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Protocol Implementation Patterns

Datapath
* General Patterns: Feed Forward / Pipe-and-filter, Duplex (pattern?)
* Reliability: CRC (pattern?)
e Data Width conversion

— Pattern: Serial &= Parallel Conversion
— Options: Registers, Muxes

e Data Clock conversion
— Pattern: Clock crossings
— Options: Registers, Asynchronous Buffers

Control
* Data Width (Control — auto negotiation)
— Patterns: FSM, Serial &> Parallel (MDIO), Control/Status register interface

* MDIO

— Pattern: Bus & Control/status register interface

Multi-port/lane MACs

* Patterns: “Single [Fixed] Controller” (that controls MDI on a per-port basis)
*  Multiple-data (Single Controller Multiple Data - SCMD)
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Design Approach

* Objective
— Pass data (or packets?) from system =2 sink|[s]

— Minimize number of “User constraints”

* Patterns broken into “Protocol {Decision, Implementation}”

{Single, Multiple} Source/Sink
Reliability
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Protocol Implementation

* Dictated by physical constraints
— Optimize to system platform
— Faithfully implement the protocol

* Building the datapath

— How can patterns tell us how to build this?

— Separate constraints into functional blocks
* What order should the blocks be arranged in?

* What other patterns must be employed based on constraints that arise from each
top-level constraint? (Auto negotiation can dynamically change the protocol width)
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Functional Unit Order

* Four units:
— data width conversion, clock crossing, packet buffering, frame construction

* Arguments:

— Clock Crossing first:
* Clock crossing between arbitrarily separated (in frequency) clocks
* Buffer data after the crossing so that when a packet has been clock-crossed and is fully ready,
system can send 1 word / cycle guaranteed
— Packet Buffering next
* After frame is constructed, we would have to buffer Preamble, CRC, SFD
» Data width can change: doing parallel = serial conversion after the buffer means that the
buffer’s data width need not change dynamically
— Frame construction & Parallel - Serial conversion last:

* Frame fields (preamble, SFD, CRC, IFG (if you count that)) are independent of system-side data
width

* Injecting fields into a parallel->serial converter along with data is natural for parallel = serial
converters

* |f fields were injected into the data stream before the buffer, the final data stream wouldn’t
necessarily be word-aligned to the buffer



