G)

0 1000000000000 LOODOOCOLDNO0000 | L 0000000LOL DL 000

bude word 3"33“ W o [2 () o [t} n 1L 15 o |
0 L] 3 4
5355 index arra} o 5

o L

istoica@cs.berkeley.edu

ode word array [__ut o [= 2] o w] u L & o]
o L 3 3 +
ase index array | o T 13]
5 T [
13+0=13

istoica@cs.berkeley.edu

First Level: Encoding Bit-masks

Observation: not all 16-bit values are possible
- Example: bitmask 1001... is not possible (why not?)
Let a(n) be number of non-zero bit-masks of length 2"
Compute a(n) using recurrence:
-a0)=1
- a(n) =1+a(n-1)?
For length 16, we get only 677 possible values for bit-
masks
This can be encoded in 10 bits
- Values r; in code words
Store all possible bit-masks in a table, called maptable

istoica@cs.berkeley.edu 13

First Level: Finding Pointer Index

= Each entry in maptable is an offset of 4 bits:
- Offset of pointer in the group
» Number of memory accesses: 3 (7 bytes accessed)

3L IF address 0 g oSS =T
[10 Jz[a L6 " mmptables ; aWa . . . 13
=]
/ AN 675
7 2 Bit) =mmmre 45
R e ame = [T

"o, codeword -

it SN

pix:=

istoica@cs.berkeley.edu 14

First Level: Memory Requirements

= Code word array: one code word per bit-mask
- 64 Kb
= Based index array: one base index per four bit-
mask
- 16 Kb
Maptable: 677x16 entries, 4 bits each
- ~433Kb
= Total: 123.3 Kb = 15.4 KB

istoica@cs.berkeley.edu 15

First Level: Optimizations

= Reduce number of entries in Maptable by two:

- Don't store bit-masks 0 and 1; instead encode pointers
directly into code word

- If r value in code word larger than 676 = direct
encoding

- For direct encoding use r value + 6-bit offset

istoica@cs.berkeley.edu 16

Levels 2 and 3

= Levels 2 and 3 consists of chunks
= A chunck covers a sub-tree of height 8 > at most
256 heads
= Three types of chunks
- Sparse: 1-8 heads
« 8-bitindices, eight pointers (24 B)
- Dense: 9-64 heads
« Like level 1, but only one base index (< 162 B)
- Very dense: 65-256 heads
« Like level 1 (< 552 B)
= Only 7 bytes are accessed to search each of
levels 2 and 3

istoica@cs.berkeley.edu 17

Limitations

= Only 24 chuncks of each kind

- Can accommodate a growth factor of 16
= Only 16-bit base indices

- Can accommodate a growth factor of 3-5
= Number of next hops <= 214

istoica@cs.berkeley.edu 18

Notes

= This data structure trades the table construction
time for lookup time (build time < 100 ms)
- Good trade-off because routes are not supposed to
change often
= Lookup performance:
- Worst-case: 101 cycles

* A 200 MHz Pentium Pro can do at least 2 millions
lookups per second

- On average: ~ 50 cycles

= Open question: how effective is this data
structure in the case of IPv6 ?

istoica@cs.berkeley.edu 19

Overview

= Packet Lookup
> Packet Classification

istoica@cs.berkeley.edu 20

Classification Problem

= Classify an IP packet based on a number of fields
in the packet header, e.g.,
- source/destination IP address (32 bits)
- source/destination port number (16 bits)
- TOS byte (8 bits)
- Type of protocol (8 bits)
= In general fields are specified by range

istoica@cs.berkeley.edu 21

Example of Classification Rules

= Access-control in firewalls

- Deny all e-mail traffic from ISP-X to Y
= Policy-based routing

- Route IP telephony traffic from X to Y via ATM
= Differentiate quality of service

- Ensure that no more than 50 Mbps are injected from
ISP-X

istoica@cs.berkeley.edu 22

Characteristics of Real Classifiers
(Gupta & McKeown, Sigcomm’99)

= Results are collected over 793 packet classifiers
from 101 ISPs, with a total of 41,505 rules

Classifiers do not contain many rules: mean = 50 rules,

max = 1734 rules, only 0.7% contain over 1000 rules

Many fields are specified by range, e.g., greater than

1023, or 20-24

14% of classifiers had a rule with a non-contiguous

mask !

Rules in the same classifier tend to share the same

fields

8% of the rules are redundant, i.e., they can be
eliminated without changing classifier's behavior

istoica@cs.berkeley.edu 23

Example

= Two-dimension space, i.e., classification based on two
fields

= Complexity depends on the layout, i.e., how many distinct
regions are created

]

Ga)d e gions (b} 5 regions

(c) T regions
istoica@cs.berkeley.edu 24

Hard Problem

= Even if regions don’t overlap, with n rules and F
fields we have the following lower-bounds

* O(log n) time and O(nF) space
* O(log 7 n) time and O(n) space

istoica@cs.berkeley.edu 25

Simplifying Assumptions

= In practice, you get the average not the worst-
case, e.g., number of overlapping regions for the
largest classifier 4316 vs. theoretical worst case
10 13

» The number of rules is reasonable small, i.e., at
most several thousands

= The rules do not change often

istoica@cs.berkeley.edu 26

Recursive Flow Classification (RFC)
Algorithm

= Problem formulation:

- Map S bits (i.e., the bits of all the F fields) to T bits (i.e.,
the class identifier)

= Main idea:

- Create a 23 size table with pre-computed values; each
entry contains the class identifier

« Only one memory access needed
- ...but this is impractical = require huge memory

istoica@cs.berkeley.edu 27

RFC Algorithm

= Use recursion: trade speed (number of memory
accesses) for memory footprint

SimpleOne Sep Chasificaion

Phse0 Fhsel Flos=2? Prose?

istoica@cs.berkeley.edu 28

The RFC Algorithm

Split the F fields in chuncks

Sic L4 port
L4 protocol and flags o LA ot

i"uﬁf gmLI:bgi.|\| I|y |Tu5|

Width(biis) 18 16 6 18 1&a & 1 3
Chunk# 0 1 S . T

Use the value of each chunck to index into a
table

- Indexing is done in parallel
Combine results from previous phase, and repeat
In the final phase we obtain only one value

istoica@cs berkeley.edu 29

Example of Packet Flow in RFC

clae=101

Fhos= 0 Phas= | Phase2 Phase 3

Example

= Four fields = six chunks
- Source and destination IP addresses = two chuncks each
- Protocol number - one chunck
- Destination port number - one chunck

Table 6:
nuiee | CronkROisie | ChunkeL (sic | Chunks2 iDst | Chunkss (D ?“:;‘:“[L; IDSTC::TL& i
L3 bits 31..16) L3bits 15.0) | L3bits 3L.16) | L3 buts 15.0) bits] bits]

1) 0.830.0 Q7700 0.00.0 +.6/0.0 \de w7y il ?Cl'lﬂil

1 0.830.0 100255 0.00.0 +.6/0.0 \de range 20 30 ?Cl'lﬂil

2 08300 077700 0.0/255255 0.0/255255 ¥ -1 8 permit

13) 0.0/255.255 00/255 255 0.0/255255 0.0/255255 ¥ -1 8 deny

1+ 0.0/255.255 00/255.255 0.0/255.255 0.0/255255 ¥ ot Flmii
istoica@cs berkeley.edu a

o o
1 T
By land2 3 T
af Tesen g v
L E— - st
indx=c10*5+c11 l——-
sssis T
Chimk#2
T —
Bessmes Ty
Tiecumi. Addim o[ooat s
o : 1 oo
10 1 N
o1 > Thom
: 3 | noor
0
ChiinkZs + uxy
o o
1 o
5 1
3 z
i 3
s 4
s o
ChimkZ S Z ell
a '] B
Dezen 1 a
h: ' 1o
Fon mamer 19) u
(137 £ 3 Chuonktd
L = A Accesses made by the lod
= r Sre Metwork-layer Add:
7 Dst Network-layer Acd:
| Tran sport-layer Frotocol
2 Dist Tran sport-layer port
assls o | Chamnk#5 P yerp

o | emra
woo11

1111

Fuleo

1011

! (u»—o
o

lufo[u]-leololalofa|o|a

TALE]

PTE————

indx=c10*5+c11 I___"“‘

o | cmra
Gowa1 ——
PETET)
Lot

atching Rules

ZEnEERLREE00A0 MR LLRD

11001

w{a e (e

11111

A0 kW=D

RFC Lookup Performance

= Dataset: classifiers used in practice

= Hardware: 31.25 millions pps using three stage
pipeline, and 4-bank 64 Mb SRAMs at 125 MHz

= Software: > Imillion pps on a 333 MHz Pentium

istoica@cs.berkeley.edu

RFC Scalling

= RFC does not handle well large (general) classifiers

- As the number of rules increases, the memory requirements
increase dramatically, e.g., for 1500 rules you may need over
4.5 MB with a three stage classifier

= Proposed solution: adjacency groups

- Idea: group rules that generate the same actions and use same
fields

- Problems: can't tell which rule was matched

istoica@cs.berkeley.edu 35

Summary

Routing lookup and packet classification = two of the
most important challenges in designing high speed
routers

Very efficient algorithms for routing lookup -
possible to do lookup at the line speed

Packet classification still an area of active research
Key difficulties in designing packet classification:

- Requires multi-field classification which is an inherently hard
problem

- If we want per flow QoS insertion/deletion need also to be
fast

« Harder to make update-lookup tradeoffs like in Lulea’s
algorithm

istoica@cs.berkeley.edu

RFC Algorithm:

Phase 0:

- Possible values for destination
port number: 80, 20-21,
>1023, *

« Use two bits to encode
* Reduction: 16->2
- Possible values for protocol:
udp, tcp, *
* Use two bits to encode
* Reduction: 8>2
Phase 1:

- Concatenate from phase 1,
five possible values: {80,udp},
ézo-zl,udpg, {80,tcp},

>1023,tcp}, everything else
« Use three bits to encode

« Reduction 4->3

Network- | MNetwork-
Y Tmnspart-
layer layer Transport- i

Destination | Soume layer e
(addvmask) | (addrimask) | Destination
152.163.190. | 152.163801 | * 2.

0000 1moo00
152168 3.0 152.163200 g www udp
Q00355 1570000
152.1683.0 152.163200 | mnge20-21 udp
Qoo2ss 1570000
152.1683.0 152.163200 | oq www fep
Q00355 1570000
152.163.198. | 152.163.160 | gi 1023 fep
40000 03255
152 163 183 152163360 | gt LO23 1cp
40000 00255

istoica@cs.berkeley.edu

10

