
1

CS268: Beyond TCP
Congestion Control

Kevin Lai
February 4, 2003

2

TCP Problems

� When TCP congestion control was originally
designed in 1988:

- Maximum link bandwidth: 10Mb/s
- Users were mostly from academic and government

organizations (i.e., well-behaved)
- Almost all links were wired (i.e., negligible error rate)

� Thus, current problems with TCP:
- High bandwidth-delay product paths
- Selfish users
- Wireless (or any high error links)

3

High Bandwidth-Delay
Product Paths

� Motivation
- 10Gb/s links now common in Internet core

• as a result of Wave Division Multiplexing (WDM), link
bandwidth 2x/9 months

- Some users have access to and need for 10Gb/s end-to-end
• e.g., very large scientific, financial databases

- Satellite/Interplanetary links have a high delay
� Problems

- slow start

- Additive increase, multiplicative decrease (AIMD)
� Congestion Control for High Bandwidth-Delay Product Networks. Dina Katabi, Mark

Handley, and Charlie Rohrs. Proceedings on ACM Sigcomm 2002.

4

Slow Start

� TCP throughput controlled by congestion
window (cwnd) size

� In slow start, window increases exponentially,
but may not be enough

� example: 10Gb/s, 200ms RTT, 1460B payload,
assume no loss

- Time to fill pipe: 18 round trips = 3.6 seconds
- Data transferred until then: 382MB
- Throughput at that time: 382MB / 3.6s = 850Mb/s
- 8.5% utilization → not very good

� Loose only one packet → drop out of slow start
into AIMD (even worse)

2

5

AIMD

� In AIMD, cwnd increases by 1 packet/ RTT
� Available bandwidth could be large

- e.g., 2 flows share a 10Gb/s link, one flow
finishes → available bandwidth is 5Gb/s

- e.g., suffer loss during slow start → drop into AIMD at
probably much less than 10Gb/s

� time to reach 100% utilization is proportional to
available bandwidth
- e.g., 5Gb/s available, 200ms RTT, 1460B

payload → 17,000s

6

Simulation Results

Round Trip Delay (sec)

A
vg

. T
C

P
 U

til
iz

at
io

n

Bottleneck Bandwidth (Mb/s)

A
vg

. T
C

P
 U

til
iz

at
io

n

Shown analytically in [Low01] and via simulations

50 flows in both directions
Buffer = BW x Delay

RTT = 80 ms

50 flows in both directions
Buffer = BW x Delay

BW = 155 Mb/s

7

Proposed Solution:

Decouple Congestion Control from Fairness

Example: In TCP, Additive-Increase Multiplicative-
Decrease (AIMD) controls both

Coupled because a single mechanism controls both

How does decoupling solve the problem?

1. To control congestion: use MIMD which shows fast
response

2. To control fairness: use AIMD which converges to
fairness

8

Characteristics of Solution

1. Improved Congestion Control (in high bandwidth-delay
& conventional environments):

• Small queues

• Almost no drops

2. Improved Fairness

3. Scalable (no per-flow state)

4. Flexible bandwidth allocation: min-max fairness,
proportional fairness, differential bandwidth
allocation,…

3

9

XCP: An eXplicit Control Protocol

1. Congestion Controller
2. Fairness Controller

10

Feedback

Round Trip Time

Congestion Window

Congestion Header

Feedback

Round Trip Time

Congestion Window

How does XCP Work?

Feedback =
+ 0.1 packet

11

Feedback =
+ 0.1 packet

Round Trip Time

Congestion Window

Feedback =
- 0.3 packet

How does XCP Work?

12

Congestion Window = Congestion Window + Feedback

Routers compute feedback without
any per-flow state

Routers compute feedback without
any per-flow state

How does XCP Work?

XCP extends ECN and CSFQ

4

13

How Does an XCP Router Compute the
Feedback?

Congestion Controller Fairness Controller
Goal: Divides ∆ between flows
to converge to fairness

Looks at a flow’s state in
Congestion Header

Algorithm:
If ∆ > 0 � Divide ∆ equally
between flows
If ∆ < 0 � Divide ∆ between
flows proportionally to their
current rates

MIMD AIMD

Goal: Matches input traffic to link
capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by ∆
∆ ~ Spare Bandwidth
∆ ~ - Queue Size

So, ∆ = α davg Spare - β Queue

14

∆ = α davg Spare - β Queue

2
24

0 2αβπα =<< and

Theorem: System converges
to optimal utilization (i.e., stable)
for any link bandwidth, delay,
number of sources if:

(Proof based on Nyquist
Criterion)

Details

Congestion Controller Fairness Controller

No Parameter TuningNo Parameter Tuning

Algorithm:

If ∆ > 0 � Divide ∆ equally between flows

If ∆ < 0 � Divide ∆ between flows
proportionally to their current rates

Need to estimate number of
flows N

�
×

=
Tinpkts pktpkt RTTCwndT

N
)/(

1

RTTpkt : Round Trip Time in header

Cwndpkt : Congestion Window in header
T: Counting Interval

No Per-Flow StateNo Per-Flow State

15

��������� 	�
�	�
�����
���

������� � ���������

���

 "!$#$%�&('*),+.-/&0%�!012'3%

�54 674 � 8�95:�	<;�8>=�4 ��9���=?	�9A@

16

A
vg

.
U

til
iz

at
io

n

A
vg

.
U

til
iz

at
io

n

XCP Remains Efficient as Bandwidth or
Delay Increases

Bottleneck Bandwidth (Mb/s) Round Trip Delay (sec)

Utilization as a function
of Delay

XCP increases
proportionally to
spare bandwidth

α and β chosen to
make XCP robust to
delay

Utilization as a function of
Bandwidth

5

17

XCP Shows Faster Response than TCP

XCP shows fast response!XCP shows fast response!

Start
40
Flows

Start
40
Flows

Stop the
40 Flows

Stop the
40 Flows

18

XCP is Fairer than TCP

Flow ID

Different RTTSame RTT

A
vg

. T
hr

o u
gh

pu
t

Flow ID

A
vg

. T
hr

o u
gh

pu
t

(RTT is 40 ms 330 ms)

19

XCP Summary

� XCP
- Outperforms TCP
- Efficient for any bandwidth
- Efficient for any delay
- Scalable (no per flow state)

� Benefits of Decoupling
- Use MIMD for congestion control which can grab/release

large bandwidth quickly
- Use AIMD for fairness which converges to fair bandwidth

allocation

20

Selfish Users

� Motivation
- Many users would sacrifice overall system efficiency for more

performance
- Even more users would sacrifice fairness for more

performance
- Users can modify their TCP stacks so that they can receive

data from a normal server at an un-congestion controlled rate.
� Problem

- How to prevent users from doing this?
- General problem: How to design protocols that deal with lack

of trust?
� TCP Congestion Control with a Misbehaving Receiver. Stefan Savage, Neal

Cardwell, David Wetherall and Tom Anderson. ACM Computer Communications
Review, pp. 71-78, v 29, no 5, October, 1999.

� Robust Congestion Signaling. David Wetherall, David Ely, Neil Spring, Stefan
Savage and Tom Anderson. IEEE International Conference on Network Protocols,
November 2001

6

21

Ack Division

� Receiver sends
multiple, distinct
acks for the same
data

� Max: one for
each byte in
payload

� Smart sender can
determine this is
wrong

22

Optimistic Acking

� Receiver acks
data it hasn’t
received yet

� No robust way
for sender to
detect this on its
own

23

Solution: Cumulative Nonce

� Sender sends random
number (nonce) with
each packet

� Receiver sends
cumulative sum of
nonces

� if receiver detects loss,
it sends back the last
nonce it received

� Why cumulative?

24

ECN

� Explicit Congestion Notification
- Router sets bit for congestion
- Receiver should copy bit from packet to ack
- Sender reduces cwnd when it receives ack

� Problem: Receiver can clear ECN bit
- or increase XCP feedback

� Solution: Multiple unmarked packet states
- Sender uses multiple unmarked packet states
- Router sets ECN mark, clearing original unmarked state
- Receiver returns packet state in ack

• receiver must guess original state to unmark packet

7

25

ECN

� Receiver must
either return ECN
bit or guess nonce

� More nonce bits →
less likelihood of
cheating

- 1 bit is sufficient

26

Selfish Users Summary

� TCP allows selfish users to subvert congestion
control

� Adding a nonce solves problem efficiently
- must modify sender and receiver

� Many other protocols not designed with selfish
users in mind, allow selfish users to lower overall
system efficiency and/or fairness

- e.g., BGP

27

Wireless

� Wireless connectivity proliferating
- Satellite, line-of-sight microwave, line-of-sight laser,

cellular data (CDMA, GPRS, 3G), wireless LAN
(802.11a/b), Bluetooth

- More cell phones than currently allocated IP addresses
� Wireless → non-congestion related loss

- signal fading: distance, buildings, rain, lightning,
microwave ovens, etc.

� Non-congestion related loss →
- reduced efficiency for transport protocols that depend

on loss as implicit congestion signal (e.g. TCP)

28

Problem

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

0 10 20 30 40 50 60

Time (s)

S
eq

ue
nc

e
nu

m
be

r (
by

te
s)

TCP Reno
(280 Kbps)

Best possible
TCP with no errors
(1.30 Mbps)

2 MB wide-area TCP transfer over 2 Mbps Lucent WaveLAN
(from Hari Balakrishnan)

8

29

Solutions

� Modify transport protocol
� Modify link layer protocol
� Hybrid

30

Modify Transport Protocol

� Explicit Loss Signal
- Distinguish non-congestion losses
- Explicit Loss Notification (ELN) [BK98]
- If packet lost due to interference, set header bit
- Only needs to be deployed at wireless router
- Need to modify end hosts
- How to determine loss cause?
- What if ELN gets lost?

31

Modify Transport Protocol

� TCP SACK
- TCP sends cumulative ack only→cannot distinguish

multiple losses in a window
- Selective acknowledgement: indicate exactly which

packets have not been received
- Allows filling multiple “holes” in window in one RTT
- Quick recovery from a burst of wireless losses
- Still causes TCP to reduce window

32

Modify Link Layer

� How does IP convey reliability requirements to link layer?
- not all protocols are willing to pay for reliability
- Read IP TOS header bits(8)?

• must modify hosts
- TCP = 100% reliability, UDP = doesn’t matter?

• what about other degrees?
- consequence of lowest common denominator IP architecture

� Link layer retransmissions
- Wireless link adds seq. numbers and acks below the IP layer
- If packet lost, retransmit it
- May cause reordering
- Causes at least one additional link RTT delay
- Some applications need low delay more than reliability e.g. IP

telephony
- easy to deploy

9

33

Modify Link Layer

� Forward Error Correction (FEC) codes
- k data blocks, use code to generate n>k coded blocks
- can recover original k blocks from any k of the n blocks
- n-k blocks of overhead
- trade bandwidth for loss
- can recover from loss in time independent of link RTT

• useful for links that have long RTT (e.g. satellite)
- pay n-k overhead whether loss or not

• need to adapt n, k depending on current channel
conditions

34

Hybrid

� Indirect TCP [BB95]
- Split TCP connection into two parts
- regular TCP from fixed host (FH) to base station
- modified TCP from base station to mobile host (MH)
- base station fails?
- wired path faster than wireless path?

� TCP Snoop [BSK95]
- Base station snoops TCP packets, infers flow
- cache data packets going to wireless side
- If dup acks from wireless side, suppress ack and retransmit

from cache
- soft state
- what about non-TCP protocols?
- what if wireless not last hop?

35

Conclusion

� Transport protocol modifications not deployed
- SACK was deployed because of general utility

� Cellular, 802.11b
- link level retransmissions
- 802.11b: acks necessary anyway in MAC for collision

avoidance
- additional delay is only a few link RTTs (<5ms)

� Satellite
- FEC because of long RTT issues

� Link layer solutions give adequate, predictable
performance, easily deployable

