Advanced Computer Graphics
(Spring 2013)
CS 283, Lecture 1: Introduction and History
Ravi Ramamoorthi
http://inst.eecs.berkeley.edu/~cs283/sp13

Overview
- CS 283, Advanced Computer Graphics
 - Prerequisite: Done well in CS 184 or equivalent elsewhere
 - Strong interest in computer graphics
- Advanced topics in rendering/geometry-animation
 - Background for modern topics
 - Areas of current research interest
- Goal is background and up to research frontier
 - Aimed at advanced ugrads and beginning PhD students
- Regular lecture class but less rigid than CS 184
- Encourage you to take other CS 28x, 29x in graphics

Demo
- Precomputed relighting: Vase
- Interactive Global Illumination Video

Administrivia
- Website http://inst.eecs.berkeley.edu/~cs283/sp13
- Lectures Tu-Th 12:30-2:00pm in Soda 320
- E-mail instructor directly for questions, meetings …
 - Generally available after class as well
- Piazza newsgroup
- Grader: Brandon Wang, brandonwang@berkeley.edu
- No books. Lecture slides online, reading as needed
- TODO: E-mail HW 0 (basic info for roster) by Thu

Course Logistics
- Graded on basis of 4 mostly programming homeworks
 - Can be done in groups of two (or individually)
- Turned in by creating website, sending e-mail
 - Do not modify site after deadline
 - May schedule demo sessions
- No late days. We assume you start early, work steady
 - Aimed at mature students, assignments 3-4 week duration
- Can substitute research or implementation project for one or more of assignments (encouraged to do so)
 - With instructor approval of specific plan
 - Allows you to focus on topics of interest and research
- See website for more details, assignments

Geometry
- Spline curves, surfaces: 70s – 80s
- Utah teapot: Famous 3D model
- More recently: Triangle meshes often acquired from real objects
Progressive Mesh Simplification

Subdivision Surfaces
- Coarse mesh + subdivision rule
 - Smooth surface = limit of sequence of refinements

Video

Rendering and Appearance
- Core area in computer graphics
- Efficiently and easily create visual appearance
- Long history (1960s to current time): Variety of old and new topics
- From basic visibility and shading, to global illumination, to image-based rendering, to data-driven appearance and light fields
- Many links to physics, math, computer science

Rendering: 1960s (visibility)
- Roberts (1963), Appel (1967) - hidden-line algorithms
- Sutherland (1974) - visibility = sorting

Images from FvDFH, Pixar’s Shutterbug
Slide ideas for history of Rendering courtesy Marc Levoy

Rendering: 1970s (lighting)
- 1970s - raster graphics
 - Blinn (1974) - curved surfaces, texture

Rendering (1980s, 90s: Global Illumination)
- early 1980s - global illumination
 - Whitted (1980) - ray tracing
 - Goral, Torrance et al. (1984) radiosity
 - Kajiya (1986) - the rendering equation
Outline

- Basic Ray Tracing
- Global Illumination
- Image-Based Rendering
- Real-Time Rendering

Ray Tracing History

Ray Tracing in Computer Graphics

"An improved Illumination model for shaded display," T. Whitted, CACM 1979

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2006):
6 sec.

Spheres and Checkerboard, T. Whitted, 1979

Heckbert’s Business Card Ray Tracer

Ray Tracing History

Ray Tracing in Computer Graphics

"An improved Illumination model for shaded display," T. Whitted, CACM 1979

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2006):
6 sec.

Spheres and Checkerboard, T. Whitted, 1979

Outline

- Basic Ray Tracing
- Global Illumination
- Image-Based Rendering
- Real-Time Rendering

Global Illumination

Radiosity
Successive Approximation

\[L_s \]
\[K \cdot L_s \]
\[L_s + K \cdot L_s \]
\[L_s + K \cdot L_s + \ldots K \cdot L_s \]

Rendering Equation (Kajiya 86)

\[\text{Image-Based Rendering} \]

Outline

- Basic Ray Tracing
- Global Illumination
- Image-Based Rendering
- Real-Time Rendering
Dual Interpretation of Light Field

- Planar Light Field
 - Field radiance
 - UV Array of ST Images
- Surface Light Field
 - Surface radiance
 - ST Array of UV Images

Acquiring Reflectance Field of Human Face [Debevec et al. SIGGRAPH 00]

Illuminate subject from many incident directions

Outline
- Basic Ray Tracing
- Global Illumination
- Image-Based Rendering
- Real-Time Rendering

Example Images

Images from Debevec et al. 00

Precomputed Radiance Transfer
- Better light integration and transport
 - dynamic, area lights
 - self-shadowing
 - interreflections
- For diffuse and glossy surfaces
- At real-time rates
- Sloan et al. 02

Lytro Light Field Camera

4 degree-of-freedom panorama

Images from Lytro Light Field Camera

Precomputed Radiance Transfer Examples

- Point light
- Area light
- Area lighting, no shadows
- Area lighting, shadows

Outline Examples

- Basic Ray Tracing
- Global Illumination
- Image-Based Rendering
- Real-Time Rendering
Precomputation: Spherical Harmonics

Diffuse Transfer Results

Arbitrary BRDF Results

Relighting as a Matrix-Vector Multiply

Physical Simulation and Animation

- Recent clothing animation video

Game footage recorded from Xbox 360 version of

Star Wars: The Force Unleashed

Game footage copyright 2008 LucasArts, Inc. Used with permission.
Imaging
- Processing of images important part of graphics
- Especially in context of photography: Combine photos, manipulate images
- Recent video on automatic cinemagraph portraits
- Computational photography. Examples flash/no-flash, fluttered shutter, new light field cameras
- Community and Internet photo collections
- Basic ideas like HDR and Texture Synthesis
 - Both largely developed at Berkeley

High Dynamic Range
- Photographs at multiple exposures
- Combine and tonemap

Multiple Photographs

Combined and Tonemapped

Texture Synthesis
- From small image to larger (keep texture)
- Novel idea: Copy image patches (quilting)

Summary
- Graphics is Modeling/Geometry, Rendering, Animation/Simulation, Imaging and much more
- Course looks at all of these
- Goal to develop modern ideas, understand topics at the research/industry frontier
- 4 programming assignments (groups of 2)
 - Progressive Meshes
 - Path Tracer
 - Real-Time / Image-Based Rendering
 - Project
- Can substitute research/implementation for any!