Weather Forecasting for Dummies™

Let's predict weather:
- Given today’s weather only, we want to know tomorrow's weather.
- Suppose weather can only be [Sunny, Cloudy, Raining]

The "Weather Channel" algorithm:
- Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
- Compute percentages for each state:
 - P(R|S), P(S|S), etc.
- Predict the state with highest probability!
- It’s a Markov Chain

Markov Chain

$$
\begin{pmatrix}
0.3 & 0.6 & 0.1 \\
0.4 & 0.3 & 0.3 \\
0.2 & 0.4 & 0.4 \\
\end{pmatrix}
$$

What if we know today and yesterday’s weather?
Text Synthesis

[Shannon, ’48] proposed a way to generate English-looking text using N-grams:
• Assume a generalized Markov model
• Use a large text to compute prob. distributions of each letter given N-1 previous letters
• Starting from a seed repeatedly sample this Markov chain to generate new letters
• Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

Results (using alt.singles corpus):
• “As I’ve commented before, really relating to someone involves standing next to impossible.”
• “One morning I shot an elephant in my arms and kissed him.”
• “I spent an interesting evening recently with a grain of salt”

Video Textures

Arno Schödl
Richard Szeliski
David Salesin
Irfan Essa
Microsoft Research, Georgia Tech
Problem statement

Our approach

How do we find good transitions?

Finding good transitions

Compute L_2 distance $D_{i,j}$ between all frames

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions

Transition costs

Transition from i to j if successor of i is similar to j

Cost function: $C_{[ij]} = D_{i+1,j}$

Transition probabilities

Probability for transition $P_{[ij]}$ inversely related to cost:

$$P_{[ij]} \sim \exp \left(- \frac{C_{[ij]}}{\sigma^2} \right)$$
Preserving dynamics

Cost for transition $i \rightarrow j$

$$C_{i\rightarrow j} = \sum_{k=N}^{N-1} w_k D_{i+k+1, j+k}$$

Dead ends

No good transition at the end of sequence

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i\rightarrow j} = C_{i\rightarrow j} + \sum_{k=1}^{\infty} w_k F_{j\rightarrow k}$$
Future cost
• Propagate future transition costs backward
• Iteratively compute new cost

\[F_{i(j)} = C_{i(j)} + \min_k F_{i(k)} \]

Future cost – effect

Finding good loops
• Alternative to random transitions
• Precompute set of loops up front
Video portrait
Useful for web pages

Region-based analysis
• Divide video up into regions
• Generate a video texture for each region

Automatic region analysis

User-controlled video textures
User selects target frame range

Video-based animation
• Like sprites in computer games
• Extract sprites from real video
• Interactively control desired motion

Video sprite extraction
blue screen matting and velocity estimation
Video sprite control
- Augmented transition cost:
 \[C_{i\rightarrow j} = \alpha C_{i\rightarrow j} + \beta \text{ angle} \]
 \[\text{vector to mouse pointer} \]
 \[\text{velocity vector} \]
 \[\text{Similarity term} \]
 \[\text{Control term} \]

Video sprite control
- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
 - [GIT-GVU-00-11]

Interactive fish

Summary
- Video clips `video textures`
 - define Markov process
 - preserve dynamics
 - avoid dead-ends
 - disguise visual discontinuities

Discussion
- Some things are relatively easy
- Some are hard
“Amateur” by Lasse Gjertsen

http://www.youtube.com/watch?v=JzqumbhtkRo

Michel Gondry train video

http://youtube.com/watch?v=qUEs1BwXGA

Texture

- Texture depicts spatially repeating patterns
- Many natural phenomena are textures

radishes rocks yogurt

Texture Synthesis

- Goal of Texture Synthesis: create new samples of a given texture
- Many applications: virtual environments, hole-filling, texturing surfaces

The Challenge

- Need to model the whole spectrum: from repeated to stochastic texture

Heeger Bergen 1995

- Seminal paper that introduced texture synthesis to the graphics community
- Algorithm:
 - Initialize J to noise
 - Create multiresolution pyramids for I and J
 - Match the histograms of J's pyramid levels with I's pyramid levels
 - Loop until convergence
 - Can be generalized to 3D
Heeger Bergen 1995 - Algorithm

- Image pyramids
 - Gaussian
 - Laplacian
- Steerable pyramids [SimoncelliFreeman95]
 - b): multiple scales of oriented filters
 - c): a sample image
 - d): results of filters in b) applied to c)

Heeger Bergen 1995 - Results

Successes

Failures

Heeger Bergen 1995 - Verdict

- Texture model:
 - Histograms of responses to various filters
- Avoiding copying:
 - Inherent in algorithm
- No user intervention required
- Captures stochastic textures well
- Does not capture structure
 - Lack of inter-scale constraints

De Bonet 1997

- Propagate constraints downwards by matching statistics all the way up the pyramid
- Feature vector: multiscale collection of filter responses for a given pixel
- Algorithm:
 - Initialize J to empty image
 - Create multiresolution pyramids for I and J
 - For each pixel in level of J, randomly choose pixel from corresponding level of I that has similar feature vector

De Bonet 1997 - Algorithm

- 6 feature vectors shown
- Notice how they share parent information
De Bonet 1997 - Results

Texture model:
- Feature vector containing multiscale responses to various filters

Avoiding copying:
- Random choice of pixels with ‘close’ feature vectors, but copying still frequent on small scale
- Individual per-filter thresholds are cumbersome
- Feature vectors used in later synthesis work

De Bonet 1997 - Verdict

Efros & Leung 1999 - Algorithm

• Assuming Markov property, compute \(P(p|N(p)) \)
 - Building explicit probability tables infeasible
 - Instead, we search the input image for all similar neighborhoods — that’s our pdf for \(p \)
 - To sample from this pdf, just pick one match at random

Some Details

• Growing is in “onion skin” order
 - Within each “layer”, pixels with most neighbors are synthesized first
 - If no close match can be found, the pixel is not synthesized until the end

• Using Gaussian-weighted SSD is very important
 - to make sure the new pixel agrees with its closest neighbors
 - Approximates reduction to a smaller neighborhood window if data is too sparse

Neighborhood Window

Varying Window Size

Increasing window size
Synthesis Results

french canvas
rafa weave

More Results

white bread
brick wall

Homage to Shannon

Hole Filling

Extrapolation

Efros Leung 1999 – Verdict

- Texture model:
 - MRF
- Avoiding copying:
 - MRF
- Neighborhood size = largest feature size
- Markov model is surprisingly good
 - “I spent an interesting evening recently with a grain of salt.”
- Search is very slow with large neighborhoods
Image Quilting [Efros & Freeman]

- Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
- Exactly the same but now we want \(P(B|N(B)) \)
- Much faster: synthesize all pixels in a block at once
- Not the same as multi scale!

Minimal error boundary

- Overlapping blocks
- Vertical boundary
- Overlap error
- Min. error boundary

Our Philosophy

- The “Corrupt Professor’s Algorithm”:
 - Plagiarize as much of the source image as you can
 - Then try to cover up the evidence
- Rationale:
 - Texture blocks are by definition correct samples of texture so problem only connecting them together
Failures
(Chernobyl Harvest)

Portilla & Simoncelli
Xu, Guo & Shum

Wei & Levoy
Our algorithm

Input image
Efros Freeman 2001 - Verdict

- Texture model:
 - MRF
- Avoiding copying:
 - Randomized patch selection, but still noticeable
- Patch size is a hard parameter to understand
- Results are surprisingly good given algorithm
- Multiscale goes on a brief hiatus

Kwatra et. al. 2003 - Algorithm

- Generalizes seam computation in overlap regions as a graph cut problem
 - Based on [Boykov et. al. 99] (with Ramin Zabih)
- Algorithm:
 - Initialize \(J \) to empty
 - Copy pieces of \(I \) to \(J \) using a variety of methods
 - Formulate graph in overlap region based on error (differences) and compute minimum cut
 - Copy sink-side pixels to \(J \)
 - Variety of strategies to further hide seams

Kwatra et. al. 2003 - Results
Kwatra et. al. 2003 - Verdict

- Texture model:
 - MRF
- Avoiding copying:
 - Even with a multitude of patch selection methods, still noticeable when it happens repeatedly
- Paper presents a bag of synthesis tricks without much intuition for when to use what
- Graph cut formalization is useful and powerful

Fill Order

- In what order should we fill the pixels?
 - Choose pixels that have more neighbors filled
 - Choose pixels that are continuations of lines/curves/edges

Fill Order

Exemplar-based Inpainting demo

http://research.microsoft.com/vision/cambridge/I3I/patchworks.htm

Application: Texture Transfer

- Try to explain one object with bits and pieces of another object:
 + =

Texture Transfer

Constraint

Texture sample
Texture Transfer

• Take the texture from one image and “paint” it onto another object

Same as texture synthesis, except an additional constraint:
1. Consistency of texture
2. Similarity to the image being “explained”

Image Analogies

Aaron Hertzmann¹ ²
Chuck Jacobs²
Nuria Oliver²
Brian Curless¹
David Salesin¹ ² ³

¹New York University
²Microsoft Research
³University of Washington
Super-resolution (result!)