CS 268: Dynamic Packet
State

lon Stoica
April 1, 2003

What is the Problem?

= Internet has limited resources and management capabilities
- Prone to congestion, and denial of service
- Cannot provide guarantees

= Existing solutions
- Stateless — scalable and robust, but weak network services
- Stateful — powerful services, but much less scalable and robust

istoica@cs.berkeley.edu 2

Stateless vs. Stateful Solutions

= Stateless solutions — routers maintain no fine
grained state about traffic
4 scalable, robust
¥ weak services
= Stateful solutions — routers maintain per-flow
state
4 powerful services
« guaranteed services + high resource utilization
« fine grained differentiation
« protection
¥ much less scalable and robust

istoica@cs.berkeley.edu

Existing Solutions

Stateful Stateless
=Tenet [Ferrari & Verma '89] = Diffserv
QoS = Intserv [Clark et al '91] - [Clark &
= ATM [late '80s] Wroclawski ‘97]
- [Nichols et al '97]
= Round Robin [Nagle '85] = DecBit [Ramkrishnan & Jain
Network = Fair Queueing [Demers et al '88]
support for | '89] = Random Early Detection
Fongestion |, Flow Random Early Drop (RED) [Floyd & Jacobson '93]
control (FRED) [Lin & Morris '97] » BLUE [Feng et al '99]

istoica@cs.berkeley.edu 4

Stateful Solution: Guaranteed Services

= Achieve per-flow bandwidth and delay guarantees

- Example: guarantee 1MBps and < 100 ms delay to a flow
R - Receiver

Seder -]
i

istoica@cs.berkeley.edu 5

Stateful Solution: Guaranteed Services

= Allocate resources - perform per-flow admission control

— Receiver

Sender - -
[E qeee
a5 [l g LN VAT

istoica@cs.berkeley.edu 6

Stateful Solution: Guaranteed Services

= Install per-flow state

— Receiver

Sender

B

istoica@cs.berkeley.edu 7

Stateful Solution: Guaranteed Services

= Challenge: maintain per-flow state consistent

— Receiver

istoica@cs.berkeley.edu 8

Stateful Solution: Guaranteed Services

= Per-flow classification

Sender

g

istoica@cs.berkeley.edu

Receiver

(5% ;;

EELE] I |

Stateful Solution: Guaranteed Services

= Per-flow buffer management

Receiver
Sender

ﬁ& ﬁ& ;g

istoica@cs.berkeley.edu

Stateful Solution: Guaranteed Services

« Per-flow scheduling

Sender . :

Receiver

istoica@cs.berkeley.edu

Stateful Solution Complexity

= Data path
- Per-flow classification
- Per-flow buffer
management
- Per-flow scheduling
= Control path
- install and maintain
per-flow state for
data and control paths |

Per-flow State

Scheduler F—>

Buffer
management

outputinterface
istoica@cs.berkeley.edu

12

Stateless vs. Stateful

= Stateless solutions are more
- scalable
- robust
= Stateful solutions provide more powerful and flexible
services
- guaranteed services + high resource utilization
- fine grained differentiation
- protection

istoica@cs.berkeley.edu 13

Question

= Can we achieve the best of two worlds, i.e., provide
services implemented by stateful networks while
maintaining advantages of stateless architectures?

istoica@cs.berkeley.edu 14

Answer

= Yes, at least in some interesting cases:
- guaranteed services [Stoica and Zhang, SIGCOMM'99]

- network support for congestion control: Core-Stateless Fair Queueing
[Stoica et al, SIGCOMM'98]

- service differentiation [Stoica and Zhang, NOSSDAV'98]

istoica@cs.berkeley.edu 15

Outline

» Solution: SCORE architecture and DPS technique
= Example: providing guaranteed services
= Conclusions

istoica@cs.berkeley.edu 16

Scalable Core (SCORE)

= Atrusted and contiguous region of network in which
- edge nodes — perform per flow management
- core nodes — do not perform per flow management

istoica@cs.berkeley.edu

The Approach

1. Define a reference stateful network that implements

the desired service

2. Emulate the functionality of the reference
network in a SCORE network

Reference Stateful Network scoRErNetwork

istoica@cs.berkeley.edu

18

The Idea

= Instead of having core routers maintaining per-flow
state have packets carry per-flow state

Z.-v \

Reference Stateful Network scoRErNetwork

19

istoica@cs.berkeley.edu

The Technique: Dynamic Packet State

(DPS)

= Ingress node: compute and insert flow state in
packet’s header

o B I

istoica@cs.berkeley.edu

The Technique: Dynamic Packet State
(DPS)

= Ingress node: compute and insert flow state in
packet’s header

—0B-

istoica@cs.berkeley.edu 21

The Technique: Dynamic Packet State
(DPS)

= Core node:
- process packet based on state it carries and node’s state
- update both packet and node’s state

istoica@cs.berkeley.edu

The Technique: Dynamic Packet State
(DPS)

= Egress node: remove state from packet’s header

istoica@cs.berkeley.edu 23

Outline

= Solution: SCORE architecture and DPS technique
» Example: providing guaranteed services
= Conclusions

istoica@cs.berkeley.edu

Why Guaranteed Service Example?

= lllustrate power and flexibility of our solution

- guaranteed service - strongest semantic service proposed in
context of stateful networks

Example: Guaranteed Services

= Goal: provide per-flow delay and bandwidth guarantees

= How: emulate ideal model in which each flow traverses
dedicated links of capacity r

Reference Stateful Network

istoica@cs.berkeley.edu

congestion = .
control differentiated| | statistical| |guaranteed
best-effort| | support services services services » " " -
flow —s — —r—
I } } } | (reservation =r)
worse < ———n0 service quality to———" better - .
= Per-hop packet service time = (packet length) / r
istoica@cs.berkeley.edu 25 istoica@cs.berkeley.edu 26
Guaranteed Services Guaranteed Services
= Define reference network to implement service = Use DPS to eliminate per-flow state in core
- control path: per-flow admission control, reserve capacity r on each - control path: emulate per-flow admission control
link - data path: emulate Jitter-VC by Core-Jitter Virtual Clock (CIVC)
- data path: enforce ideal model, by using Jitter Virtual Clock (Jitter-
VC) scheduler
. i Jitter-VC . e Jitter-VC) - CJvC
Jitter-vc Jitter-VC Jitter-VC F& Jitter-ve Jitter-vC Jitter-VC ﬁ
Nt Sl
3 hul z 7
Jitter-vC Jitter-VGJitter-VC Jitter-vC civg]
m : : =i

CJvC

Reference Stateful Network SCORE Netwgrk

istoica@cs.berkeley.edu

Outline Data Path

= Solution: SCORE architecture and DPS technique

=» Example: providing guaranteed services
= Eliminate per-flow state on data path
- Eliminate per-flow state on control path @

- Implementation and experimental results
= Conclusions

‘Stateful solution: Jitter Virtual Clock ‘

‘ Stateless solution: Core-Jitter Virtual Clock‘

istoica@cs.berkeley.edu 29 istoica@cs.berkeley.edu 30

Stateful Solution: Jitter Virtual Clock

Ideal Model: Example (Jitter-VC)
> With each packet associate
| h(pl | h(p2
1‘ ength(p ‘) Ir ‘ f‘ en?t p2) /1 ‘ — eligible time — start time of serving packet in ideal model
| | §

‘ — deadline —finish time of serving packet in ideal model

| deadiines |
L = |

O -

9 ‘pl arrival ‘] ‘pz arrival ‘ {

A
N
&

time %g& l \
packet arrival time l
packet transmission time (service) in ideal model ‘Eﬁ

istoica@cs.berkeley.edu 31 ellglble tlmeS istoica@cs.berkeley.edu 32 time

Jitter-VC

Algorithm: schedule eligible packets in increasing order of
their deadlines

Property: guarantees that all packets meet their deadlines

deadlines
\

o \\

eligible times | stoica@csberkeley.edu = time

Jitter-VC: Eligible Time
Computation

= Minimum between
- arrival time
- deadline at previous node + propagation delay
- deadline of previous packet

Iwtime = arrival time

=

l

N
EEE] EEE|

l

S

/
/ 1

<]

‘eligible time = packet deadline at previous node|

* time

Jitter-VC: Eligible Time
Computation

= Minimum between
- arrival time
- deadline at previous node + propagation delay
- deadline of previous p

acket
l ‘/ eligible time = arrival time ‘

1@? eligible time = packet
] | A

Stateless Solution: Core-Jitter Virtual
Clock (CJVC)

o
(=]

deadline at prev. node)
ﬁgﬂ l T Aeligible time = prev.
st l |

packet deadline
| using previous packet’s deadline = per flow state| time

= Goal: eliminate per-flow state
- eliminate dependency on previous packet deadline

b}

N

{2
©

N
©

% time

Core-Jitter Virtual Clock (CJVC)

= Solution: make eligible time greater or equal to previous
packet deadline

o]
D)

=)
=)
©

w ¥ time

Core-Jitter Virtual Clock (CJVC)

= How: associate to each packet a slack variable s
= Delay eligible time at each node by s

eligible time = packet
deadline at prev. node + s

1% / \\

du 38 1
time

CJVC Properties

= Theorem: CJVC and Jitter-VC provide the same end-to-end
delay bounds
= s can be computed at ingress: depends on
- current and previous packet eligible times (e and g,)
- current and previous packet lengths (1, and I)
- slack variable associated to previous packet (s,)
- flow reservation (r)
- number of hops (h) — computed at admission time

l,-1 e, —-e+l [/r
s=max [0,5, + L—+F £
r h-1

istoica@cs.berkeley.edu 39

CJVC Algorithm

= Each packet carries in its header three variable
- slack variable s (computed and inserted by ingress)
- flow's reserved rate r (inserted by ingress)
- ahead of schedule a (inserted by previous node)

= Eligible time = arrival time + a + s

= Deadline = eligible time + (packet length) / r

= NOTE:

- using a instead of the deadline at previous node = no need for
synchronized clocks

istoica@cs.berkeley.edu 40

10

Jitter-VC: Core Router

= Data path
- Per-flow classification

CJVC: Core Router

- Per-flow buffer
management
- Per-flow scheduling
= Control path
- install and maintain

Per flow| State

per-flow state for
data and control paths

Scheduler

Buffer
management

istoica@cs.berkeley.edu

= Data path
- BT

- Muﬂer
management
- Per-packet scheduling
= Control path
- Install and maintain

Control State

per-flow state for (| Scheduler
Mntrol paths

Buffer

management

istoica@cs.berkeley.edu

Outline

= Motivations: what is the problem and why it is important?
= Existing solutions
= Solution: SCORE architecture and DPS technique
=» Example: providing guaranteed services
- Eliminate per-flow state on data path
=» Eliminate per-flow state on control path
- Implementation and experimental results

= Conclusions

istoica@cs.berkeley.edu

Control Path: Admission Control

= Goal: reserve resources (bandwidth) for each flow
along its path

= Approach: light-weight protocol that does not require
core nodes to maintain per-flow state

yes
")‘/es yes 7.);'e's'"'--..
—> [a0 =—=/=(| —»’—\ —

istoica@cs.berkeley.edu

11

Per-hop Admission Control

« A node admits a reservationr, if ' SC—-R
- C-output link capacity
- R-aggregate reservation: R= z 1

» Need: maintain aggregate resefvation R

= Problem: it requires per flow state to handle partial
reservation failures and message loss

istoica@cs.berkeley.edu 45

Solution

1. Estimate aggregate reservation R

2. Account for approximations and compute an upper
bound Rbuund' 1.e., Rbuund >=R

3. Use Ry, instead of R, to perform admission control,
i.e., admit a reservation r if

r< C - Roound

istoica@cs.berkeley.edu 46

Estimating Aggregate Reservation
(Res)

= Observation: If all flows were sending at their reserved
rates, computing R is trivial:
- just measure the traffic throughput, e.g.,

> length(i)
— i0S(a,a+T)
A e —
where Sa, a+T) contains all packets of all flows received during
[a, a+T)
/ R 05 Mbps
r, = 2Mbps]
r, =3Mbps

istoica@cs.berkeley.edu

Virtual Length

* Problem: What if flows do not send at their
reserved rates ?

istoica@cs.berkeley.edu 48

12

Virtual Length

Problem: What if flows do not send at their reserved rates ?
Solution: associate to each packet a virtual length such that

— if lengths of all packets of a flow were equal to their virtual
lengths, the flow sends at its reserved rate

Then, use virtual lengths instead of actual packet lengths to
compute Ry

istoica@cs.berkeley.edu 49

Virtual Length

= Definition:
| virtualLength=r x(crt _time~ prev_time) |
- r—flow reserved rate
- crt_time— transmission time of current packet
- prev_time— transmission time of previous packet

= Example: assume a flow with reservation r = 1 Mbps
sending 1000 bit packets

1.9ms) 1.3ms | 1l2ms
T 1
1000 1000 1000 1000] length
1900 1300 1200 [toog) Virual
length
istoica@cs.berkeley.edu 50

Estimating Aggregate Reservation
(Res)

= Use Dynamic Packet State (DPS)

= Ingress node: upon each packet departure computes the
virtual length and inserts it in the packet header

= Core node: Estimate R, on each output link as
> virtualLength(i)
R&a — i0S(a.a+T)

T

- where Sa, a+T) contains of all packets of all flows received during
[a, a+T)

istoica@cs.berkeley.edu 51

Aggregate Reservation Estimation:
Discussion

The estimation algorithm is robust in presence of control
message loss and duplication

- their effect is “forgotten” after one estimation interval
If no packet of a flow departs during a predefined interval (i.e.,
maximum inter-departure time), ingress node generates a
dummy packet
Utilization <=1 —f,

- where f = (max. inter-departure time) / (estimation int.)

- e.g.: max. inter-departure time = 5s; estimation int. = 30s = utilization <=
0.83

istoica@cs.berkeley.edu 52

13

Core Router

= Data path

- LT Control State

- EEieguifer
management

- Per-packet scheduling

= Control path
- Install and maintain T 1T ++|Scheduler

|

per flow state for

Mcontrol paths Buffer

management

istoica@cs.berkeley.edu 53

Core Router

= Data path
- BT Control State
- EEDiegtifer
management
- Per-packet scheduling
= Control path
- InSEmeeRaINtain TTT] s Scheduler
p e for
throl paths Buffer
management

| no need to maintain consistency of per-flow state

istoica@cs.berkeley.edu 54

|

Outline

= Motivations: what is the problem and why is it important?
= Existing solutions
= Solution: SCORE architecture and DPS technique
=» Example: providing guaranteed services
- Eliminate per-flow state on data path
- Eliminate per-flow state on control path
=»Implementation and experimental results

= Conclusions

istoica@cs.berkeley.edu 55

Implementation: State Encoding

= Problem: Where to insert the state ?

= Possible solutions:
- between link layer and network layer headers
- as an IP option (IP option 23 allocated by IANA)
- find room in IP header

istoica@cs.berkeley.edu 56

14

Implementation: State Encoding

= Current solution
- 4 bits in DS field (belong to former TOS)
- 13 bits by reusing fragment offset

= Encoding techniques

- Take advantage of implicit dependencies between state
values

- Temporal multiplexing: use one field to encode two
states, if these states do not need to be simultaneously
presented in each packet

istoica@cs.berkeley.edu 57

Implementation

= FreeBSD 2.2.6

= Pentium Il 400 MHz

= ZNYX network cards 10/100 Mbps Ethernet

= Fully implements control and data path functionalities
= Management and monitoring infrastructure

istoica@cs.berkeley.edu 58

Monitoring Infrastructure

= Light weight mechanism that allows continuous
monitoring at packet level
= Implementation
- Record each packet (28 bytes)
« IP header and port numbers
« arrival, departure or drop times
- Use raw IP to send this information to a monitoring site

istoica@cs.berkeley.edu 59

A Simple Experiment

= Three flows sharing a 10 Mbps link
- Flow 1: 1 Mbps reservation
- Flow 2: 3 Mbps reservation with ON/OFF traffic
- Flow 3: best-effort UDP sending at > 8 Mbps

Monitoring
machine

(ingress) (core)

istoica@cs.berkeley.edu 60

15

* Monitaring Tool 1]

Iritisize | Restar | Exit | HostName:0.0.0.0 Pait1033

ips Avg, Bandwidth (aruba) “E“PS Avg. Bandwidth (cozumel) H for setinia | Reset
Flow1 -

AlFlows: _Add | Remove

Aggregate Reservation

Computation

<Bloomastareen as< 229311
< glenastarcenast 113611

= 0.5 Mbps reservation active during entire interval
= 0.5 Mbps reservation starting at 18 sec; ending at 39 sec

4 4
| | o] [= —
‘ J ‘ l ‘ ‘ ‘ ‘ | ‘ ‘ Monitor Flow List AggreQate
o 0 —
81 %62 064 1176 1288 10 %2 1064 1175 1288 14| | tAdd] Modfy | Remove
o ., Delay @@ruha) g Delay {cozumel) Flow 1 - <bloomastareen {4 —_
& I [T] Frown- | "° Flowl- || |[Flon 2. glenfastgreentasts<l »
11| Fow2 s Flow 3 - <mGFastgreen-fast> <106 _g.
11 - =
& w 3 12 Flow 3 =
5 i [%
h i o
2 i 1 -
| ‘ | accept terminate
o — 027 reservation | reservation
e A ST (0.5Mbps) | (0.5 Mbps)
. b, il
B4 ne 1288 140 EB4 w2 1064 nre 1288 Ji:‘ 0 j j j
. - 15 25 Time (sec) 35 45
g ——————%
. . ,
Conclusions Conclusions (cont’d)

= SCORE and DPS bridge the gap between stateless and stateful
solutions
= Key ideas

- Instead of core routers maintain per-flow state have packets carry this
state

- Use state to coordinate edge and core router actions

Reference Stateful Network SCOﬁE Network 63

= SCORE architecture can provide:
- Service guarantees
- Network support for congestion control
- Service differentiation
= DPS compatible with Diffserv: can greatly enhance the
functionality while requiring minimal changes

istoica@cs.berkeley.edu 64

16

