
1

CS 268: Multicast Transport

Ion Stoica
April 10-15, 2003

istoica@cs.berkeley.edu 2

The Goal

� Transport protocol for multicast
- Reliability

• Apps: file distribution, non-interactive streaming
- Low delay

• Apps: conferencing, distributed gaming
- Congestion control for multicast flows

• Critical for all applications

istoica@cs.berkeley.edu 3

Reliability: The Problems

� Assume reliability through retransmission
- Even with FEC, may still have to deal with

retransmission (why?)
� Sender can not keep state about each receiver

- E.g., what receivers have received, RTT
- Number of receivers unknown and possibly very large

� Sender can not retransmit every lost packet
- Even if only one receiver misses packet, sender must

retransmit, lowering throughput
� N(ACK) implosion

- Described next

istoica@cs.berkeley.edu 4

(N)ACK Implosion

� (Positive) acknowledgements
- Ack every n received packets
- What happens for multicast?

� Negative acknowledgements
- Only ack when data is lost
- Assume packet 2 is lost

SS

R1R1

R2R2

R3R3

123

2

istoica@cs.berkeley.edu 5

NACK Implosion

� When a packet is lost all receivers in the sub-tree
originated at the link where the packet is lost send
NACKs

SS

R1R1

R2R2

R3R3

3

3

3

2?

2?

2?

istoica@cs.berkeley.edu 6

Scalable Reliable Multicast (SRM)
[Floyd et al ’95]

� Receivers use timers to send NACKS and
retransmissions

- Randomized
• Prevent implosion

- Uses latency estimates
• Short timer → cause duplicates when there is

reordering
• Long timer → causes excess delay

� Any node retransmits
- Sender can use its bandwidth more efficiently
- Overall group throughput is higher

� Duplicate NACK/retransmission suppression

istoica@cs.berkeley.edu 7

Inter-node Latency Estimation

� Every node estimates latency to
every other node

- Uses session reports (< 5% of
bandwidth)

• Assume symmetric latency
• What happens when group

becomes very large?

AA BB

t1

t2

d
d

dA,B = (t2 – t1 – d)/2

istoica@cs.berkeley.edu 8

� Chosen from the uniform distribution on

- A – node that lost the packet
- S – source
- C1, C2 – algorithm parameters
- dS,A – latency between S and A
- i – iteration of repair request tries seen

� Algorithm
- Detect loss → set timer
- Receive request for same data → cancel timer, set new timer,

possibly with new iteration
- Timer expires → send repair request

Repair Request Timer Randomization

])(,[2 ,21,1 ASAS
i dCCdC +

3

istoica@cs.berkeley.edu 9

Timer Randomization

� Repair timer similar
- Every node that receives repair request sets repair timer
- Latency estimate is between node and node requesting repair

� Timer properties – minimize probability of duplicate packets
- Reduce likelihood of implosion (duplicates still possible)

• Poor timer, randomized granularity

• High latency between nodes
- Reduce delay to repair

• Nodes with low latency to sender will send repair request
more quickly

• Nodes with low latency to requester will send repair more
quickly

• When is this sub-optimal?

istoica@cs.berkeley.edu 10

Chain Topology
� C1 = D1 = 1, C2 = D2 = 0
� All link distances are 1

L2L2 L1L1 R1R1 R2R2 R3R3

source

data out
of order

data/repair
request repair
request TO
repair TO

request

repair

istoica@cs.berkeley.edu 11

Star Topology

� C1 = D1 = 0,
� Tradeoff between (1) number of requests

and (2) time to receive the repair
� C2 <= 1

- E(# of requests) = g –1
� C2 > 1

- E(# of requests) = 1 + (g-2)/C2

- E(time until first timer expires) = 2C2/g
�

- E(# of requests) =
- E(time until first timer expires) =

N1N1

N2N2

N3N3 N4N4

NgNg

source

gC =2

g
g/1

istoica@cs.berkeley.edu 12

Bounded Degree Tree

� Use both
- Deterministic suppression (chain topology)
- Probabilistic suppression (star topology)

� Large C2/C1

�
fewer duplicate requests, but larger

repair time
� Large C1

�
fewer duplicate requests

� Small C1

�
smaller repair time

4

istoica@cs.berkeley.edu 13

Adaptive Timers

� C and D parameters depends on topology and congestion
�

choose adaptively
� After sending a request:

- Decrease start of request timer interval
� Before each new request timer is set:

- If requests sent in previous rounds, and any dup requests were from
further away:

• Decrease request timer interval
- Else if average dup requests high:

• Increase request timer interval
- Else if average dup requests low and average request delay too high:

• Decrease request timer interval

istoica@cs.berkeley.edu 14

Local Recovery

� Some groups are very large with low loss correlation
between nodes

- Multicasting requests and repairs to entire group wastes
bandwidth

� Separate recovery multicast groups
- e.g. hash sequence number to multicast group address
- only nodes experiencing loss join group
- recovery delay sensitive to join latency

� TTL-based scoping
- send request/repair with a limited TTL
- how to set TTL to get to a host that can retransmit
- how to make sure retransmission reaches every host that

heard request

istoica@cs.berkeley.edu 15

Application Layer Framing (ALF)

� [Clark and Tennenhouse 90]
� Application should define Application Data Unit

(ADU) to lower layers
- ADU is unit of error recovery

• app can recover from whole ADU loss
• app treats partial ADU loss/corruption as whole loss

- App names ADUs
- App can process ADUs out of order
- Small ADUs (e.g., a packet): low delay, keep app busy
- Large ADUs (e.g., a file): more efficient use of bw and

cycles
- Lower layers can minimize delay by passing ADUs to

apps out of order

istoica@cs.berkeley.edu 16

Multicast Congestion Control
Problem

� Unicast congestion control:
- send at rate not exceeding smallest fair share of all

links along a path
� Multicast congestion control:

- send at minimum of unicast fair shares across all
receivers

• problem: what if receivers have very different
bandwidths?

- segregate receivers into multicast groups according to
current available bandwidth

5

istoica@cs.berkeley.edu 17

Issues

� What rate for each group?
� How many groups?
� How to join and leave groups?

istoica@cs.berkeley.edu 18

Assumptions

� a video application
- can easily make size/quality tradeoff in encoding of

application data (i.e., a 10Kb video frame has less
quality than a 20Kb frame)

- separate encodings can be combined to provide better
quality

• e.g., combine 5Kb + 10Kb + 20Kb frames to provide
greater quality than just 20Kb frames

� 6 layers
� 32x2i kb/s for the ith layer

istoica@cs.berkeley.edu 19

Example of Size/Quality Tradeoff

784 bytes

30274 bytes5372 bytes3457 bytes

1900 bytes1208 bytes

istoica@cs.berkeley.edu 20

Basic Algorithm

� join a new layer when there is no congestion
- joining may cause congestion
- join infrequently when the join is likely to fail

� drop largest layer when there is congestion
- congestion detected through drops
- could use explicit feedback, delay

� how frequently to attempt join?
� how to scale up to large groups?

6

istoica@cs.berkeley.edu 21

Join Timer

� Set 2 timers for each layer
- use randomization to prevent synchronization
- join timer expires → join next larger layer
- detect congestion → drop layer, increase join timer, update

detection timer with time since last layer add
- detection timer expires → decrease join timer for this layer

� Layers have exponentially increasing size → multiplicative
increase/decrease (?)

� All parameters adapt to network conditions

1

3

2

4
βα2c

>d

j4 = c αc α2c

j3 = c

j2 = c

c

istoica@cs.berkeley.edu 22

Scaling Problems

� Independent joins do not scale
- frequency of joins increase with group size →

congestion collapse (why?)
- joins interfere with each other → unfairness

� Could reduce join rate
- convergence for large groups will be slow

istoica@cs.berkeley.edu 23

Scaling Solution

� Multicast join
announcement

� node initiates join iff
current join is for higher
layer

� congestion → backs off its
own timer to join that layer

- shares bottleneck with
joiner

� no congestion → joins
new layer iff it was
original joiner

- does not share
bottleneck with joiner

� convergence could still be
slow (why?)

L1 L2

R0

R3

R2

R1

R4
R5

S

congestion

backoff

join 4

join 2

istoica@cs.berkeley.edu 24

Simulation Results

� Higher network latency → less stability
- congestion control is control problem
- control theory predicts that higher latency causes less

stability
� No cross traffic
� Scales up to 100 nodes

7

istoica@cs.berkeley.edu 25

Priority-drop and Uniform-drop

� Uniform drop
- drop packets randomly from

all layers
� Priority drop

- drop packets from higher
layers first

� Sending rate <= bottleneck
- no loss, no difference in

performance
� Sending rate > bottleneck

- important, low layer packets
may be dropped → uniform
drop performance decreases

� Convex utility curve → users
encouraged to remain at
maximum

[McCanne, Jacobson 1996]

istoica@cs.berkeley.edu 26

Later Work Contradicts

� Burstiness of traffic results in better performance for priority drop
- 50-100% better performance
- measured in throughput, not delay

� Neither has good incentive properties
- n flows, P(drop own packet) = 1/n, P(drop other packet) = (n-1)/n
- need Fair Queueing for good incentive properties

[McCanne, Jacobson 1996] [Bajaj, Breslau, Shenker 1998]

istoica@cs.berkeley.edu 27

Discussion

� Could this lead to congestion collapse?
� Do SRM/RLM actually scale to millions of nodes?

- Session announcements of SRM
� Does RLM generalize to reliable data transfer?

- What if layers are independent?
- What about sending the file multiple times?

� Is end-to-end reliability the way to go?
- What about hop-by-hop reliability?

istoica@cs.berkeley.edu 28

Summary

� Multicast transport is a difficult problem
� One can significantly improve performance by

targeting a specific application
- e.g., bulk data transfer or video

� Depend on Multicast routing working

8

istoica@cs.berkeley.edu 29

Resilient Multicast: STORM
[Rex et al ’97]

� Targeted applications: continuous-media
applications

- E.g., video and audio distribution
� Resilience

- Receivers don’t need 100% of data
- Packets must arrive in time for repairs
- Data is continuous, large volume
- Old data is discarded

istoica@cs.berkeley.edu 30

Design Implications

� Recovery must be fast
- SRM not appropriate (why?)

� Protocol overhead should be small
� No ACK collection or group management

istoica@cs.berkeley.edu 31

Solution

� Build an application recovery structure
- Directed acyclic graph that span the set of receiver

• Does not include routers!
- Typically, a receiver has multiple parents
- Structure is built and maintained dsitributedly

� Properties
- Responsive to changing conditions
- Achieve faster recovery
- Reduced overhead

istoica@cs.berkeley.edu 32

Details

� Use multicast (expanding ring search) to find parents
� When there is a gap in sequence number send a

NACK
- Note: unlike SRM in which requests and repairs are

multicast, with STORM NACKs and repairs are unicast
� Each node maintain

- List of parent nodes
- A quality estimator for each parent node
- A delay histogram for all packets received
- A list of timers for NACKs sent to the parent
- A list of NACKs note served yet
- Note: excepting the list of NACKs shared by parent-child all

other info is local

9

istoica@cs.berkeley.edu 33

Choosing a Parent
� What is a good parent?

- Can send repairs in time
- Has a low loss correlation with the receiver

NACK

Repair

Expected
packet
arrival

Packet
playback

B (replay
buffer)

100%

R
ec

ei
ve

d
(%

)

time
Cumulative distribution
of received packets

istoica@cs.berkeley.edu 34

Choosing a Parent

� Source stamps each packet to local time
� ta – adjusted arrival time, where

- ta = packet stamp – packet arrival time
� Each node compute loss rate as a function of ta:

� Choose parent that maximizes the number of
received packets by time ta + B

ectedpacketsofumbertotal

ttthatsuchpacketsofnumber
tL a

exp
1)(

≤−=

istoica@cs.berkeley.edu 35

Loop Prevention

� Each receiver is assigned a level
� Parent’s level < child’s level
� Level proportional to the distance from source

- Use RTT + a random number to avoid to many nodes
on the same level

istoica@cs.berkeley.edu 36

Adaptation

� Receivers evaluate parents continually
� Choose a new parent when one of current

parents doesn’t perform well
� Observations:

- Changing parents is easy, as parents don’t keep track
of children

- Preventing loops is easy, because the way the levels
are assigned

- Thus, no need to maintain consistent state such as
child-parent relationship

