
1

CS 268: Lecture 4
(TCP Congestion Control)

Ion Stoica
January 30, 2003

2

Problem

� How much traffic do you send?
� Two components

- Flow control – make sure that the receiver can receive
as fast as you send

- Congestion control – make sure that the network
delivers the packets to the receiver

3

Flow control: Window Size and
Throughput

� Sliding-window based flow
control:
- Higher window

�
higher

throughput
• Throughput = wnd/RTT

- Need to worry about
sequence number wrapping

� Remember: window size
control throughput

wnd = 3

segment 1
segment 2
segment 3

ACK 2

segment 4

ACK 3

segment 5
segment 6

ACK 4

R
T

T
 (

R
o

un
d

T
ri

p
T

im
e)

4

Why do You Care About
Congestion Control?

� Otherwise you get to congestion collapse
� How might this happen?

- Assume network is congested (a router drops packets)
- You learn the receiver didn’t get the packet

• either by ACK, NACK, or Timeout
- What do you do? retransmit packet
- Still receiver didn’t get the packet
- Retransmit again
- …. and so on …
- And now assume that everyone is doing the same!

� Network will become more and more congested
- And this with duplicate packets rather than new

packets!

2

5

Solutions?

� Increase buffer size. Why not?
� Slow down

- If you know that your packets are not delivered because
network congestion, slow down

� Questions:
- How do you detect network congestion?
- By how much do you slow down?

6

What’s Really Happening?

� Knee – point after which
- Throughput increases very slow
- Delay increases fast

� Cliff – point after which
- Throughput starts to decrease

very fast to zero (congestion
collapse)

- Delay approaches infinity

� Note (in an M/M/1 queue)
- Delay = 1/(1 – utilization)

Load

Load

T
hr

ou
gh

pu
t

D
el

ay

knee cliff

congestion
collapse

packet
loss

7

Congestion Control vs. Congestion
Avoidance

� Congestion control goal
- Stay left of cliff

� Congestion avoidance goal
- Stay left of knee

Load

T
hr

ou
gh

pu
t knee cliff

congestion
collapse

8

Goals

� Operate near the knee point
� Remain in equilibrium
� How to maintain equilibrium?

- Don’t put a packet into network until another packet
leaves. How do you do it?

- Use ACK: send a new packet only after you receive and
ACK. Why?

- Maintain number of packets in network “constant”

3

9

How Do You Do It?

� Detect when network approaches/reaches knee
point

� Stay there

� Questions
- How do you get there?
- What if you overshoot (i.e., go over knee point) ?

� Possible solution:
- Increase window size until you notice congestion
- Decrease window size if network congested

10

Detecting Congestion

� Explicit network signal
- Send packet back to source (e.g. ICMP Source Quench)

• Control traffic congestion collapse
- Set bit in header (e.g. DEC DNA/OSI Layer 4[CJ89], ECN)

• Can be subverted by selfish receiver [SEW01]
- Unless on every router, still need end-to-end signal
- Could be be robust, if deployed

� Implicit network signal
- Loss (e.g. TCP Tahoe, Reno, New Reno, SACK)

• +relatively robust, -no avoidance
- Delay (e.g. TCP Vegas)

• +avoidance, -difficult to make robust
- Easily deployable
- Robust enough? Wireless?

11

Efficient Allocation

� Too slow
- Fail to take advantage of

available bandwidth →
underload

� Too fast
- Overshoot knee → overload,

high delay, loss
� Everyone’s doing it

- May all under/over shoot →
large oscillations

� Optimal:

- Σxi=Xgoal� Efficiency = 1 - distance from
efficiency line

User 1: x1

U
se

r
2:

 x
2

Efficiency
line

2 user example

overload

underload

12

Fair Allocation

� Maxmin fairness
- Flows which share the

same bottleneck get the
same amount of
bandwidth

� Assumes no knowledge
of priorities

� Fairness = 1 - distance
from fairness line

User 1: x1

U
se

r
2:

 x
2

2 user example

2 getting
too much

1 getting
too much

fairness
line

() ()
()�

�

= 2

2

i

i

xn

x
xF

4

13

Control System Model [CJ89]

� Simple, yet powerful model
� Explicit binary signal of congestion

- Why explicit (TCP uses implicit)?
� Implicit allocation of bandwidth

User 1

User 2

User n

x1

x2

xn

Σ Σxi>Xgoal

y

14

Possible Choices

� Multiplicative increase, additive decrease
- aI=0, bI>1, aD<0, bD=1

� Additive increase, additive decrease
- aI>0, bI=1, aD<0, bD=1

� Multiplicative increase, multiplicative decrease
- aI=0, bI>1, aD=0, 0<bD<1

� Additive increase, multiplicative decrease
- aI>0, bI=1, aD=0, 0<bD<1

� Which one?

� �
�

�� �
+
+

=+
decreasetxba

increasetxba
tx

iDD

iII
i)(

)(
)1(

15

Multiplicative Increase,
Additive Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(bI(x1h+aD), bI(x2h+aD))� Does not
converge to
fairness

- Not stable at all
� Does not

converges to
efficiency

- Stable iff

I

DI
hh b

ab
xx

−
==

121

16

Additive Increase,
Additive Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(x1h+aD+aI),
x2h+aD+aI))

� Does not
converge to
fairness

- Stable
� Does not

converge to
efficiency

- Stable iff

ID aa =

5

17

Multiplicative Increase,
Multiplicative Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(bdx1h,bdx2h)

(bIbDx1h,
bIbDx2h)

� Does not
converge to
fairness

- Stable
� Converges to

efficiency iff

10

1

<≤
≥

D

I

b

b

18

(bDx1h+aI,
bDx2h+aI)

Additive Increase,
Multiplicative Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(bDx1h,bDx2h)

� Converges to
fairness

� Converges to
efficiency

� Increments
smaller as
fairness
increases

- effect on
metrics?

19

Significance

� Characteristics
- Converges to efficiency, fairness
- Easily deployable
- Fully distributed
- No need to know full state of system (e.g. number of

users, bandwidth of links) (why good?)� Theory that enabled the Internet to grow beyond
1989

- Key milestone in Internet development
- Fully distributed network architecture requires fully

distributed congestion control
- Basis for TCP

20

Modeling

� Critical to understanding complex systems
- [CJ89] model relevant for 13 years, 106 increase of

bandwidth, 1000x increase in number of users
� Criteria for good models

- Realistic
- Simple

• Easy to work with
• Easy for others to understand

- Realistic, complex model → useless
- Unrealistic, simple model → can teach something about

best case, worst case, etc.

6

21

TCP Congestion Contol

� [CJ89] provides theoretical basis
- Still many issues to be resolved

� How to start?
� Implicit congestion signal

- Loss
- Need to send packets to detect congestion
- Must reconcile with AIMD

� How to maintain equilibrium?
- Use ACK: send a new packet only after you receive and

ACK. Why?
- Maintain number of packets in network “constant”

22

TCP Congestion Control

� Maintains three variables:
- cwnd – congestion window
- flow_win – flow window; receiver advertised window
- ssthresh – threshold size (used to update cwnd)

� For sending use: win = min(flow_win, cwnd)

23

TCP: Slow Start

� Goal: discover congestion quickly
� How?

- Quickly increase cwnd until network congested � get a
rough estimate of the optimal of cwnd

- Whenever starting traffic on a new connection, or
whenever increasing traffic after congestion was
experienced:

• Set cwnd =1
• Each time a segment is acknowledged increment

cwnd by one (cwnd++).
� Slow Start is not actually slow

- cwnd increases exponentially

24

Slow Start Example

� The congestion
window size
grows very
rapidly

� TCP slows down
the increase of
cwnd when
cwnd >=
ssthresh

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4

cwnd = 4 segment 4
segment 5
segment 6
segment 7

ACK6-8

cwnd = 8

7

25

Congestion Avoidance

� Slow down “Slow Start”
� If cwnd > ssthresh then

each time a segment is acknowledged
increment cwnd by 1/cwnd (cwnd += 1/cwnd).

� So cwnd is increased by one only if all segments have been
acknowlegded.

� (more about ssthresh latter)

26

Slow Start/Congestion Avoidance
Example

� Assume that
ssthresh = 8

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

cwnd = 10

0

2

4

6

8

10
12

14

t=
0

t=
2

t=
4

t=
6

Roundtrip times

C
w

nd
(in

 s
eg

m
en

ts
)

ssthresh

27

Putting Everything Together:
TCP Pseudocode

Initially:
cwnd = 1;
ssthresh = infinite;

New ack received:
if (cwnd < ssthresh)

/* Slow Start*/
cwnd = cwnd + 1;

else
/* Congestion Avoidance */
cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */
ssthresh = cwnd/2;
cwnd = 1;

while (next < unack + win)
transmit next packet;

where win = min(cwnd,
flow_win);

unack next

win

seq #

28

The big picture

Time

cwnd

Timeout

Slow Start

Congestion
Avoidance

8

29

Fast Retransmit

� Don’t wait for window to
drain

� Resend a segment after 3
duplicate ACKs

- remember a duplicate
ACK means that an out-of
sequence segment was
received

� Notes:
- duplicate ACKs due to

packet reordering
• why reordering?

- iwindow may be too small
to get duplicate ACKs

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4
cwnd = 4 segment 4

segment 5
segment 6
segment 7

ACK 3

3 duplicate
ACKs

ACK 4

ACK 4

ACK 4

30

Fast Recovery

� After a fast-retransmit set cwnd to ssthresh/2
- i.e., don’t reset cwnd to 1

� But when RTO expires still do cwnd = 1
� Fast Retransmit and Fast Recovery

�

implemented by TCP Reno; most widely used
version of TCP today

31

Fast Retransmit and Fast Recovery

� Retransmit after 3 duplicated acks
- prevent expensive timeouts

� No need to slow start again
� At steady state, cwnd oscillates around the

optimal window size.

Time

cwnd

Slow Start

Congestion
Avoidance

32

Reflections on TCP

� Assumes that all sources cooperate
� Assumes that congestion occurs on time scales greater

than 1 RTT
� Only useful for reliable, in order delivery, non-real time

applications
� Vulnerable to non-congestion related loss (e.g. wireless)
� Can be unfair to long RTT flows

