
1

CS 268: Dynamic Packet
State

Ion Stoica
April 1, 2003

isto ica@cs.berkeley.edu 2

What is the Problem?

� Internet has limited resources and management capabilities
- Prone to congestion, and denial of service
- Cannot provide guarantees

� Existing solutions
- Stateless – scalable and robust, but weak network services
- Stateful – powerful services, but much less scalable and robust

isto ica@cs.berkeley.edu 3

Stateless vs. Stateful Solutions

� Stateless solutions – routers maintain no fine
grained state about traffic

�
scalable, robust

�
weak services

� Stateful solutions – routers maintain per-flow
state

�
powerful services

• guaranteed services + high resource utilization
• fine grained differentiation
• protection

�
much less scalable and robust

isto ica@cs.berkeley.edu 4

Existing Solutions

� DecBit [Ramkrishnan & Jain
’88]

� Random Early Detection
(RED) [Floyd & Jacobson ’93]

� BLUE [Feng et al ’99]

� Round Robin [Nagle ’85]
� Fair Queueing [Demers et al
’89]

� Flow Random Early Drop
(FRED) [Lin & Morris ’97]

Network
support for
congestion
control

� Diffserv
 - [Clark &
 Wroclawski ‘97]
 - [Nichols et al ’97]

� Tenet [Ferrari & Verma ’89]
� Intserv [Clark et al ’91]
� ATM [late ’80s]

QoS

StatelessStateful

2

isto ica@cs.berkeley.edu 5

Stateful Solution: Guaranteed Services

Sender
Receiver

� Achieve per-flow bandwidth and delay guarantees
- Example: guarantee 1MBps and < 100 ms delay to a flow

isto ica@cs.berkeley.edu 6

Stateful Solution: Guaranteed Services

Sender
Receiver

� Allocate resources - perform per-flow admission control

isto ica@cs.berkeley.edu 7

Stateful Solution: Guaranteed Services

Sender
Receiver

� Install per-flow state

isto ica@cs.berkeley.edu 8

Sender
Receiver

� Challenge: maintain per-flow state consistent

Stateful Solution: Guaranteed Services

3

isto ica@cs.berkeley.edu 9

Stateful Solution: Guaranteed Services

Sender
Receiver

� Per-flow classification

isto ica@cs.berkeley.edu 10

Stateful Solution: Guaranteed Services

Sender
Receiver

� Per-flow buffer management

isto ica@cs.berkeley.edu 11

Stateful Solution: Guaranteed Services

Sender
Receiver

• Per-flow scheduling

isto ica@cs.berkeley.edu 12

Stateful Solution Complexity

� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-flow scheduling

� Control path
- install and maintain
 per-flow state for
 data and control paths

Classifier

Buffer
management

Scheduler

flow 1

flow 2

flow n

output interface

…

Per-flow State

4

isto ica@cs.berkeley.edu 13

Stateless vs. Stateful

� Stateless solutions are more
- scalable
- robust

� Stateful solutions provide more powerful and flexible
services

- guaranteed services + high resource utilization
- fine grained differentiation
- protection

isto ica@cs.berkeley.edu 14

Question

� Can we achieve the best of two worlds, i.e., provide
services implemented by stateful networks while
maintaining advantages of stateless architectures?

isto ica@cs.berkeley.edu 15

Answer

� Yes, at least in some interesting cases:
- guaranteed services [Stoica and Zhang, SIGCOMM’99]
- network support for congestion control: Core-Stateless Fair Queueing

[Stoica et al, SIGCOMM’98]
- service differentiation [Stoica and Zhang, NOSSDAV’98]

isto ica@cs.berkeley.edu 16

� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services
� Conclusions

Outline

5

isto ica@cs.berkeley.edu 17

Scalable Core (SCORE)
� A trusted and contiguous region of network in which

- edge nodes – perform per flow management
- core nodes – do not perform per flow management

core nodes edge nodes
edge nodes

isto ica@cs.berkeley.edu 18

The Approach

1. Define a reference stateful network that implements
the desired service

Reference Stateful Network SCORE Network

2. Emulate the functionality of the reference
network in a SCORE network

isto ica@cs.berkeley.edu 19

The Idea
� Instead of having core routers maintaining per-flow

state have packets carry per-flow state

Reference Stateful Network SCORE Network
isto ica@cs.berkeley.edu 20

The Technique: Dynamic Packet State
(DPS)

� Ingress node: compute and insert flow state in
packet’s header

6

isto ica@cs.berkeley.edu 21

The Technique: Dynamic Packet State
(DPS)

� Ingress node: compute and insert flow state in
packet’s header

isto ica@cs.berkeley.edu 22

The Technique: Dynamic Packet State
(DPS)

� Core node:
- process packet based on state it carries and node’s state
- update both packet and node’s state

isto ica@cs.berkeley.edu 23

The Technique: Dynamic Packet State
(DPS)

� Egress node: remove state from packet’s header

isto ica@cs.berkeley.edu 24

� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services
� Conclusions

Outline

7

isto ica@cs.berkeley.edu 25

Why Guaranteed Service Example?

� Illustrate power and flexibility of our solution
- guaranteed service - strongest semantic service proposed in

context of stateful networks

guaranteed
services

statistical
services

differentiated
services

congestion
control
supportbest-effort

service quality betterworse

isto ica@cs.berkeley.edu 26

Example: Guaranteed Services
� Goal: provide per-flow delay and bandwidth guarantees
� How: emulate ideal model in which each flow traverses

dedicated links of capacity r

� Per-hop packet service time = (packet length) / r

r r rflow
(reservation = r)

isto ica@cs.berkeley.edu 27

Guaranteed Services

� Define reference network to implement service
- control path: per-flow admission control, reserve capacity r on each

link
- data path: enforce ideal model, by using Jitter Virtual Clock (Jitter-

VC) scheduler

Reference Stateful Network

Jitter-VC Jitter-VC Jitter-VC Jitter-VC

Jitter-VCJitter-VCJitter-VC

isto ica@cs.berkeley.edu 28

Guaranteed Services

� Use DPS to eliminate per-flow state in core
- control path: emulate per-flow admission control
- data path: emulate Jitter-VC by Core-Jitter Virtual Clock (CJVC)

Reference Stateful Network SCORE Network

Jitter-VC Jitter-VC Jitter-VC
Jitter-VC

Jitter-VCJitter-VC
Jitter-VC

CJVC CJVC

CJVC

CJVC

CJVC

CJVC

8

isto ica@cs.berkeley.edu 29

� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services

�
Eliminate per-flow state on data path

- Eliminate per-flow state on control path
- Implementation and experimental results

� Conclusions

Outline

isto ica@cs.berkeley.edu 30

Data Path

Ideal Model

Stateful solution: Jitter Virtual Clock

Stateless solution: Core-Jitter Virtual Clock

isto ica@cs.berkeley.edu 31

Ideal Model: Example

time

1

2

3

4

packet arrival time
packet transmission time (service) in ideal model

p1 arrival p2 arrival

length(p2) / rlength(p1) / r

isto ica@cs.berkeley.edu 32

Stateful Solution: Jitter Virtual Clock
(Jitter-VC)

time

• With each packet associate
– eligible time – start time of serving packet in ideal model
– deadline – finish time of serving packet in ideal model

eligible times

deadlines

1

2

3

4

9

isto ica@cs.berkeley.edu 33

Jitter-VC

time

• Algorithm: schedule eligible packets in increasing order of
their deadlines

• Property: guarantees that all packets meet their deadlines

eligible times

deadlines

1

2

3

4

isto ica@cs.berkeley.edu 34

Jitter-VC: Eligible Time
Computation

� Minimum between
- arrival time
- deadline at previous node + propagation delay
- deadline of previous packet

timeeligible time = packet deadline at previous node

eligible time = arrival time

1

2

3

4

isto ica@cs.berkeley.edu 35

Jitter-VC: Eligible Time
Computation

time

eligible time = arrival time

eligible time = packet
deadline at prev. node

eligible time = prev.
packet deadline

using previous packet’s deadline � per flow state

� Minimum between
- arrival time
- deadline at previous node + propagation delay
- deadline of previous packet

1

2

3

4

isto ica@cs.berkeley.edu 36

Stateless Solution: Core-Jitter Virtual
Clock (CJVC)

time

� Goal: eliminate per-flow state
- eliminate dependency on previous packet deadline

1

2

3

4

10

isto ica@cs.berkeley.edu 37

Core-Jitter Virtual Clock (CJVC)
� Solution: make eligible time greater or equal to previous

packet deadline

time

1

2

3

4

isto ica@cs.berkeley.edu 38

Core-Jitter Virtual Clock (CJVC)

time

� How: associate to each packet a slack variable s
� Delay eligible time at each node by s

1

2

3

4

s

eligible time = packet
deadline at prev. node + s

isto ica@cs.berkeley.edu 39

� Theorem: CJVC and Jitter-VC provide the same end-to-end
delay bounds

� s can be computed at ingress: depends on
- current and previous packet eligible times (e and ep)
- current and previous packet lengths (lp and l)
- slack variable associated to previous packet (sp)
- flow reservation (r)
- number of hops (h) – computed at admission time

CJVC Properties

���
�����

−
+−

+
−

+=
1

/
,0max

h

rlee

r

ll
ss ppp

p

isto ica@cs.berkeley.edu 40

CJVC Algorithm

� Each packet carries in its header three variable
- slack variable s (computed and inserted by ingress)
- flow’s reserved rate r (inserted by ingress)
- ahead of schedule a (inserted by previous node)

� Eligible time = arrival time + a + s
� Deadline = eligible time + (packet length) / r
� NOTE:

- using a instead of the deadline at previous node � no need for
synchronized clocks

11

isto ica@cs.berkeley.edu 41

Jitter-VC: Core Router

� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-flow scheduling

� Control path
- install and maintain
 per-flow state for
 data and control paths

Classifier

Buffer
management

Scheduler

flow 1

flow 2

flow n

…

Per flowl State

isto ica@cs.berkeley.edu 42

� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-packet scheduling

� Control path
- Install and maintain
 per-flow state for
 data and control paths

CJVC: Core Router

Buffer
management

Scheduler

…

Control State

isto ica@cs.berkeley.edu 43

� Motivations: what is the problem and why it is important?
� Existing solutions
� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services

- Eliminate per-flow state on data path
�

Eliminate per-flow state on control path
- Implementation and experimental results

� Conclusions

Outline

isto ica@cs.berkeley.edu 44

Control Path: Admission Control
� Goal: reserve resources (bandwidth) for each flow

along its path
� Approach: light-weight protocol that does not require

core nodes to maintain per-flow state

yes yes yes

yes

12

isto ica@cs.berkeley.edu 45

Per-hop Admission Control

� A node admits a reservation r, if
- C – output link capacity
- R – aggregate reservation:

� Need: maintain aggregate reservation R
� Problem: it requires per flow state to handle partial

reservation failures and message loss

�
=

i
irR

RCr −≤

isto ica@cs.berkeley.edu 46

Solution

1. Estimate aggregate reservation Rest

2. Account for approximations and compute an upper
bound Rbound , i.e., Rbound >= R

3. Use Rbound , instead of R, to perform admission control,
i.e., admit a reservation r if

boundRCr −≤

isto ica@cs.berkeley.edu 47

� Observation: If all flows were sending at their reserved
rates, computing Rest is trivial:

- just measure the traffic throughput, e.g.,

 where S(a, a+T) contains all packets of all flows received during
[a, a+T)

Estimating Aggregate Reservation
(Rest)

T

ilength

R TaaSi
est

�

+∈=),(

)(

Mbpsr 21 =

Mbpsr 32 =

MbpsRest 5≅

isto ica@cs.berkeley.edu 48

Virtual Length

• Problem: What if flows do not send at their
reserved rates ?

13

isto ica@cs.berkeley.edu 49

Virtual Length

• Problem: What if flows do not send at their reserved rates ?
• Solution: associate to each packet a virtual length such that

– if lengths of all packets of a flow were equal to their virtual
lengths, the flow sends at its reserved rate

• Then, use virtual lengths instead of actual packet lengths to
compute Rest

isto ica@cs.berkeley.edu 50

Virtual Length

� Definition:

- r – flow reserved rate
- crt_time – transmission time of current packet
- prev_time – transmission time of previous packet

� Example: assume a flow with reservation r = 1 Mbps
sending 1000 bit packets

)__(timeprevtimecrtrgthvirtualLen −×=

100012001300

1000

1.2 ms

1000

1.3 ms

1000 length

1900

1.9 ms

1000

virtual
length

isto ica@cs.berkeley.edu 51

Estimating Aggregate Reservation
(Rest)

� Use Dynamic Packet State (DPS)
� Ingress node: upon each packet departure computes the

virtual length and inserts it in the packet header
� Core node: Estimate Rest on each output link as

- where S(a, a+T) contains of all packets of all flows received during
[a, a+T)

T

igthvirtualLen

R TaaSi
est

�

+∈=),(

)(

isto ica@cs.berkeley.edu 52

Aggregate Reservation Estimation:
Discussion

� The estimation algorithm is robust in presence of control
message loss and duplication

- their effect is “forgotten” after one estimation interval
� If no packet of a flow departs during a predefined interval (i.e.,

maximum inter-departure time), ingress node generates a
dummy packet

� Utilization <= 1 – f ,
- where f = (max. inter-departure time) / (estimation int.)
- e.g.: max. inter-departure time = 5s; estimation int. = 30s � utilization <=

0.83

14

isto ica@cs.berkeley.edu 53

� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-packet scheduling

� Control path
- Install and maintain
 per flow state for
 data and control paths

Core Router

Buffer
management

Scheduler

…

Control State

isto ica@cs.berkeley.edu 54

� Data path
- Per-flow classification
- Per-flow buffer
 management
- Per-packet scheduling

� Control path
- Install and maintain
 per flow state for
 data and control paths

Core Router

Buffer
management

Scheduler

Control State

no need to maintain consistency of per-flow state

isto ica@cs.berkeley.edu 55

� Motivations: what is the problem and why is it important?
� Existing solutions
� Solution: SCORE architecture and DPS technique
� Example: providing guaranteed services

- Eliminate per-flow state on data path
- Eliminate per-flow state on control path

�
Implementation and experimental results

� Conclusions

Outline

isto ica@cs.berkeley.edu 56

Implementation: State Encoding

� Problem: Where to insert the state ?
� Possible solutions:

- between link layer and network layer headers
- as an IP option (IP option 23 allocated by IANA)
- find room in IP header

15

isto ica@cs.berkeley.edu 57

Implementation: State Encoding

� Current solution
- 4 bits in DS field (belong to former TOS)
- 13 bits by reusing fragment offset

� Encoding techniques
- Take advantage of implicit dependencies between state

values
- Temporal multiplexing: use one field to encode two

states, if these states do not need to be simultaneously
presented in each packet

isto ica@cs.berkeley.edu 58

Implementation

� FreeBSD 2.2.6
� Pentium II 400 MHz
� ZNYX network cards 10/100 Mbps Ethernet
� Fully implements control and data path functionalities
� Management and monitoring infrastructure

isto ica@cs.berkeley.edu 59

Monitoring Infrastructure

� Light weight mechanism that allows continuous
monitoring at packet level

� Implementation
- Record each packet (28 bytes)

• IP header and port numbers
• arrival, departure or drop times

- Use raw IP to send this information to a monitoring site

isto ica@cs.berkeley.edu 60

A Simple Experiment
� Three flows sharing a 10 Mbps link

- Flow 1: 1 Mbps reservation
- Flow 2: 3 Mbps reservation with ON/OFF traffic
- Flow 3: best-effort UDP sending at > 8 Mbps

aruba
(ingress)

cozumel
(core)

Monitoring
machine

16

isto ica@cs.berkeley.edu 61 isto ica@cs.berkeley.edu 62

Aggregate Reservation
Computation

� 0.5 Mbps reservation active during entire interval
� 0.5 Mbps reservation starting at 18 sec; ending at 39 sec

0

0.2

0.4

0.6

0.8

1

1.2

15 25 35 45Time (sec)

R
at

e
(M

b
ps

)

Aggregate

Rbound

R

accept
reservation
(0.5 Mbps)

terminate
reservation
(0.5 Mbps)

isto ica@cs.berkeley.edu 63

Conclusions
� SCORE and DPS bridge the gap between stateless and stateful

solutions
� Key ideas

- Instead of core routers maintain per-flow state have packets carry this
state

- Use state to coordinate edge and core router actions

Reference Stateful Network SCORE Network isto ica@cs.berkeley.edu 64

Conclusions (cont’d)

� SCORE architecture can provide:
- Service guarantees
- Network support for congestion control
- Service differentiation

� DPS compatible with Diffserv: can greatly enhance the
functionality while requiring minimal changes

