CS 268: Router Support for
Congestion Control

lon Stoica
February 13, 2003

Router Support For Congestion
Management

= Traditional Internet

- Congestion control
mechanisms at end-systems,
mainly implemented in TCP

- Routers play little role
Router mechanisms affecting
congestion management

- Scheduling

- Buffer management

= Traditional routers
- FIFO
- Tail drop

istoica@cs.berkeley.edu

Drawbacks of FIFO with Tail-drop

= Buffer lock out by misbehaving flows
= Synchronizing effect for multiple TCP flows

= Burst or multiple consecutive packet drops
- Bad for TCP fast recovery

istoica@cs.berkeley.edu 3

FIFO Router with Two TCP
Sessions

Packet Sequence Number

1400

1200

1000

ow
Flow?2 +

Number of packets
&

istoica@cs.berkeley.edu

RED

= FIFO scheduling
= Buffer management:
- Probabilistically discard packets

- Probability is computed as a function of average queue
length (why average?)

Discard Probability

L

min_th max_th queue len Average
Queue Length

istoica@cs.berkeley.edu

RED (cont’'d)

= min_th —minimum threshold
= max_th — maximum threshold
= avg_len — average queue length
- avg_len = (1-w)*avg_len + w*sample_len

Discard Probability

i

min_th max_th queue len Average
Queue Length

istoica@cs.berkeley.edu

RED (cont’'d)

= If (avg_len < min_th) - enqueue packet

= If (avg_len > max_th) = drop packet

= If (avg_len >= min_th and avg_len < max_th) 2>
enqueue packet with probability P

Discard Probability (P)

iR

min_th max_th queue_len Average
Queue Length

istoica@cs.berkeley.edu

RED (cont’'d)

= P =max_P*(avg_len — min_th)/(max_th — min_th)
= Improvements to spread the drops
P’ = P/(1 - count*P), where

« count — how many packets were consecutively enqueued
since last drop

Discard Probability

/

min_th / max_th queue_len

Average

avg len Queue Length

istoica@cs.berkeley.edu

RED Advantages

= Absorb burst better
= Avoids synchronization
= Signal end systems earlier

istoica@cs.berkeley.edu 9

RED Router with Two TCP Sessions

Packet Sequence Nurmber

1000

w1 o Queue Size —
Flow?2 + Avg. Queue Size —

Number of packets

‘},
("5 |
L

4_5 8 7 3 4 3
Time (sec) Time (sec)

istoica@cs.berkeley.edu 10

Problems with RED

= No protection: if a flow misbehaves it will hurt the
other flows

= Example: 1 UDP (10 Mbps) and 31 TCP’s
sharing a 10 Mbps link

RED

Throughput(Mbps)
OFr NWMUON®©O©O

1 4 7 10 13 16 19 22 25 28 31
Flow Number
istoica@cs.berkeley.edu 11

Solution?

= Round-robin among different flows [Nagle ‘87]
- One queue per flow

'l

istoica@cs.berkeley.edu 12

Round-Robin Discussion

= Advantages: protection among flows

- Misbehaving flows will not affect the performance of well-
behaving flows

- FIFO does not have such a property
= Disadvantages:
- More complex than FIFO: per flow queue/state

- Biased toward large packets — a flow receives service
proportional to the number of packets (When is this bad?)

istoica@cs.berkeley.edu 13

Solution?

= Bit-by-bit round robin

= Can you do this in practice?

= No, packets cannot be preempted (why?)
= ...we can only approximate it

istoica@cs.berkeley.edu 14

Fair Queueing (FQ) [DKS’89]

= Define a fluid flow system: a system in which
flows are served bit-by-bit

= Then serve packets in the increasing order of
their deadlines

= Advantages
- Each flow will receive exactly its fair rate

= Note:
- FQ achieves max-min fairness

istoica@cs.berkeley.edu 15

Max-Min Fairness

Denote

- C—link capacity

- N —number of flows

- r;—arrival rate

Max-min fair rate computation:

1. compute C/N

2. if there are flows i such that r; <= C/N, update C and N

C :C_Zis.tr‘sc r'

3. if no, f = C/N; terminate
4. gotol
A flow can receive at most the fair rate, i.e., min(f, r)

istoica@cs.berkeley.edu 16

Example

= C=10;r,=8,1,=6,1;=2;,N=3
= C/l3=333>C=C-r3=8N=2
= Cl2=4,f=4

8 f=4
min(c, 4) =
2 2 min(2,4) =2

istoica@cs.berkeley.edu

Alternate Way to Compute Fair Rate

= If link congested, compute f such that

Zmin(ri,f):C

8 f=4
10 4 min(8, 4) =4
min(©, 4) =
2 2 min(2, 4) =2

istoica@cs.berkeley.edu

Implementing Fair Queueing

= |dea: serve packets in the order in which they

would have finished transmission in the fluid flow

system

istoica@cs.berkeley.edu

Example

(arrif/lsl‘l\:r;fﬁc) E E time

(arrif/lsl‘lzrazxﬁic) | i | Z | 9 | & | 2 |

[2 T3] ||
3 [4 T 5 1

Service |
in fluid flow | 1 | 2 |

system

roet [2] 2]af 3 [o[o] 4 Jo[s[5]e]

istoica@cs.berkeley.edu

time

time

time

System Virtual Time: V(t)

= Measure service, instead of time

= V(t) slope — rate at which every active flow receives service
- C - link capacity
- N(t) — number of active flows in fluid flow system at time t

V()
/av t)y_ C
ot N (t)
time
Service |1|2|1|2I3I4I5I6I
in fluid flow | 3 4 | 5] time
system istoica@cs.berkeley.edu 21

Fair Queueing Implementation

= Define

- Fik- finishing time of packet k of flow i (in system virtual
time reference system)

- aik- arrival time of packet k of flow i
- L¥- length of packet k of flow i

= The finishing time of packet k+1 of flow i is

Ff=ma(V(@) R+ L

istoica@cs.berkeley.edu

“Weighted Fair Queueing” (WFQ)

= What if we don't want exact fairness?
- ex: file servers
= Assign weight w to each flow i
= And change virtual finishing time
k+1
F = ma(V (al), F)+ S

istoica@cs.berkeley.edu 23

FQ Advantages

= FQ protect well-behaved flows from ill-behaved flows

= Example: 1 UDP (10 Mbps) and 31 TCP’s sharing a 10 Mbps

link
10 2
9 18
] RED 216 FQ
a7 2
= Su4
=6 =12
E] 5
asb o1
= =
>4 S0.8
E E)
33 206
=K S04
1 02
0 B e 0
1 4 7 10 13 16 19 22 25 28 31 14 7 10 13 16 19 22 25 28 31

Flow Number Flow Number

istoica@cs.berkeley.edu

24

Summary

= FQ does not eliminate congestion > it just
manages the congestion
= You need both end-host congestion control and
router support for congestion control
- End-host congestion control to adapt
- Router congestion control to protect/isolate
= Don't forget buffer management: you still need to
drop in case of congestion. Which packet’s would
you drop in FQ?
- One possibility: packet from the longest queue

istoica@cs.berkeley.edu 25

