
1

CS 268: Lecture 2
(Layering & End-to-End

Arguments)

isto ica@cs.berkeley.edu 2

Overview

� Layering
� End-to-End Arguments
� A Case Study: the Internet

isto ica@cs.berkeley.edu 3

What is Layering?

� A technique to organize a network system into a
succession of logically distinct entities, such that
the service provided by one entity is solely based
on the service provided by the previous (lower
level) entity

isto ica@cs.berkeley.edu 4

Why Layering?

� No layering: each new application has to be re-
implemented for every network technology!

Telnet FTP NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

2

isto ica@cs.berkeley.edu 5

Why Layering?

� Solution: introduce an intermediate layer that provides a
unique abstraction for various network technologies

Telnet FTP NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate
layer

isto ica@cs.berkeley.edu 6

Layering

� Advantages
- Modularity – protocols easier to manage and maintain
- Abstract functionality –lower layers can be changed

without affecting the upper layers
- Reuse – upper layers can reuse the functionality

provided by lower layers
� Disadvantages

- Information hiding – inefficient implementations

isto ica@cs.berkeley.edu 7

ISO OSI Reference Model

� ISO – International Standard Organization
� OSI – Open System Interconnection
� Started to 1978; first standard 1979

- ARPANET started in 1969; TCP/IP protocols ready by
1974

� Goal: a general open standard
- Allow vendors to enter the market by using their own

implementation and protocols

isto ica@cs.berkeley.edu 8

ISO OSI Reference Model

� Seven layers
- Lower three layers are peer-to-peer
- Next four layers are end-to-end

Application
Presentation

Session
Transport
Network

Datalink
Physical

Application
Presentation

Session
Transport
Network

Datalink
Physical

Network

Datalink
Physical

Physical medium

3

isto ica@cs.berkeley.edu 9

Data Transmission
� A layer can use only the service provided by the layer

immediate below it
� Each layer may change and add a header to data packet

data

data

data
data

data

data
data

data

data

data
data

data

data
data

isto ica@cs.berkeley.edu 10

OSI Model Concepts

� Service – says what a layer does
� Interface – says how to access the service
� Protocol – says how is the service implemented

- A set of rules and formats that govern the communication
between two peers

isto ica@cs.berkeley.edu 11

Physical Layer (1)

� Service: move the information between two
systems connected by a physical link

� Interface: specifies how to send a bit
� Protocol: coding scheme used to represent a bit,

voltage levels, duration of a bit

� Examples: coaxial cable, optical fiber links;
transmitters, receivers

isto ica@cs.berkeley.edu 12

Datalink Layer (2)

� Service:
- Framing, i.e., attach frames separator
- Send data frames between peers attached to the same physical

media
- Others (optional):

• Arbitrate the access to common physical media
• Ensure reliable transmission
• Provide flow control

� Interface: send a data unit (packet) to a machine
connected to the same physical media

� Protocol: layer addresses, implement Medium Access
Control (MAC) (e.g., CSMA/CD)…

4

isto ica@cs.berkeley.edu 13

Network Layer (3)

� Service:
- Deliver a packet to specified destination
- Perform segmentation/reassemble

(fragmentation/defragmentation)
- Others:

• Packet scheduling
• Buffer management

� Interface: send a packet to a specified destination
� Protocol: define global unique addresses;

construct routing tables

isto ica@cs.berkeley.edu 14

Data and Control Planes

� Data plane: concerned with
- Packet forwarding
- Buffer management
- Packet scheduling

� Control Plane: concerned with installing and
maintaining state for data plane

isto ica@cs.berkeley.edu 15

Example: Routing

� Data plane: use Forwarding Table to forward packets
� Control plane: construct and maintain Forwarding

Tables (e.g., Distance Vector, Link State protocols)

H1
H2

R1

R2

R3

R4

R5

R6

H2 R4
…

H2 R6
…

Fwd table
Fwd table

isto ica@cs.berkeley.edu 16

Transport Layer (4)

� Service:
- Provide an error-free and flow-controlled end-to-end

connection
- Multiplex multiple transport connections to one network

connection
- Split one transport connection in multiple network

connections
� Interface: send a packet to specify destination
� Protocol: implement reliability and flow control
� Examples: TCP and UDP

5

isto ica@cs.berkeley.edu 17

Session Layer (5)

� Service:
- Full-duplex
- Access management, e.g., token control
- Synchronization, e.g., provide check points for long transfers

� Interface: depends on service
� Protocols: token management; insert checkpoints,

implement roll-back functions

isto ica@cs.berkeley.edu 18

Presentation Layer (6)

� Service: convert data between various
representations

� Interface: depends on service
� Protocol: define data formats, and rules to

convert from one format to another

isto ica@cs.berkeley.edu 19

Application Layer (7)

� Service: any service provided to the end user
� Interface: depends on the application
� Protocol: depends on the application

� Examples: FTP, Telnet, WWW browser

isto ica@cs.berkeley.edu 20

OSI vs. TCP/IP

� OSI: conceptually define: service, interface, protocol
� Internet: provide a successful implementation

Application
Presentation

Session
Transport
Network

Datalink
Physical

Internet

Host-to-
network

Transport

Application

IP

LAN Packet
radio

TCP UDP

Telnet FTP DNS

6

isto ica@cs.berkeley.edu 21

Key Design Decision

� How do you divide functionality across the
layers?

isto ica@cs.berkeley.edu 22

Overview

� Layering
� End-to-End Arguments
� A Case Study: the Internet

isto ica@cs.berkeley.edu 23

End-to-End Argument

� Think twice before implementing a functionality that you
believe that is useful to an application at a lower layer

� If the application can implement a functionality
correctly, implement it a lower layer only as a
performance enhancement

isto ica@cs.berkeley.edu 24

Example: Reliable File Transfer

� Solution 1: make each step reliable, and then
concatenate them

� Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

OK

7

isto ica@cs.berkeley.edu 25

Discussion

� Solution 1 not complete
- What happens if the sender or/and receiver misbehave?

� The receiver has to do the check anyway!
� Thus, full functionality can be entirely implemented at

application layer; no need for reliability from lower
layers

� Is there any need to implement reliability at lower
layers?

isto ica@cs.berkeley.edu 26

Discussion

� Yes, but only to improve performance
� Example:

- Assume a high error rate on communication network
- Then, a reliable communication service at datalink layer

might help

isto ica@cs.berkeley.edu 27

Trade-offs

� Application has more information about the data
and the semantic of the service it requires (e.g.,
can check only at the end of each data unit)

� A lower layer has more information about
constraints in data transmission (e.g., packet
size, error rate)

� Note: these trade-offs are a direct result of
layering!

isto ica@cs.berkeley.edu 28

Rule of Thumb

� Implementing a functionality at a lower level
should have minimum performance impact on the
application that do not use the functionality

8

isto ica@cs.berkeley.edu 29

Other Examples

� Secure transmission of data
� Duplicate message suppression
� RISC vs. CISC

isto ica@cs.berkeley.edu 30

Overview

� Layering
� End-to-End Arguments
� A Case Study: the Internet

isto ica@cs.berkeley.edu 31

Goals

0 Connect existing networks
- initially ARPANET and ARPA packet radio network

1. Survivability
- ensure communication service even in the presence of

network and router failures

2. Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Must be cost effective
6. Allow host attachment with a low level of effort
7. Allow resource accountability

isto ica@cs.berkeley.edu 32

Connect Existing Networks

� Existing networks: ARPANET and ARPA packet
radio

� Decision: packet switching
- Existing networks already were using this technology

� Packet switching
�

store and forward router
architecture

� Internet: a packet switched communication
network consisting of different networks
connected by store-and-forward routers

9

isto ica@cs.berkeley.edu 33

Survivability

� Continue to operate even in the presence of
network failures (e.g., link and router failures)

- As long as the network is not partitioned, two endpoint
should be able to communicate…moreover, any other
failure (excepting network partition) should be transparent
to endpoints

� Decision: maintain state only at end-points (fate-
sharing)

- Eliminate the problem of handling state inconsistency and
performing state restoration when router fails

� Internet: stateless network architecture

isto ica@cs.berkeley.edu 34

Services

� At network layer provides one simple service:
best effort datagram (packet) delivery

� Only one higher level service implemented at
transport layer: reliable data delivery (TCP)

- performance enhancement; used by a large variety of
applications (Telnet, FTP, HTTP)

- does not impact other applications (can use UDP)
� Everything else implemented at application level

isto ica@cs.berkeley.edu 35

Key Advantages

� The service can be implemented by a large
variety of network technologies

� Does not require routers to maintain any fined
grained state about traffic. Thus, network
architecture is

- Robust
- Scalable

isto ica@cs.berkeley.edu 36

What About Other Services?

� Multicast?
� Quality of Service (QoS)?

10

isto ica@cs.berkeley.edu 37

Summary: Layering

� Key technique to implement communication
protocols; provides

- Modularity
- Abstraction
- Reuse

� Key design decision: what functionality to put in
each layer?

isto ica@cs.berkeley.edu 38

Summary: End-to-End Arguments

� If the application can do it, don’t do it at a lower
layer -- anyway the application knows the best
what it needs

- add functionality in lower layers iff it is (1) used and
improves performances of a large number of
applications, and (2) does not hurt other applications

� Success story: Internet

isto ica@cs.berkeley.edu 39

Summary

� Challenge of building a good (network) system:
find the right balance between:

Reuse, implementation effort
(apply layering concepts)

End-to-end argumentPerformance

� No universal answer: the answer depends on the
goals and assumptions!

