CS 283
Advanced Computer Graphics

Rotations and Inverse Kinematics

James F. O'Brien

Professar
VO, Berkedey

Rotations

* 3D Rotations fundamentally more complex than in 2D

» 2D:amount of rotation
* 3D:amount and axis of rotaticn

2D 3D

Rotations

* Rotations still orthonormal

. Det(R) =1 —1

* Preserve lengths and distance to ongin
* 3D rotations DO NOT COMMUTE!

*Rgnthand e DO NOT COMMUTE!

* Unique matrices /

Axis-aligned 3D Rotations

+ 2D rotations implicitly rotate about a third out of plane
axis

Axis-aligned 3D Rotations

» 2D rotations implicitly rotate about a third out of plane
axis

s(B8) —sin(0) 0

~ [cos(8) —sin(0) | 3
i [sin(ﬁ) oos(O)] = {smée) oo:](e) (I)J

Axis-aligned 3D Rotations

1 0 0
R= |0 cos(0) —sin(0)
[0 sin{0) cos(0)

[cos(B) 0 sin(0)] $
R=| 0 1 o0
| —sin{8) 0 cos(0) | \
[cos(B) —sin(0) O] | i
—.:57_.

R = |sin(0) cos(B) O :
0 0 1 /

Axis-aligned 3D Rotations

1 0 0
0 cos(0) —sin(0)
0 sin{0) cos(0) |

[cos{(B) 0 sin(0)]
R=| 0 1 o
| —sin{8) 0 cos(0) |

[cos(B) —sin(0) O]
sin(0) cos(0) 0

0 0 1

"Z is in your face”

Axis-aligned 3D Rotations

1 0 0

0 cos(0) —sin(0)
[0 sin{0) cos(0)
[cos(B) 0 sin(0)]
R=| 0 1 o

sin(B) cos(0) 0

| —sin{8) 0 cos(0) |
[cos(B) —sin(0) O]

0 0 1

= Also night handed "Zup”

P

Axis-aligned 3D Rotations

* Alsc known as "direction-cosine” matnces

R - 0 1 0

sin(0) 0 cos(6)

1 0 0
0 cos(0) ~sin(0) R.-
0 sin(0) cos(B)

cos() 0 sin(O)]

R~

cos(0) —sn(B) 0
sin(8) cos(B) 0O
0 0 1

Arbitrary Rotations

+ Can be built from axis-aligned matrices:

R=R; R; R;

* Result due to Euler.. hence called
Euler Angles
* Easy to store in vector

* But NOT a vector.

R = rot(x,y,z)

Arbitrary Rotations

R=R; Ry R;

Arbitrary Rotations

+ Allows tumbling
* Euler angles are non-unique
* Gimbal-lock

* Moving -vs- fixed axes

* Reverse of each cther

Exponential Maps

* Direct representation of arbitrary rotation

* AKA: axis-angle, angular displacement vector
* Rotate 0 degrees about some axis

* Encode O by length of vector

0= |r|

>

Exponential Maps

» Given vector I, how to get matrix R

* Method from text:

|. rotate bout x axs to put r into the x-y pane
rotate about £ axis algn r with the x axs
rotate B cdegrees 3oLt X axis
undo #2 and then #|
cemposite tegether

SN

u

Exponential Maps

‘.
X r ix*

* Vector expressing a peint has two parts

. x|| does not change
" X ,rotates ke 2 2D point

Exponential Maps

X =#x(Pxx) 1 X 5

x =X, +x-sin(8) +x . cos(d)

Exponential Maps

» Rodriguez Formula

x = #(f-x)
+sin(0) (# x x)
—cos(0)(F x (F x x))

xi
: Actually a minor variation ...

Exponential Maps

+ Rodrguez Formula l
x = f(f-x)
+sin(@)@x%) |
—cos(0)(F x (f x x))
" x, o ¢ Linear in x

xi
3 Actually a minor variation ...

Exponential Maps

» Building the matrix

x' = ((#%*) +sin(8)(Ex) — cos(B) (Fx)(£x)) x

0 —f, P
(ﬁX) - F: 0 _?x
—fy, £ O

Antisymmetnc matrix

(ax)b=axb

Easy to verify by expansion

Exponential Maps

* Allows tumbling

* No gimbal-lock!

* Orientations are space within Tr-radius ball
+ Nearly unique representation

* Singulanties on shells at 21T

» Nice for interpolation

Exponential Maps

* Why exponential?

, . X
* Recall series expansion of €

N~
ex=l+ﬁ+ﬁ+ﬁ+"'

Exponential Maps

* Why expcnential? %
* Recall series expansion of @
» Euler: what happens if you put in {0 for x

o . 10 —6° —ip® 6
ks T TR T

s -8 o /8 -0
= +7+Z+‘“ +1 F'\"?'i"

= cos(0) +isin(0)

Exponential Maps

* Why exponential?

@x)e_y, (BX)0 (Bx)*6* (#x)'0° (#x)'6°
R T S A TR

But notice that: (£x)” = —(£x)

(8x)0 (#x)0* —(@#x)6° —(#x) '

(tx)0 __ ¢ ,
e 2t T3 T A

Exponential Maps

(#x)0 (#x)0° —(@#x)0° —(#x) 0’

#x)0 _
N 2! 31 41

. o o TN o
elf J°=(rx)(i—!—§+---) +I+(rx)*(+i—a+---)

™0 — (#x)sin(8) + I+ (#x)*(1 — cos(0))

Quaternions

* More popular than exponential maps
» Natural extension of € = cos(0) + isin(0)
* Due to Hamilton (1843)

* Interesting histery
* Imvoives "hermaphroditc monsters”

Quaternions

* Uoer-Complex Numbers

qQ= (21722:2338) e (Z,S)
q= iZ] +j22+kZ3+S

ij=k ji=

k
=== jk=i kj=—i
ki=j ik=~-j

Quaternions

* Multiplication natural consequence of defn.

0= (2,5, + 2,5, +2, X2, , 5p5,—2Z,"2,)
* Conjugate

¢ = (—Z,S)
* Magnitude

ll*=2-z+5*=q-q"

Quaternions

* Vectors as quaternions

v = (V,O)
+ Rotations as quaternions

6 6
r = (Fsin_,cos2)
* Rotating a vector - .

| G *
X =r°x"'r

+ Composing rotations
r=r1-n Compare to Exp. Map

Quaternions

* No tumbling

* No gimbal-lock

+» Orientations are "double unique”

» Surface of a 3-sphere in 4D ||r|| =1

* Nice for interpolation

Interpolation

Rotation Matrices

* Eigen system

» One rez egemnvaie

* Real axis is axs of rotation

* Imagnary vaiues are 2D rotation as complex number
* Loganthmic formula

(#x) = In(R) = i——S?E(R—RT)

0 =cos™' (Tr(l;) l)

Similar formulae as for exponential...

Rotation Matrices

» Consider:
ru rxy rx: l 0 0
RI=(r, r, r.|]|0 1 O

);ur, 2 | L |

» Columns are ccordinate axes after transformation
(true for general matrices)
» Rows are onginal axes in original system

(not true for general matrices)

Forward Kinematics

* Articulated skeleton

» Topology (what's connected to what)
Geometric relations from joints

* Independent of display geometry

* Tree structure
* Leop joints break 'tree-ness”

Forward Kinematics

* Root body
» Positon set by “'global” transformation
* Root jcint
* Postion
* Retation
* Other bodes relative to roct
* Inboord toward the root
+ Outboord away from root

Forward Kinematics

* A joint
* Joint’s nboard bedy
* Joint’s outboard body

\

Forward Kinematics

* A body
» Bedy's inboard jont \
* Bedy's outbeard joint

* May have several outboard jonts

Forward Kinematics

* A body
» Bedy's inboard jont
* Bedy's outbeard joint
* May have several outboard onts
* Bedy's parent
* Bedy's child
* May have several chidren

Forward Kinematics

* Interior joints
» Typically not & DOF joints
* Pn - rotate abeut one axs \
* Ball - arbitrary rotation /
* Prism - transation along one axis

Forward Kinematics

* Pin Joints
» Translate inboard jont to local ongin
* Apply rotaton abeut axis

* Translate crign to locaton of joint on outboard bedy

Forward Kinematics

* Ball joints
» Translate inboard jont to lecal ongn
* Apply rotaton about arbtrary axis

* Translate crgn to locaton of joint cn outboard bedy

Forward Kinematics

* Prismatic Joints
» Translate inboard jont to local ongin
* Translate along axis

* Translate crign to locaton of joint on outboard bedy

Forward Kinematics

» Composite transformations up the hierarchy

Forward Kinematics

» Composite transformations up the hierarchy

%%&

Forward Kinematics

» Composite transformations up the hierarchy

Forward Kinematics

» Composite transformations up the hierarchy

Forward Kinematics

» Composite transformations up the hierarchy

Inverse Kinematics

“
W ——
+ Given /
* Root transformation URRH S v

» Intial configuration
* Desired end point location

(%
+ Find \\
* Intencr parameter settings // \
[T B

Inverse Kinematics

Egon Fasaoe

Inverse Kinematics

* A simple two segment arm in 2D

Inverse Kinematics

* Direct IK: solve for the parameters

Inverse Kinematics

* Why is the problem hard?
» Multple solutions separated n configuraton space

Inverse Kinematics

* Why is the problem hard?
» Multple solutons connected in configuration space

Inverse Kinematics

* Why is the problem hard?

+ Solutions may not always exist

Inverse Kinematics

* Numenical Solution
» Start n some inttal configuration
* Define an error metnic {e.g. goal pos - current pos)
* Compute Jacoban of error writ inputs
* Apply Newtcn's method (or other procedure)
* lterate...

Inverse Kinematics

* Recall simple two segment arm:

Inverse Kinematics

* We can write of the derivatives

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

* Problems
+ Jacobian may (will} not aiways be invertible
* Use pseudo inverse (SVD)
* Robust iterative method
* Jaccbian is not constant

Iy) well behaved

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

* Many links / joints
» Need a genenic methed for buiding Jacoban

Inverse Kinematics

* Can't just concatenate individual matrices

Inverse Kinematics

Inverse Kinematics

Inverse Kinematics

Ry J3(03,p3)

Ro—24" Jo 0. X3 * P3)

Ryo1- J2u(004, X243 - P3) ;
Ji1(6), X1—3-P3) |

o Each cow in the sbowe
d3 SN0 b vanspased...

L dp=J-dd

A Cheap Alternative

» Estimate Jacobian (or parts of it) using finite differences

* Cyclic Ceordinate Descent

» Sove for each DOF one at 2 time
* lterate til geod enough / run out of time

Inverse Kinematics

» More complex systems
» More complex joints (prism and ba'l)
» More Inks
» Other criteria (COM or heght)
+ Hard constraints (eg fcot plants)
+ Unilateral constraints {eg jont Imits)
* Multple ortena and mutiple chans
* Smocthness cver time

* DOF are determined by contrel ponts of 2 curve (chain rde)

Inverse Kinematics

* Some issues
* How to pick from multple sclutons?
* Robustness when no soutions
* Contrad ctory solutions
* Smocth interpolation
* Interpclation aware of constrants

Prior on “good” configurations

LJLJ

