
1

CS 268: Active Networks

Ion Stoica
May 1, 2003

(* Based on David Wheterall presentation from SOSP ’99)

istoica@cs.berkeley.edu 2

Motivations

� Changes in the network happen very slowly
� Why?

- Network services are end-to-end
• At the limit, a service has to be supported by all routers

along the path
• Chicken-and-egg problem: if there aren’t enough routers

supporting the service, end-hosts won’t benefit
- Internet network is a shared infrastructure

• Need to achieve consensus (IETF)

istoica@cs.berkeley.edu 3

Motivations

� Proposed changes that haven’t happened yet on
a large scale:

- Support for congestion control (RED ‘93)
- IP security (IPSEC ‘93)
- More addresses (IPv6 ‘91)
- Multicast (IP multicast ‘90)

istoica@cs.berkeley.edu 4

Goals

� Make it easy to deploy new functionalities in the
network

�
accelerate the pace of innovation

� Allow users to customize their services

2

istoica@cs.berkeley.edu 5

Solution

� Active networks (D. Tannenhouse and D. Wetherall ’96):
- Routers can download and execute remote code
- At extreme, allow each user to control its packets

User 2:
Multicast

User 1:
RED

istoica@cs.berkeley.edu 6

An Active Node Toolkit: ANTS

� Add active nodes to infrastructure

IP routers Active nodes

istoica@cs.berkeley.edu 7

Active Nodes

� Provide environment for running service code
- Soft-storage, routing, packet manipulation

� Ensure safety
- Protect state at node; enforce packet invariants

� Manage local resources
- Bound code runtimes and other resource consumptions

istoica@cs.berkeley.edu 8

Where Is the Code?

� Packets carry the code
- Maximum flexibility
- High overhead

� Packets carry reference to the
code

- Reference is based on the code
fingerprint: MD5 (128 bits)

- Advantages:
• Efficient: MD5 is quick to

compute
• Prevents code spoofing: verify

without trust

packet

code

packet

code

reference

3

istoica@cs.berkeley.edu 9

Code Distribution

� End-systems pre-load code
� Active nodes load code on demand and then

cache it

previous
node

loading
node

request

time

packet

code
responses

packet
istoica@cs.berkeley.edu 10

Lesson Learned

� Applications
� Performance
� Security and resource management

istoica@cs.berkeley.edu 11

Applications

� Well-suited to implement protocol variations
� But not to enforce global policies and resource

control (e.g., fire-walls and QoS)
- Need a central authority to implement these

functionalities

� Application examples: auctions, reliable
multicast, mobility,…

istoica@cs.berkeley.edu 12

Performances

� ANTS implemented in Java
� In common case little overhead:

- Extra steps over IP (classification, safe eval) run very fast
� Enough cycles to run simple programs

- e.g. 1GHz, 1Gbps, 1000b packets, 100% � 1000 cycles;
10% � 10000 cycles

4

istoica@cs.berkeley.edu 13

Security and Resource Mgmt.

� Untrusted users
�

need to isolate their actions

� Protection: make sure that one program does not
corrupt other program

- Node level protection
- Network level protection

istoica@cs.berkeley.edu 14

Node Level Protection

� Relatively easy to solve
- Allocate resources among users and control their usage

• Fair Queueing, per-flow buffer allocation
- Use light weight mechanisms: sand-box, safe-type languages, Proof

Carrying Code (PCC):
• PCC can also provide timeliness guarantees e.g., can

demonstrate that an operation cannot take more time/space than
a predifined constant

� Note: fundamental trade-off between protection and flexibility
- Example: if a node uses FQ to provide bandwidth protection, it will

constrain the delays experienced by a user

istoica@cs.berkeley.edu 15

Network Level Protection

� More difficult to achieve
� Challenge: enforce global behavior of a program

only with local checks and control
� Main problem: programs very flexible. Active

nodes can:
- Affect routing behavior (e.g., mobile IP)
- Generate new packets (e.g. multicast)

istoica@cs.berkeley.edu 16

Examples

� Loops as a result of routing changes
� Resource wastage as a result of misbehaving multicast

programs
- Multicast height k, a node can generate up to m copies � total

number of packets can be O(mk) !

� Local solutions not enough
- TTL too weak; unaware about topology
- Fair Queueing offers only local protection

5

istoica@cs.berkeley.edu 17

Solution

� Program certification by a central authority
� Limitations:

- Slows innovation, but still better than what we have today
- Dealing with a misbehaving node still remains difficult

istoica@cs.berkeley.edu 18

Restricting Active Networks

� Allow only administrators, or privileged users to
inject code

- Router plugins, active bridge
� Restrict affecting only the control plane

�

increase network manageability
- SmartPackets
- Netscript

istoica@cs.berkeley.edu 19

Active Networks vs. Overlay
Networks

� Key difference:
- Active nodes operate at the network layer; overlay nodes operate

at the application layer
- Active network leverage IP routing between active nodes; Overlay

networks control routing between overlay nodes
� Active Networks advantages:

- Efficiency: no need to tunnel packets; no need to process packets
at layers other than the network layer

� Overlay Network advantages:
- Easier to deploy: no need to integrate overlay nodes in the

network infrastructure
• Active nodes have to collaborated (be trusted) by the other

routers in the same AS (they need to exchange routing info)

istoica@cs.berkeley.edu 20

Conclusions

� Active networks
- A revolutionary paradigm
- Explores a significant region of the networking architecture

design space
� But is the network layer the right level to deploy it?

- Maybe, but only if all (congested) routers are active…
- Otherwise, overlays might be good enough…

