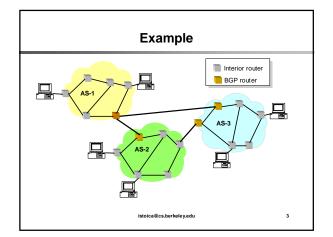
CS 268: Routing Behavior in the Internet

Ion Stoica February 18, 2003


Internet Routing

- Internet organized as a two level hierarchy
- First level autonomous systems (AS's) AS - region of network under a single administrative domain
- AS's run an intra-domain routing protocols - Distance Vector, e.g., RIP
 - Link State, e.g., OSPF
- Between AS's runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP) - De facto standard today, BGP-4

istoica@cs.berkeley.edu

2

4

Intra-domain Routing Protocols

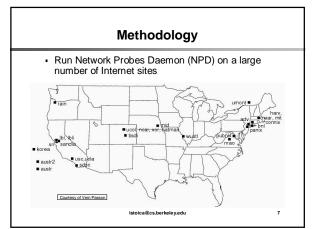
- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford - Each router periodically exchange reachability information to
 - its neighbors
 - Minimal communication overhead, but it takes long to converge, i.e., in proportion to the maximum path length
- Link state
 - Open Shortest Path First Protocol (OSPF), based on Dijkstra Each router periodically floods immediate reachability information to other routers

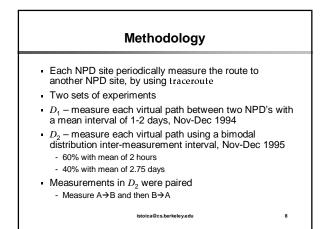
 - Fast convergence, but high communication and computation overhead

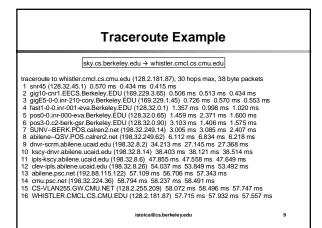
istoica@cs.berkeley.edu

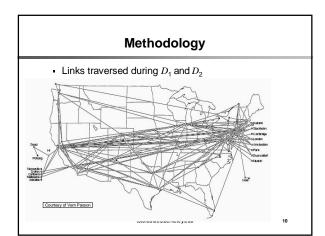
Inter-domain Routing

- Use TCP
- Border Gateway Protocol (BGP), based on Bellman-Ford path vector
- AS's exchange reachability information through their BGP routers, only when routes change
- BGP routing information a sequence of AS's indicating the path traversed by a route; next hop
- General operations of a BGP router:
- Learns multiple paths
- Picks best path according to its AS policies
- Install best pick in IP forwarding tables


istoica@cs.berkeley.edu


5


End-to-End Routing Behavior in the Internet [Paxson '95]


- Idea: use end-to-end measurements to determine
 Route pathologies
 - Route stability
 - Route symmetry

istoica@cs.berkeley.edu

Methodology

- Exponential sampling
 - Unbiased sampling measures instantaneous signal with equal probability
 - PASTA principle Poisson Arrivals See Time Averages
- Is data representative?
 - Argue that sampled AS's are on half of the Internet routes
- Confidence intervals for probability that an event occurs

istoica@cs.berkeley.edu

11

Limitations

- Just a small subset of Internet paths
- Just two points at a time
- Difficult to say why something happened
 5%-8% of time couldn't connect to NPD's → Introduces bias toward underestimation of the prevalence of network problems

istoica@cs.berkeley.edu

3

Routing Pathologies

- Persistent routing loops
- Temporary routing loops
- Erroneous routing
- Connectivity altered mead-stream
- Temporary outages (> 30 sec)

istoica@cs.berkeley.edu

13

Routing Loops & Erroneous Routing

- Persistent routing loops (10 in D₁ and 50 in D₂)
 Several hours long (e.g., > 10 hours)
 - Largest: 5 routers
 - All loops intra-domain
- Transient routing loops (2 in D₁ and 24 in D₂)
 - Several seconds
 - Usually occur after outages
- Erroneous routing (one in D₁)
- A route UK→USA goes through Israel

istoica@cs.berkeley.edu

14

Amsterdam

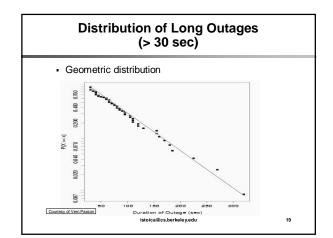
16

Route Changes Connectivity change in mid-stream (10 in D₁ and 155 in D₂) Route changes during measurements Recovering bimodal: (1) 100's msec to seconds; (2) order of minutes Route fluttering Rapid route oscillation

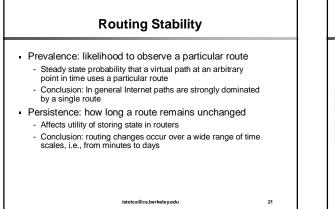
- Path properties difficult to predict
 This confuses RTT estimation in TCP, may trigger false retransmission timeouts
- Packet reordering
 - TCP receiver generates DUPACK's, may trigger spurious fast retransmits
- These problems are bad only for a large scale flutter; for localized flutter is usually ok

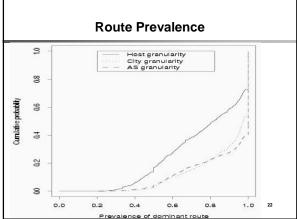
istoica@cs.berkeley.edu

17

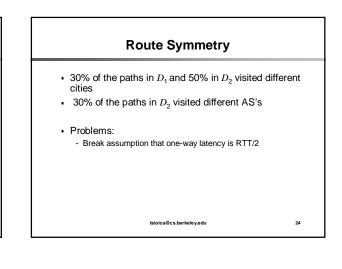


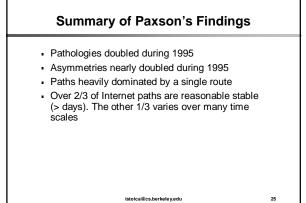
- NPD's unreachable due to many hops (6 in D₂)
 Unreachable → more than 30 hops
 - Path length not necessary correlated with distance
 - 1500 km end-to-end route of 3 hops
 - 3 km (MIT Harvard) end-to-end route of 11 hops


Temporary outages


- Multiple probes lost. Most likely due to:
 Heavy congestions lasting 10's of seconds
 - Temporary lost of connectivity

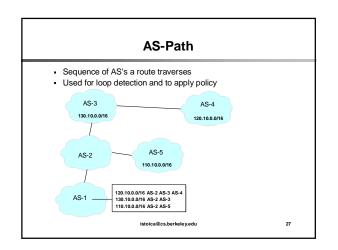
istoica@cs.berkeley.edu


Pathology	Probability	Trend
Persistent routing loops	0.13-0.16%	
Temporary routing loops	0.055-0.078%	
Erroneous routing	0.004-0.004%	
Connectivity altered mid-stream	0.16% // 0.44%	worse
Infrastructure failure	0.21% // 0.48%	worse
Temporary outage \geq 30 secs	0.96% // 2.2%	worse
Total user-visible pathologies	1.5% // 3.4%	worse



% Paths N/A	Notes
N/A	
	Load-balancing "flutter."
N/A	"Tightly-coupled" routers.
9%	Some involved different cities, AS's.
4%	Usually intra-network changes.
19%	Also intra-network changes.
68%	or even weeks.
	4% 19%

Г




Internet Routing Instability [Labovitz et al '96]

Methodology

- Collect routing messages from five public exchange points over nine months
- Problems caused by routing instability
 - Increased delays, packet loss and reordering, time for routes to converge (small-scale route changes)
- Relevant BGP information
- AS-Path (see next slide)
 - Next hop: Next hop to reach a network
- Two routes are the same if they have the same AS-Path and Next hop

istoica@cs.berkeley.edu

- Forwarding instability: may reflect topology changes
- Policy fluctuations (Routing instability): may reflect changes in routing policy information
- Pathological updates: redundant updates that are neither routing nor forwarding instability
- Instability: forwarding instability and policy fluctuation → change forwarding path

istoica@cs.berkeley.edu

29

31

Routing Successive Events (Instability)

- WADiff: a route is explicitly withdrawn as it becomes unreachable, and is later replaced with an alternative route (forwarding instability)
- AADiff: a route is implicitly withdrawn and replaced by an alternative route as the original route becomes unavailable or a new preferred route becomes available (forwarding instability)
- WADup: a route is explicitly withdrawn, and reannounced later (forwarding instability or pathological behavior)

istoica@cs.berkeley.edu

30

Routing Successive Events (Pathological Instability)

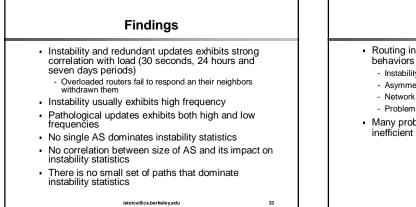
- AADup: A route is implicitly withdrawn and replaced with a duplicate of the original route (pathological behavior or policy fluctuation)
- WWDup: The repeated transmission of BGP withdrawals for a prefix that is currently unreachable (pathological behavior)

istoica@cs.berkeley.edu

 Findings

 • BGP updates more than one order of magnitude larger than expected

 • Routing information dominated by pathological updates


 • Implementation problems:

 • Routers do not maintain the history of the announcements sent to neighbors

 • When a router gets topological changes they just sent these announcements all neighbors, irrespective of whether the router sent previous announcements about that route to a neighbor or not

 • Self-synchronization – BGP routers exchange information simultaneously → may lead to periodic link/router failures

 • Unconstrained routing policies may lead to persistent route oscillations

Routing in the Internet exhibits many undesirable

Conclusions

- Instability over a wide range of time scales
- Asymmetric routes
- Network outages
- Problem seems to worsen

 Many problems are due to software bugs or inefficient router architectures

istoica@cs.berkeley.edu

34

Lessons

- Even after decades of experience routing in the Internet is not a solved problem
- This attests the difficulty and complexity of building distributed algorithm in the Internet, i.e., in a heterogeneous environment with products from various vendors
- Simple protocols may increase the chance to be - Understood

 - Implemented right

istoica@cs.berkeley.edu

35