Basics

- Start working on raytracer assignment (if necessary)
- First 3 lectures cover basic topics
 - Overview and History
 - Sampling and Reconstruction, Fourier Analysis
 - 3D objects and meshes
- Then we start main part of course
 - Meshes and assignment 1
- This lecture review for some of you
 - But needed to bring everyone up to speed
 - Will start main mesh technical detail next lecture

Modeling

- Spline curves, surfaces: 70s – 80s
- Utah teapot: Famous 3D model
- More recently: Triangle meshes often acquired from real objects

Relevance to Course

- Covered Bezier, B-spline curves for modeling in 184. Will talk briefly about NURBS, surfaces in 283.
- Main idea is to talk about mesh processing algs.
- Will learn to represent, work with meshes
- Do mesh simplification, progressive meshes

Outline for Today

Overview of types of 3D representations
- 3D objects can be represented in a variety of ways. We survey these today
- Before talking specifically about polygon meshes, which are often most common way

Much of material in this lecture courtesy Szymon Rusinkiewicz
3D Objects

How can this object be represented in a computer?

3D Objects

This one?

3D Objects

How about this one?

3D Objects

This one?

Types of 3D object data

- Polygon meshes for complex real-world objects
- Spline patches from modeling programs
- Volume data or voxels (e.g. visible human project)
- Machine parts (Constructive Solid Geometry)
- And a few more

All have advantages, disadvantages. Increasingly, meshes are easiest to use and simplest

Comparisons

- Efficient hardware rendering (meshes simple)
- Manipulation (edit, simplify, compress etc.)
 - Splines easiest originally, but now many algorithms for polygon meshes
- Acquisition or Modeling
 - Splines, CSG originally used for modeling
 - But increasingly, complex meshes acquired from real world
- Compactness
- Simplicity (meshes win big here)
Point Cloud
- Unstructured samples
- Advantage: simplicity
- Disadvantage: no information on adjacency / connectivity
 - Have to use e.g. k-nearest neighbors

Increasingly hot topic in graphics today

Range Image
- Image: stores an intensity / color along each of a set of regularly-spaced rays in space
- Range image: stores a depth along each of a set of regularly-spaced rays in space
- Obtained using devices known as range scanners
- Advantages:
 - Uniform (?) parameterization
 - Adjacency / connectivity information

Cyberware whole body 3D scanner

Range Image
- Not a complete 3D description: does not include part of object occluded from viewpoint

Range Image
- Adjacency in range image not equal to adjacency on surface
 - Heuristic: depth threshold
- Avoid connecting across these discontinuities
 - Heuristic: depth threshold
Range Image Terminology

- Range images
- Range surfaces
- Depth images
- Depth maps
- Height fields
- 2½-D images
- Surface profiles
- xyz maps
- ...

Polygon Soup

- Unstructured set of polygons:
 - Often the output of interactive modeling systems
 - Often sufficient for rendering, but not other operations

Mesh

Connected set of polygons (usually triangles)
- May not be closed
- Representation (simplest): Vertices, Indexed Face Set
- Focus of your assignment and easy to work with

Subdivision Surface

- Coarse mesh + subdivision rule
 - Smooth surface is limit of refinements

Current Research

- All representations described are widely used, and topics of current research
- Range images, and combinations to construct entire surfaces widely used (3D photography, 3D objects in movies, …)
- Triangle meshes perhaps most common
- Subdivision surfaces commonly used in movies, …
- Point clouds becoming increasingly relevant
- Replace older representations in many cases (parametric, spline patches, CSG, etc.)

Parametric Surface

- Tensor product spline patches
 - Careful constraints to maintain continuity
Implicit Surfaces
- Points satisfying: \(F(x,y,z) = 0 \)

Polygonal Model
Implicit Model

Why Implicit Surfaces?
- Function usually sampled regularly (voxel grid)
 - Can guarantee that model is hole-free
 - Easy to change topology
- Algorithms must traverse volume: slow
- More space than parametric representation

Voxels
- Uniform grid of occupancy, density, etc.
 - Often acquired from CAT, MRI, etc.

Constructive Solid Geometry
- Hierarchy of boolean operations (union, difference, intersect) applied to simple shapes

Scene Graph
- Union of objects at leaf nodes

Skeleton
- Graph of curves with radii
Application-Specific Models

- Domain-specific semantic information + geometry

Apo A-1
(Theoretical Biophysics Group, University of Illinois at Urbana-Champaign)

Architectural Floorplan
(CS Building, Princeton University)

3D Objects

How can this object be represented in a computer?

3D Objects

This one?

H&B Figure 10.46

3D Objects

How about this one?

3D Objects

This one?

H&B Figure 9.9

Outline for Today

Overview of types of 3D representations
- 3D objects can be represented in a variety of ways. We survey these today
- Before talking specifically about polygon meshes, which are often most common way (next lecture)