
TEMAC:
Tri-mode Ethernet MAC

Chris Fletcher

CS294-48 Show and Tell

System Block Diagram

Control

Datapath

Host

Interface

Physical

Interface

Protocol Implementation Patterns

• Datapath
• General Patterns: Feed Forward / Pipe-and-filter, Duplex (pattern?)
• Reliability: CRC (pattern?)
• Data Width conversion

– Pattern: SerialParallel Conversion
– Options: Registers, Muxes

• Data Clock conversion
– Pattern: Clock crossings
– Options: Registers, Asynchronous Buffers

• Control
• Data Width (Control – auto negotiation)

– Patterns: FSM, SerialParallel (MDIO), Control/Status register interface

• MDIO
– Pattern: Bus & Control/status register interface

• Multi-port/lane MACs
• Patterns: “Single [Fixed] Controller” (that controls MDI on a per-port basis)
• Multiple-data (Single Controller Multiple Data - SCMD)

Extra Slides

Design Approach
• Objective

– Pass data (or packets?) from system  sink[s]

– Minimize number of “User constraints”

• Patterns broken into “Protocol {Decision, Implementation}”

Start

Protocol

Decision

Protocol

Implementation
End

Physical Link

System

[FIT]

Data

[FLIT]

Data

{Full,Half} Duplex

{Single, Multiple} Source/Sink

User Constraints

[Independent Patterns]

Protocol



Ethernet

Physical Constraints

[Independent/

Dependant Patterns]
Supported

Protocols

Platform

Optimizations

Reliability

Protocol Implementation
• Dictated by physical constraints

– Optimize to system platform

– Faithfully implement the protocol

• Building the datapath
– How can patterns tell us how to build this?

– Separate constraints into functional blocks
• What order should the blocks be arranged in?

• What other patterns must be employed based on constraints that arise from each
top-level constraint? (Auto negotiation can dynamically change the protocol width)

Data Width

Data Clock

Data Structure

(as Frames)

Data

[From Protocol

Decision Block]

Data

[To Physical Link]

Top-level Constraints

Order?

Order?

Width can change

(Auto negotiation)

Secondary Constraints

Packet Buffering

Order?

Functional Unit Order

• Four units:
– data width conversion, clock crossing, packet buffering, frame construction

• Arguments:
– Clock Crossing first:

• Clock crossing between arbitrarily separated (in frequency) clocks

• Buffer data after the crossing so that when a packet has been clock-crossed and is fully ready,
system can send 1 word / cycle guaranteed

– Packet Buffering next
• After frame is constructed, we would have to buffer Preamble, CRC, SFD

• Data width can change: doing parallel  serial conversion after the buffer means that the
buffer’s data width need not change dynamically

– Frame construction & Parallel  Serial conversion last:
• Frame fields (preamble, SFD, CRC, IFG (if you count that)) are independent of system-side data

width

• Injecting fields into a parallelserial converter along with data is natural for parallel  serial
converters

• If fields were injected into the data stream before the buffer, the final data stream wouldn’t
necessarily be word-aligned to the buffer

