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Router Support For Congestion
Management

= Traditional Internet

- Congestion control
mechanisms at end-systems,
mainly implemented in TCP

- Routers play little role
Router mechanisms affecting
congestion management

- Scheduling

- Buffer management

= Traditional routers
- FIFO
- Tail drop
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Drawbacks of FIFO with Tail-drop

= Buffer lock out by misbehaving flows
= Synchronizing effect for multiple TCP flows

= Burst or multiple consecutive packet drops
- Bad for TCP fast recovery
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FIFO Router with Two TCP
Sessions

Packet Sequence Number

1400

1200

1000

ow
Flow?2 +

Number of packets
&

istoica@cs.berkeley.edu




RED

= FIFO scheduling
= Buffer management:
- Probabilistically discard packets

- Probability is computed as a function of average queue
length (why average?)

Discard Probability

L

min_th max_th queue len  Average
Queue Length
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RED (cont’'d)

= min_th —minimum threshold
= max_th — maximum threshold
= avg_len — average queue length
- avg_len = (1-w)*avg_len + w*sample_len

Discard Probability

i

min_th max_th queue len Average
Queue Length
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RED (cont’'d)

= If (avg_len < min_th) - enqueue packet

= If (avg_len > max_th) = drop packet

= If (avg_len >= min_th and avg_len < max_th) 2>
enqueue packet with probability P

Discard Probability (P)
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min_th max_th queue_len  Average
Queue Length
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RED (cont’'d)

= P =max_P*(avg_len — min_th)/(max_th — min_th)
= Improvements to spread the drops
P’ = P/(1 - count*P), where

« count — how many packets were consecutively enqueued
since last drop

Discard Probability
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RED Advantages

= Absorb burst better
= Avoids synchronization
= Signal end systems earlier
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RED Router with Two TCP Sessions
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Problems with RED

= No protection: if a flow misbehaves it will hurt the
other flows

= Example: 1 UDP (10 Mbps) and 31 TCP’s
sharing a 10 Mbps link
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Solution?

= Round-robin among different flows [Nagle ‘87]
- One queue per flow

'l
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Round-Robin Discussion

= Advantages: protection among flows

- Misbehaving flows will not affect the performance of well-
behaving flows

- FIFO does not have such a property
= Disadvantages:
- More complex than FIFO: per flow queue/state

- Biased toward large packets — a flow receives service
proportional to the number of packets (When is this bad?)
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Solution?

= Bit-by-bit round robin

= Can you do this in practice?

= No, packets cannot be preempted (why?)
= ...we can only approximate it
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Fair Queueing (FQ) [DKS’89]

= Define a fluid flow system: a system in which
flows are served bit-by-bit

= Then serve packets in the increasing order of
their deadlines

= Advantages
- Each flow will receive exactly its fair rate

= Note:
- FQ achieves max-min fairness
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Max-Min Fairness

Denote

- C—link capacity

- N —number of flows

- r;—arrival rate

Max-min fair rate computation:

1. compute C/N

2. if there are flows i such that r; <= C/N, update C and N

C :C_Zis.tr‘sc r'

3. if no, f = C/N; terminate
4. gotol
A flow can receive at most the fair rate, i.e., min(f, r)
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Example

= C=10;r,=8,1,=6,1;=2;,N=3
= C/l3=333>C=C-r3=8N=2
= Cl2=4,f=4

8 f=4
min(c, 4) =
2 2 min(2,4) =2
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Alternate Way to Compute Fair Rate

= If link congested, compute f such that

Zmin(ri,f):C

8 f=4
10 4 min(8, 4) =4
min(©, 4) =
2 2 min(2, 4) =2
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Implementing Fair Queueing

= |dea: serve packets in the order in which they

would have finished transmission in the fluid flow

system
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Example
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System Virtual Time: V(t)

= Measure service, instead of time

= V(t) slope — rate at which every active flow receives service
- C - link capacity
- N(t) — number of active flows in fluid flow system at time t

V()
/av t)y_ C
ot N (t)
time
Service |1|2|1|2I3I4I5I6I
in fluid flow | 3 4 | 5 ] time
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Fair Queueing Implementation

= Define

- Fik- finishing time of packet k of flow i (in system virtual
time reference system)

- aik- arrival time of packet k of flow i
- L¥- length of packet k of flow i

= The finishing time of packet k+1 of flow i is

Ff=ma( V(@) R+ L
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“Weighted Fair Queueing” (WFQ)

= What if we don't want exact fairness?
- ex: file servers
= Assign weight w to each flow i
= And change virtual finishing time
k+1
F = ma( V (al), F )+ S

istoica@cs.berkeley.edu 23

FQ Advantages

= FQ protect well-behaved flows from ill-behaved flows

= Example: 1 UDP (10 Mbps) and 31 TCP’s sharing a 10 Mbps
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Summary

= FQ does not eliminate congestion > it just
manages the congestion
= You need both end-host congestion control and
router support for congestion control
- End-host congestion control to adapt
- Router congestion control to protect/isolate
= Don't forget buffer management: you still need to
drop in case of congestion. Which packet’s would
you drop in FQ?
- One possibility: packet from the longest queue
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