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TCP Problems

� When TCP congestion control was originally 
designed in 1988:

- Maximum link bandwidth: 10Mb/s
- Users were mostly from academic and government 

organizations (i.e., well-behaved)
- Almost all links were wired (i.e., negligible error rate)

� Thus, current problems with TCP:
- High bandwidth-delay product paths
- Selfish users
- Wireless (or any high error links)
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High Bandwidth-Delay 
Product Paths

� Motivation
- 10Gb/s links now common in Internet core

• as a result of  Wave Division Multiplexing (WDM), link 
bandwidth 2x/9 months

- Some users have access to and need for 10Gb/s end-to-end
• e.g., very large scientific, financial databases

- Satellite/Interplanetary links have a high delay
� Problems

- slow start

- Additive increase, multiplicative decrease (AIMD)
� Congestion Control for High Bandwidth-Delay Product Networks. Dina Katabi, Mark 

Handley, and Charlie Rohrs. Proceedings on ACM Sigcomm 2002.
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Slow Start

� TCP throughput controlled by congestion 
window (cwnd) size

� In slow start, window increases exponentially, 
but may not be enough

� example: 10Gb/s, 200ms RTT, 1460B payload, 
assume no loss

- Time to fill pipe: 18 round trips = 3.6 seconds
- Data transferred until then: 382MB
- Throughput at that time: 382MB / 3.6s = 850Mb/s
- 8.5% utilization → not very good

� Loose only one packet → drop out of slow start 
into AIMD (even worse)
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AIMD

� In AIMD, cwnd increases by 1 packet/ RTT
� Available bandwidth could be large

- e.g., 2 flows share a 10Gb/s link, one flow 
finishes → available bandwidth is 5Gb/s

- e.g., suffer loss during slow start → drop into AIMD at 
probably much less than 10Gb/s

� time to reach 100% utilization is proportional to 
available bandwidth
- e.g., 5Gb/s available, 200ms RTT, 1460B 

payload → 17,000s
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Simulation Results

Round Trip Delay (sec)
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Bottleneck Bandwidth (Mb/s)
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Shown analytically in [Low01] and via simulations

50 flows in both directions
Buffer = BW x Delay

RTT = 80 ms

50 flows in both directions
Buffer = BW x Delay

BW = 155 Mb/s
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Proposed Solution:

Decouple Congestion Control from Fairness

Example: In TCP, Additive-Increase Multiplicative-
Decrease (AIMD) controls both

Coupled because a single mechanism controls both

How does  decoupling solve the problem?

1. To control congestion: use MIMD which shows fast 
response

2. To control fairness: use AIMD which converges to 
fairness
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Characteristics of Solution

1. Improved Congestion Control (in high bandwidth-delay 
& conventional environments):

• Small queues

• Almost no drops

2. Improved Fairness

3. Scalable (no per-flow state)

4. Flexible bandwidth allocation: min-max fairness,  
proportional fairness, differential bandwidth 
allocation,… 
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XCP: An eXplicit Control Protocol

1. Congestion Controller
2. Fairness Controller
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Feedback 

Round Trip Time

Congestion Window

Congestion Header

Feedback            

Round Trip Time

Congestion Window

How does XCP Work?

Feedback  =               
+ 0.1 packet
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Feedback =                
+ 0.1 packet  

Round Trip Time

Congestion Window

Feedback  =                
- 0.3 packet

How does XCP Work?
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Congestion Window = Congestion Window + Feedback

Routers compute feedback without 
any per-flow state 

Routers compute feedback without 
any per-flow state 

How does XCP Work?

XCP extends ECN and CSFQ
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How Does an XCP Router Compute the 
Feedback?

Congestion Controller Fairness Controller
Goal: Divides ∆ between flows 
to converge to fairness

Looks at a flow’s state in 
Congestion Header 

Algorithm:
If ∆ > 0 � Divide ∆ equally 
between flows
If ∆ < 0 � Divide ∆ between 
flows proportionally to their 
current rates

MIMD AIMD

Goal: Matches input traffic to link 
capacity & drains the queue

Looks at aggregate traffic & 
queue

Algorithm:
Aggregate traffic changes by ∆
∆ ~ Spare Bandwidth
∆ ~ - Queue Size

So, ∆ = α davg Spare - β Queue
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∆ = α davg Spare - β Queue

2
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0 2αβπα =<< and

Theorem: System converges 
to optimal utilization (i.e., stable) 
for any link bandwidth, delay, 
number of sources if:

(Proof based on Nyquist
Criterion)

Details

Congestion Controller Fairness Controller

No Parameter TuningNo Parameter Tuning

Algorithm:

If ∆ > 0 � Divide ∆ equally between flows

If ∆ < 0 � Divide ∆ between flows 
proportionally to their current rates

Need to estimate number of 
flows N

�
×

=
Tinpkts pktpkt RTTCwndT

N
)/(

1

RTTpkt : Round Trip Time in header 

Cwndpkt : Congestion Window in header
T: Counting Interval

No Per-Flow StateNo Per-Flow State
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XCP Remains Efficient as Bandwidth or 
Delay Increases

Bottleneck Bandwidth (Mb/s) Round Trip Delay (sec)

Utilization as a function 
of Delay  

XCP increases 
proportionally to 
spare bandwidth

α and β chosen to 
make XCP robust to 
delay

Utilization as a function of 
Bandwidth  



5

17

XCP Shows Faster Response than TCP

XCP shows fast response!XCP shows fast response!

Start       
40 
Flows

Start       
40 
Flows

Stop the 
40 Flows

Stop the 
40 Flows
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XCP is Fairer than TCP

Flow ID

Different RTTSame RTT 
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(RTT is 40 ms        330 ms )
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XCP Summary

� XCP 
- Outperforms TCP
- Efficient for any bandwidth
- Efficient for any delay
- Scalable (no per flow state)

� Benefits of Decoupling
- Use MIMD for congestion control which can grab/release 

large bandwidth quickly
- Use AIMD for fairness which converges to fair bandwidth 

allocation
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Selfish Users

� Motivation
- Many users would sacrifice overall system efficiency for more 

performance
- Even more users would sacrifice fairness for more 

performance
- Users can modify their TCP stacks so that they can receive 

data from a normal server at an un-congestion controlled rate.
� Problem

- How to prevent users from doing this?
- General problem: How to design protocols that deal with lack 

of trust?
� TCP Congestion Control with a Misbehaving Receiver. Stefan Savage, Neal 

Cardwell, David Wetherall and Tom Anderson. ACM Computer Communications 
Review, pp. 71-78, v 29, no 5, October, 1999.

� Robust Congestion Signaling. David Wetherall, David Ely, Neil Spring, Stefan 
Savage and Tom Anderson. IEEE International Conference on Network Protocols, 
November 2001
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Ack Division

� Receiver sends 
multiple, distinct 
acks for the same 
data

� Max: one for 
each byte in 
payload

� Smart sender can 
determine this is 
wrong
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Optimistic Acking

� Receiver acks
data it hasn’t 
received yet

� No robust way 
for sender to 
detect this on its 
own
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Solution: Cumulative Nonce

� Sender sends random 
number (nonce) with 
each packet

� Receiver sends 
cumulative sum of 
nonces

� if receiver detects loss, 
it sends back the last 
nonce it received

� Why cumulative?
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ECN

� Explicit Congestion Notification
- Router sets bit for congestion
- Receiver should copy bit from packet to ack
- Sender reduces cwnd when it receives ack

� Problem: Receiver can clear ECN bit
- or increase XCP feedback

� Solution: Multiple unmarked packet states
- Sender uses multiple unmarked packet states
- Router sets ECN mark, clearing original unmarked state
- Receiver returns packet state in ack

• receiver must guess original state to unmark packet
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ECN

� Receiver must 
either return ECN 
bit or guess nonce

� More nonce bits →
less likelihood of 
cheating

- 1 bit is sufficient
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Selfish Users Summary

� TCP allows selfish users to subvert congestion 
control

� Adding a nonce solves problem efficiently
- must modify sender and receiver

� Many other protocols not designed with selfish 
users in mind, allow selfish users to lower overall 
system efficiency and/or fairness

- e.g., BGP
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Wireless

� Wireless connectivity proliferating
- Satellite, line-of-sight microwave, line-of-sight laser, 

cellular data (CDMA, GPRS, 3G), wireless LAN 
(802.11a/b), Bluetooth

- More cell phones than currently allocated IP addresses
� Wireless → non-congestion related loss

- signal fading: distance, buildings, rain, lightning, 
microwave ovens, etc.

� Non-congestion related loss →
- reduced efficiency for transport protocols that depend 

on loss as implicit congestion signal (e.g. TCP)
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Problem
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2 MB wide-area TCP transfer over 2 Mbps Lucent WaveLAN 
(from Hari Balakrishnan)
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Solutions

� Modify transport protocol
� Modify link layer protocol
� Hybrid

30

Modify Transport Protocol 

� Explicit Loss Signal
- Distinguish non-congestion losses
- Explicit Loss Notification (ELN) [BK98]
- If packet lost due to interference, set header bit
- Only needs to be deployed at wireless router
- Need to modify end hosts
- How to determine loss cause?
- What if ELN gets lost?
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Modify Transport Protocol

� TCP SACK
- TCP sends cumulative ack only→cannot distinguish 

multiple losses in a window
- Selective acknowledgement: indicate exactly which 

packets have not been received
- Allows filling multiple “holes” in window in one RTT
- Quick recovery from a burst of wireless losses
- Still causes TCP to reduce window
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Modify Link Layer

� How does IP convey reliability requirements to link layer?
- not all protocols are willing to pay for reliability
- Read IP TOS header bits(8)?

• must modify hosts
- TCP = 100% reliability, UDP = doesn’t matter?

• what about other degrees?
- consequence of lowest common denominator IP architecture

� Link layer retransmissions
- Wireless link adds seq. numbers and acks below the IP layer
- If packet lost, retransmit it
- May cause reordering
- Causes at least one additional link RTT delay
- Some applications need low delay more than reliability e.g. IP 

telephony
- easy to deploy
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Modify Link Layer

� Forward Error Correction (FEC) codes
- k data blocks, use code to generate n>k coded blocks
- can recover original k blocks from any k of the n blocks
- n-k blocks of overhead
- trade bandwidth  for loss
- can recover from loss in time independent of link RTT

• useful for links that have long RTT (e.g. satellite)
- pay n-k overhead whether loss or not

• need to adapt n, k depending on current channel 
conditions
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Hybrid

� Indirect TCP [BB95]
- Split TCP connection into two parts
- regular TCP from fixed host (FH) to base station
- modified TCP from base station to mobile host (MH)
- base station fails?
- wired path faster than wireless path?

� TCP Snoop [BSK95]
- Base station snoops TCP packets, infers flow
- cache data packets going to wireless side
- If dup acks from wireless side, suppress ack and retransmit 

from cache
- soft state
- what about non-TCP protocols?
- what if wireless not last hop?

35

Conclusion

� Transport protocol modifications not deployed
- SACK was deployed because of general utility

� Cellular, 802.11b
- link level retransmissions
- 802.11b: acks necessary anyway in MAC for collision 

avoidance
- additional delay is only a few link RTTs (<5ms)

� Satellite
- FEC because of long RTT issues

� Link layer solutions give adequate, predictable 
performance, easily deployable


