CS 268: Lecture 2 (Layering & End-to-End Arguments)

Overview

- Layering
- End-to-End ArgumentsA Case Study: the Internet

istoica@cs.berkeley.edu

2

What is Layering?

 A technique to organize a network system into a succession of logically distinct entities, such that the service provided by one entity is solely based on the service provided by the previous (lower level) entity

istoica@cs.berkeley.edu

Why Layering?	
Application Telnet FTP NFS HTTP	
Transmission Media	
 No layering: each new application has to be re- implemented for every network technology! 	
istoica@cs.berkeleyadu	4

ISO OSI Reference Model Seven layers ISO – International Standard Organization OSI – Open System Interconnection Started to 1978; first standard 1979 ARPANET started in 1969; TCP/IP protocols ready by 1974 Application Presentation Goal: a general open standard Session - Allow vendors to enter the market by using their own Transport implementation and protocols Network Datalink Physical istoica@cs.berkeley.edu 7

Physical Layer (1)

- Service: move the information between two systems connected by a physical link
- Interface: specifies how to send a bit
- Protocol: coding scheme used to represent a bit, voltage levels, duration of a bit
- Examples: coaxial cable, optical fiber links; transmitters, receivers

istoica@cs.berkeley.edu

11

Datalink Layer (2)

- Service:
 - Framing, i.e., attach frames separator
 - Send data frames between peers attached to the same physical media
 - Others (optional):
 - · Arbitrate the access to common physical media
 - Ensure reliable transmission
 - Provide flow control
- Interface: send a data unit (packet) to a machine connected to the same physical media
- Protocol: layer addresses, implement Medium Access Control (MAC) (e.g., CSMA/CD)...

istoica@cs.berkeley.edu

- Data plane: concerned with
 - Packet forwarding
 - Buffer management
 - Packet scheduling
- Control Plane: concerned with installing and maintaining state for data plane

istoica@cs.berkeley.edu

Service:

- Full-duplex

- Access management, e.g., token control
- Synchronization, e.g., provide check points for long transfers
- Interface: depends on service
- Protocols: token management; insert checkpoints, implement roll-back functions

istoica@cs.berkeley.edu

17

19

Presentation Layer (6)

- Service: convert data between various representations
- Interface: depends on service
- Protocol: define data formats, and rules to convert from one format to another

istoica@cs.berkeley.edu

18

20

Application Layer (7)

- · Service: any service provided to the end user
- Interface: depends on the application
- Protocol: depends on the application
- Examples: FTP, Telnet, WWW browser

OSI vs. TCP/IP OSI: conceptually define: service, interface, protocol Internet: provide a successful implementation Telnet FTP DNS Application Application Presentation Session TCP UDP Transport Transport IP Internet Network Datalink Host-to-Packet LAN Physical network radio

istoica@cs.berkeley.edu

istoica@cs.berkeley.edu

istoica@cs.berkeley.edu

Discussion

- Yes, but only to improve performance
- Example:
 - Assume a high error rate on communication network
 Then, a reliable communication service at datalink layer might help

istoica@cs.berkeley.edu

26

Trade-offs

- Application has more information about the data and the semantic of the service it requires (e.g., can check only at the end of each data unit)
- A lower layer has more information about constraints in data transmission (e.g., packet size, error rate)
- Note: these trade-offs are a direct result of layering!

istoica@cs.berkeley.edu

Overview

- Layering
- End-to-End Arguments
- > A Case Study: the Internet

istoica@cs.berkeley.edu

30

Goals

- 0 Connect existing networks
- initially ARPANET and ARPA packet radio network
- 1. Survivability
 - ensure communication service even in the presence of network and router failures
- 2. Support multiple types of services
- 3. Must accommodate a variety of networks
- 4. Allow distributed management
- 5. Must be cost effective
- 6. Allow host attachment with a low level of effort
- 7. Allow resource accountability

istoica@cs.berkeley.edu

31

Connect Existing Networks: existing networks: ARPANET and ARPA packet and an ARPA packet solution. Decision: packet switching existing networks already were using this technology. Tacket switching → store and forward router architecture Internet: a packet switched communication network consisting of different networks connected by store-and-forward routers

- At network layer provides one simple service: best effort datagram (packet) delivery
- Only one higher level service implemented at transport layer: reliable data delivery (TCP)
 - performance enhancement; used by a large variety of applications (Telnet, FTP, HTTP)
 does not impact other applications (can use UDP)
- · Everything else implemented at application level

istoica@cs.berkeley.edu

34

36

Key Advantages

- The service can be implemented by a large variety of network technologies
- Does not require routers to maintain any fined grained state about traffic. Thus, network architecture is
 - Robust
 - Scalable

istoica@cs.berkeley.edu

35

What About Other Services?

- Multicast?
- Quality of Service (QoS)?

istoica@cs.berkeley.edu

Summary: Layering

Key technique to implement communication protocols; provides

Modularity
Abstraction
Reuse

Key design decision: what functionality to put in each layer?

istoica@cs.berkeley.edu

37

<text><list-item><list-item><list-item>

