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What is the Problem?

� Internet has limited resources and management capabilities
- Prone to congestion, and denial of service
- Cannot provide guarantees

� Existing solutions
- Stateless – scalable and robust, but weak network services
- Stateful – powerful services, but much less scalable and robust
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Stateless vs. Stateful Solutions

� Stateless solutions – routers maintain no fine 
grained state about traffic 

�
scalable, robust

�
weak services

� Stateful solutions – routers maintain per-flow 
state

�
powerful services

• guaranteed services + high resource utilization
• fine grained differentiation
• protection

�
much less scalable and robust
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Existing Solutions

� DecBit [Ramkrishnan & Jain 
’88]

� Random Early Detection 
(RED) [Floyd & Jacobson ’93]

� BLUE [Feng et al ’99]

� Round Robin [Nagle ’85]
� Fair Queueing [Demers et al 
’89]

� Flow Random Early Drop 
(FRED) [Lin & Morris ’97]

Network 
support for 
congestion 
control

� Diffserv
 - [Clark &  
 Wroclawski ‘97]
 - [Nichols et al ’97]

� Tenet [Ferrari & Verma ’89]
� Intserv [Clark et al ’91]
� ATM [late ’80s]

QoS

StatelessStateful
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Stateful Solution: Guaranteed Services

Sender
Receiver

� Achieve  per-flow bandwidth and delay guarantees
- Example: guarantee 1MBps and < 100 ms delay to a flow
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Stateful Solution: Guaranteed Services

Sender
Receiver

� Allocate resources - perform per-flow admission control
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Stateful Solution: Guaranteed Services

Sender
Receiver

� Install per-flow state
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Sender
Receiver

� Challenge: maintain per-flow state consistent 

Stateful Solution: Guaranteed Services
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Stateful Solution: Guaranteed Services

Sender
Receiver

� Per-flow classification

isto ica@cs.berkeley.edu 10

Stateful Solution: Guaranteed Services

Sender
Receiver

� Per-flow buffer management
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Stateful Solution: Guaranteed Services

Sender
Receiver

• Per-flow scheduling
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Stateful Solution Complexity

� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-flow scheduling

� Control path
- install and maintain
 per-flow state for 
 data and control paths

Classifier

Buffer
management

Scheduler

flow 1

flow 2

flow n

output interface

…

Per-flow State
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Stateless vs. Stateful

� Stateless solutions are more
- scalable
- robust 

� Stateful solutions provide more powerful and flexible 
services

- guaranteed services + high resource utilization
- fine grained differentiation
- protection
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Question

� Can we achieve the best of two worlds, i.e.,  provide 
services implemented by stateful networks while 
maintaining  advantages of stateless architectures?
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Answer

� Yes, at least in some interesting cases:
- guaranteed services [Stoica and Zhang, SIGCOMM’99] 
- network support for congestion control: Core-Stateless Fair Queueing

[Stoica et al, SIGCOMM’98]
- service differentiation [Stoica and Zhang, NOSSDAV’98]
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� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services
� Conclusions 

Outline



5

isto ica@cs.berkeley.edu 17

Scalable Core (SCORE)
� A trusted and contiguous region of network in which 

- edge nodes – perform per flow management
- core nodes – do not perform per flow management

core nodes edge nodes
edge nodes
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The Approach

1. Define a reference stateful network that implements 
the desired service

Reference Stateful Network SCORE Network

2.   Emulate the functionality of the reference
network in a SCORE network
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The Idea
� Instead of having core routers maintaining per-flow 

state have packets carry per-flow state

Reference Stateful Network SCORE Network
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The Technique: Dynamic Packet State 
(DPS)

� Ingress node: compute and insert flow state in 
packet’s header
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The Technique: Dynamic Packet State 
(DPS)

� Ingress node: compute and insert flow state in 
packet’s header
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The Technique: Dynamic Packet State 
(DPS)

� Core node: 
- process packet based on state it carries and node’s state
- update both packet and node’s state
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The Technique: Dynamic Packet State 
(DPS)

� Egress node: remove state from packet’s header
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� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services
� Conclusions 

Outline
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Why Guaranteed Service Example?

� Illustrate power and flexibility of our solution
- guaranteed service - strongest semantic service proposed in 

context of stateful networks

guaranteed
services

statistical
services

differentiated
services

congestion
control 
supportbest-effort

service quality betterworse
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Example: Guaranteed Services 
� Goal: provide per-flow delay and bandwidth guarantees
� How: emulate ideal model in which each flow traverses 

dedicated links of capacity r

� Per-hop packet service time = (packet length) / r

r r rflow
(reservation = r )
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Guaranteed Services

� Define reference network to implement service 
- control path: per-flow admission control, reserve capacity r on each 

link
- data path: enforce ideal model, by using Jitter Virtual Clock (Jitter-

VC) scheduler

Reference Stateful Network

Jitter-VC Jitter-VC Jitter-VC Jitter-VC

Jitter-VCJitter-VCJitter-VC
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Guaranteed Services

� Use DPS to eliminate per-flow state in core  
- control path: emulate per-flow admission control 
- data path: emulate Jitter-VC by Core-Jitter Virtual Clock (CJVC)

Reference Stateful Network SCORE Network

Jitter-VC Jitter-VC Jitter-VC
Jitter-VC

Jitter-VCJitter-VC
Jitter-VC

CJVC CJVC

CJVC

CJVC

CJVC

CJVC
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� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services

�
Eliminate per-flow state on data path

- Eliminate per-flow state on control path
- Implementation and experimental results

� Conclusions 

Outline
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Data Path

Ideal Model

Stateful solution: Jitter Virtual Clock

Stateless solution: Core-Jitter Virtual Clock
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Ideal Model: Example

time

1

2

3

4

packet arrival time
packet transmission time (service) in ideal model

p1 arrival p2 arrival

length(p2) / rlength(p1) / r
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Stateful Solution: Jitter Virtual Clock 
(Jitter-VC)

time

• With each packet associate 
– eligible time – start time of serving packet in ideal model
– deadline – finish time of serving packet in ideal model

eligible times

deadlines

1

2

3

4
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Jitter-VC

time

• Algorithm: schedule eligible packets in increasing order of 
their deadlines

• Property: guarantees that all packets meet their deadlines

eligible times

deadlines

1

2

3

4
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Jitter-VC: Eligible Time 
Computation

� Minimum between
- arrival time
- deadline at previous node + propagation delay
- deadline of previous packet

timeeligible time = packet deadline at previous node

eligible time = arrival time 

1

2

3

4
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Jitter-VC: Eligible Time 
Computation

time

eligible time = arrival time 

eligible time = packet 
deadline at prev. node

eligible time = prev.
packet deadline

using previous packet’s deadline � per flow state

� Minimum between
- arrival time
- deadline at previous node + propagation delay
- deadline of previous packet

1

2

3

4
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Stateless Solution: Core-Jitter Virtual 
Clock (CJVC)

time

� Goal: eliminate per-flow state
- eliminate dependency on previous packet deadline

1

2

3

4
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Core-Jitter Virtual Clock (CJVC)
� Solution: make eligible time greater or equal to previous 

packet deadline 

time

1

2

3

4
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Core-Jitter Virtual Clock (CJVC)

time

� How: associate to each packet a slack variable s
� Delay eligible time at each node by s

1

2

3

4

s

eligible time = packet 
deadline at prev. node + s
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� Theorem: CJVC and Jitter-VC provide the same end-to-end 
delay bounds

� s can be computed at ingress: depends on
- current and previous packet eligible times (e and ep)
- current and previous packet lengths (lp and l)
- slack variable associated to previous packet (sp)
- flow reservation (r)
- number of hops (h) – computed at admission time

CJVC Properties
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CJVC Algorithm 

� Each packet carries in its header three variable
- slack variable s (computed and inserted by ingress)
- flow’s reserved rate r (inserted by ingress)
- ahead of schedule a (inserted by previous node)

� Eligible time = arrival time + a + s
� Deadline = eligible time + (packet length) / r 
� NOTE: 

- using a instead of the deadline at previous node � no need for 
synchronized clocks 
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Jitter-VC: Core Router

� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-flow scheduling

� Control path
- install and maintain
 per-flow state for
 data and control paths

Classifier

Buffer
management

Scheduler

flow 1

flow 2

flow n

…

Per flowl State
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� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-packet scheduling

� Control path
- Install and maintain 
 per-flow state for
 data and control paths

CJVC: Core Router

Buffer
management

Scheduler

…

Control State
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� Motivations: what is the problem and why it is important?
� Existing solutions
� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services

- Eliminate per-flow state on data path
�

Eliminate per-flow state on control path
- Implementation and experimental results

� Conclusions 

Outline
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Control Path: Admission Control
� Goal: reserve resources (bandwidth) for each flow 

along its path
� Approach: light-weight protocol that does not require 

core nodes to maintain per-flow state 

yes yes yes

yes
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Per-hop Admission Control

� A node admits a reservation r, if 
- C – output link capacity
- R – aggregate reservation: 

� Need: maintain aggregate reservation R
� Problem: it requires per flow state to handle partial 

reservation failures and message loss

�
=

i
irR

RCr −≤
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Solution

1. Estimate aggregate reservation Rest

2. Account for approximations and compute an upper 
bound Rbound , i.e., Rbound >= R

3. Use Rbound , instead of R, to perform admission control, 
i.e., admit a reservation r if 

boundRCr −≤
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� Observation: If all flows were sending at their reserved 
rates, computing Rest is trivial:

- just measure the traffic throughput, e.g.,

 where S(a, a+T) contains all packets of all flows received during 
[a, a+T)

Estimating Aggregate Reservation 
(Rest)

T

ilength

R TaaSi
est

�

+∈= ),(

)(

Mbpsr 21 =

Mbpsr 32 =

MbpsRest 5≅
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Virtual Length

• Problem: What if flows do not send at their 
reserved rates ?
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Virtual Length

• Problem: What if flows do not send at their reserved rates ?
• Solution: associate to each packet a virtual length such that 

– if lengths of all packets of a flow were equal to their virtual 
lengths, the flow sends at its reserved rate

• Then, use virtual lengths instead of actual packet lengths to 
compute Rest
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Virtual Length

� Definition:

- r – flow reserved rate
- crt_time – transmission time of current packet
- prev_time – transmission time of previous packet

� Example: assume a flow with reservation r = 1 Mbps 
sending 1000 bit packets

)__( timeprevtimecrtrgthvirtualLen −×=

100012001300

1000

1.2 ms

1000

1.3 ms

1000 length

1900

1.9 ms

1000

virtual
length
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Estimating Aggregate Reservation 
(Rest)

� Use Dynamic Packet State (DPS)
� Ingress node: upon each packet departure computes the 

virtual length and inserts it in the packet header
� Core node: Estimate Rest on each output link as

- where S(a, a+T) contains of all packets of all flows received during 
[a, a+T)

T

igthvirtualLen

R TaaSi
est

�

+∈= ),(

)(
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Aggregate Reservation Estimation: 
Discussion

� The estimation algorithm is robust in presence of control 
message loss and duplication

- their effect is “forgotten” after one estimation interval
� If no packet of a flow departs during a predefined interval (i.e., 

maximum inter-departure time), ingress node generates a 
dummy packet

� Utilization <= 1 – f ,
- where f = (max. inter-departure time) / (estimation int.)
- e.g.: max. inter-departure time = 5s; estimation int. = 30s � utilization <= 

0.83
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� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-packet scheduling

� Control path
- Install and maintain 
 per flow state for
 data and control paths

Core Router

Buffer
management

Scheduler

…

Control State
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� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-packet scheduling

� Control path
- Install and maintain 
 per flow state for
 data and control paths

Core Router

Buffer
management

Scheduler

Control State

no need to maintain consistency of per-flow state
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� Motivations: what is the problem and why is it important?
� Existing solutions
� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services

- Eliminate per-flow state on data path
- Eliminate per-flow state on control path

�
Implementation and experimental results

� Conclusions 

Outline
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Implementation: State Encoding

� Problem: Where to insert the state ?
� Possible solutions:

- between link layer and network layer headers
- as an IP option (IP option 23 allocated by IANA)
- find room in IP header
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Implementation: State Encoding

� Current solution
- 4 bits in DS field (belong to former TOS)
- 13 bits by reusing fragment offset

� Encoding techniques
- Take advantage of implicit dependencies between state 

values 
- Temporal multiplexing: use one field to encode two 

states, if these states do not need to be simultaneously 
presented in each packet
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Implementation

� FreeBSD 2.2.6
� Pentium II 400 MHz
� ZNYX network cards 10/100 Mbps Ethernet
� Fully implements control and data path functionalities
� Management and monitoring infrastructure 
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Monitoring Infrastructure

� Light weight mechanism that allows continuous 
monitoring at packet level

� Implementation
- Record each packet (28 bytes)

• IP header and port numbers
• arrival, departure or drop times

- Use raw IP to send this information to a monitoring site
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A Simple Experiment
� Three flows sharing a 10 Mbps link

- Flow 1: 1 Mbps reservation
- Flow 2: 3 Mbps reservation with ON/OFF traffic
- Flow 3: best-effort UDP sending at  > 8 Mbps

aruba
(ingress)

cozumel
(core)

Monitoring
machine
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Aggregate Reservation 
Computation

� 0.5 Mbps reservation active during entire interval
� 0.5 Mbps reservation starting at 18 sec; ending at 39 sec 
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Aggregate

Rbound

R

accept
reservation
(0.5 Mbps)

terminate
reservation
(0.5 Mbps)
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Conclusions
� SCORE and DPS bridge the gap between stateless and stateful

solutions
� Key ideas

- Instead of core routers maintain per-flow state have packets carry this 
state

- Use state to coordinate edge and core router actions  
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Conclusions (cont’d)

� SCORE architecture can provide: 
- Service  guarantees
- Network support for congestion control
- Service differentiation

� DPS compatible with Diffserv: can greatly enhance the 
functionality while requiring minimal changes


