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The Goal

� Transport protocol for multicast
- Reliability

• Apps: file distribution, non-interactive streaming
- Low delay

• Apps: conferencing, distributed gaming
- Congestion control for multicast flows

• Critical for all applications
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Reliability: The Problems

� Assume reliability through retransmission
- Even with FEC, may still have to deal with 

retransmission (why?)
� Sender can not keep state about each receiver

- E.g., what receivers have received, RTT
- Number of receivers unknown and possibly very large

� Sender can not retransmit every lost packet
- Even if only one receiver misses packet, sender must 

retransmit, lowering throughput
� N(ACK) implosion

- Described next
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(N)ACK Implosion

� (Positive) acknowledgements
- Ack every n received packets
- What happens for multicast?

� Negative acknowledgements
- Only ack when data is lost
- Assume packet 2 is lost
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NACK Implosion

� When a packet is lost all receivers in the sub-tree 
originated at the link where the packet is lost send 
NACKs
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Scalable Reliable Multicast (SRM)
[Floyd et al ’95]

� Receivers use timers to send NACKS and 
retransmissions

- Randomized
• Prevent implosion

- Uses latency estimates
• Short timer → cause duplicates when there is 

reordering
• Long timer → causes excess delay

� Any node retransmits
- Sender can use its bandwidth more efficiently
- Overall group throughput is higher

� Duplicate NACK/retransmission suppression
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Inter-node Latency Estimation

� Every node estimates latency to 
every other node 

- Uses session reports (< 5% of 
bandwidth)

• Assume symmetric latency
• What happens when group 

becomes very large?
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� Chosen from the uniform distribution on

- A – node that lost the packet
- S – source
- C1, C2 – algorithm parameters
- dS,A – latency between S and A
- i – iteration of repair request tries seen

� Algorithm
- Detect loss → set timer
- Receive request for same data → cancel timer, set new timer, 

possibly with new iteration
- Timer expires → send repair request

Repair Request Timer Randomization
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Timer Randomization

� Repair timer similar
- Every node that receives repair request sets repair timer
- Latency estimate is between node and node requesting repair

� Timer properties – minimize probability of duplicate packets
- Reduce likelihood of implosion (duplicates still possible)

• Poor timer, randomized granularity

• High latency between nodes
- Reduce delay to repair

• Nodes with low latency to sender will send repair request 
more quickly

• Nodes with low latency to requester will send repair more 
quickly

• When is this sub-optimal?
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Chain Topology
� C1 = D1 = 1, C2 = D2 = 0
� All link distances are 1 
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request

repair
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Star Topology

� C1 = D1 = 0,
� Tradeoff between (1) number of requests 

and (2) time to receive the repair
� C2 <= 1

- E(# of requests) = g –1
� C2 > 1

- E(# of requests) = 1 + (g-2)/C2 

- E(time until first timer expires) = 2C2/g
�

- E(# of requests) = 
- E(time until first timer expires) =

N1N1

N2N2

N3N3 N4N4

NgNg

source

gC =2

g
g/1
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Bounded Degree Tree

� Use both
- Deterministic suppression (chain topology)
- Probabilistic suppression (star topology)

� Large C2/C1

�
fewer duplicate requests, but larger 

repair time
� Large C1

�
fewer duplicate requests 

� Small C1

�
smaller repair time
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Adaptive Timers

� C and D parameters depends on topology and congestion 
�

choose adaptively
� After sending a request: 

- Decrease start of request timer interval
� Before each new request timer is set:

- If requests sent in previous rounds, and any dup requests were from 
further away:

• Decrease request timer interval
- Else if average dup requests high:

• Increase request timer interval
- Else if average dup requests low and average request delay too high:

• Decrease request timer interval
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Local Recovery

� Some groups are very large with low loss correlation 
between nodes

- Multicasting requests and repairs to entire group wastes 
bandwidth

� Separate recovery multicast groups
- e.g. hash sequence number to multicast group address
- only nodes experiencing loss join group
- recovery delay sensitive to join latency

� TTL-based scoping
- send request/repair with a limited TTL
- how to set TTL to get to a host that can retransmit
- how to make sure retransmission reaches every host that 

heard request
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Application Layer Framing (ALF)

� [Clark and Tennenhouse 90]
� Application should define Application Data Unit 

(ADU) to lower layers
- ADU is unit of error recovery

• app can recover from whole ADU loss
• app treats partial ADU loss/corruption as whole loss

- App names ADUs
- App can process ADUs out of order
- Small ADUs (e.g., a packet): low delay, keep app busy
- Large ADUs (e.g., a file): more efficient use of bw and 

cycles
- Lower layers can minimize delay by passing ADUs to 

apps out of order
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Multicast Congestion Control 
Problem

� Unicast congestion control:
- send at rate not exceeding smallest fair share of all 

links along a path
� Multicast congestion control:

- send at minimum of unicast fair shares across all 
receivers

• problem: what if receivers have very different 
bandwidths?

- segregate receivers into multicast groups according to 
current available bandwidth
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Issues

� What rate for each group?
� How many groups?
� How to join and leave groups?

istoica@cs.berkeley.edu 18

Assumptions

� a video application
- can easily make size/quality tradeoff in encoding of 

application data (i.e., a 10Kb video frame has less 
quality than a 20Kb frame)

- separate encodings can be combined to provide better 
quality

• e.g., combine 5Kb + 10Kb + 20Kb frames to provide 
greater quality than just 20Kb frames

� 6 layers
� 32x2i kb/s for the ith layer
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Example of Size/Quality Tradeoff

784 bytes

30274 bytes5372 bytes3457 bytes

1900 bytes1208 bytes
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Basic Algorithm

� join a new layer when there is no congestion
- joining may cause congestion
- join infrequently when the join is likely to fail

� drop largest layer when there is congestion
- congestion detected through drops
- could use explicit feedback, delay

� how frequently to attempt join?
� how to scale up to large groups?
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Join Timer

� Set 2 timers for each layer
- use randomization to prevent synchronization
- join timer expires → join next larger layer
- detect congestion → drop layer, increase join timer, update 

detection timer with time since last layer add
- detection timer expires → decrease join timer for this layer

� Layers have exponentially increasing size → multiplicative 
increase/decrease (?)

� All parameters adapt to network conditions
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Scaling Problems

� Independent joins do not scale
- frequency of joins increase with group size →

congestion collapse (why?)
- joins interfere with each other → unfairness

� Could reduce join rate
- convergence for large groups will be slow
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Scaling Solution

� Multicast join 
announcement

� node initiates join iff
current join is for higher 
layer

� congestion → backs off its 
own timer to join that layer

- shares bottleneck with 
joiner

� no congestion → joins 
new layer iff it was 
original joiner

- does not share 
bottleneck with joiner

� convergence could still be 
slow (why?)
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istoica@cs.berkeley.edu 24

Simulation Results

� Higher network latency → less stability
- congestion control is control problem
- control theory predicts that higher latency causes less 

stability
� No cross traffic
� Scales up to 100 nodes
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Priority-drop and Uniform-drop

� Uniform drop
- drop packets randomly from 

all layers
� Priority drop

- drop packets from higher 
layers first

� Sending rate <= bottleneck
- no loss, no difference in 

performance
� Sending rate > bottleneck

- important, low layer packets 
may be dropped → uniform 
drop performance decreases

� Convex utility curve → users 
encouraged to remain at 
maximum

[McCanne, Jacobson 1996]
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Later Work Contradicts

� Burstiness of traffic results in better performance for priority drop
- 50-100% better performance
- measured in throughput, not delay

� Neither has good incentive properties
- n flows, P(drop own packet) = 1/n, P(drop other packet) = (n-1)/n
- need Fair Queueing for good incentive properties

[McCanne, Jacobson 1996] [Bajaj, Breslau, Shenker 1998]
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Discussion

� Could this lead to congestion collapse?
� Do SRM/RLM actually scale to millions of nodes?

- Session announcements of SRM
� Does RLM generalize to reliable data transfer?

- What if layers are independent?
- What about sending the file multiple times?

� Is end-to-end reliability the way to go?
- What about hop-by-hop reliability?
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Summary

� Multicast transport is a difficult problem
� One can significantly improve performance by 

targeting a specific application
- e.g., bulk data transfer or video

� Depend on Multicast routing working
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Resilient Multicast: STORM
[Rex et al ’97]

� Targeted applications: continuous-media 
applications

- E.g., video and audio distribution
� Resilience

- Receivers don’t need 100% of data
- Packets must arrive in time for repairs
- Data is continuous, large volume
- Old data is discarded
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Design Implications

� Recovery must be fast 
- SRM not appropriate (why?)

� Protocol overhead should be small
� No ACK collection or group management
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Solution

� Build an application recovery structure
- Directed acyclic graph that span the set of receiver

• Does not include routers!
- Typically, a receiver has multiple parents
- Structure is built and maintained dsitributedly

� Properties 
- Responsive to changing conditions
- Achieve faster recovery
- Reduced overhead
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Details

� Use multicast (expanding ring search) to find parents
� When there is a gap in sequence number send a 

NACK  
- Note: unlike SRM in which requests and repairs are 

multicast, with STORM  NACKs and repairs are unicast
� Each node maintain

- List of parent nodes
- A quality estimator for each parent node
- A delay histogram for all packets received 
- A list of timers for NACKs sent to the parent
- A list of NACKs note served yet   
- Note: excepting the list of NACKs shared by parent-child all 

other info is local
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Choosing a Parent
� What is a good parent?

- Can send repairs in time
- Has a low loss correlation with the receiver
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istoica@cs.berkeley.edu 34

Choosing a Parent

� Source stamps each packet to local time
� ta – adjusted arrival time, where

- ta = packet stamp – packet arrival time
� Each node compute loss rate as a function of ta:

� Choose parent that maximizes the number of 
received packets by time ta + B

ectedpacketsofumbertotal

ttthatsuchpacketsofnumber
tL a

exp
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Loop Prevention

� Each receiver is assigned a level
� Parent’s level < child’s level
� Level proportional to the distance from source

- Use RTT + a random number to avoid to many nodes 
on the same level
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Adaptation

� Receivers evaluate parents continually
� Choose a new parent when one of current 

parents doesn’t perform well
� Observations:

- Changing parents is easy, as parents don’t keep track 
of children

- Preventing loops is easy, because the way the levels 
are assigned

- Thus, no need to maintain consistent state such as 
child-parent relationship


