TEMAC:
Tri-mode Ethernet MAC

Chris Fletcher
CS294-48 Show and Tell

Datapath

System Block Diagram

S 1L, SO 2.0 S
B |
Flow Control : EMACH Statistics Clock Management :
Interface _] L MiamivegMIl
I r ™ |nterface 10
Ext | PHY
—:E* Q Transmit Engine g X | e
S .
| 5 % | px thsmal
| = £ |
Host | = = Interface
| 5 Flow Control 5] |
Interface | 2 = % pospuia sublayer [H—=
: s ! 5 A Sublayer (GTP Transceiver
| 2.5 ~ E BX | Interface
RX © Receive Engine =—| PCS Mar_’nagement T
| Registers I
\ | \ |
’
| |
Generic | - |
Host Bus Host | Addres*fs Filter |
Interface | Registers 1 | MDIO Interface
N to External PHY
-% : MDIO Interface - MDIO Arbitration | :
= |
@
DCRBus | o | MAC Configuration :
8 | Registers |
| |
-

UG194_2_02_072306 _Q

Control

Protocol Implementation Patterns

Datapath
* General Patterns: Feed Forward / Pipe-and-filter, Duplex (pattern?)
* Reliability: CRC (pattern?)
e Data Width conversion

— Pattern: Serial &= Parallel Conversion
— Options: Registers, Muxes

e Data Clock conversion
— Pattern: Clock crossings
— Options: Registers, Asynchronous Buffers

Control
* Data Width (Control — auto negotiation)
— Patterns: FSM, Serial &> Parallel (MDIO), Control/Status register interface

* MDIO

— Pattern: Bus & Control/status register interface

Multi-port/lane MACs

* Patterns: “Single [Fixed] Controller” (that controls MDI on a per-port basis)
* Multiple-data (Single Controller Multiple Data - SCMD)

Extra Slides

Design Approach

* Objective
— Pass data (or packets?) from system =2 sink|[s]

— Minimize number of “User constraints”

* Patterns broken into “Protocol {Decision, Implementation}”

{Single, Multiple} Source/Sink
Reliability

{Full,Half} Duplex

User Constraints
[Independent Patterns]

System
VvV VvV Vv
« N @
[FIT] R _ .
@ Data ' Physical Link

| Protocol R Protocol |
\ } Decision "| Implementation

| Protocol

9

@ Ethernet

< J O 4

Physical Constraints
Platform [Independent/
Optimizations Dependant Patterns]

Supported
Protocols

Protocol Implementation

* Dictated by physical constraints
— Optimize to system platform
— Faithfully implement the protocol

* Building the datapath

— How can patterns tell us how to build this?

— Separate constraints into functional blocks
* What order should the blocks be arranged in?

* What other patterns must be employed based on constraints that arise from each
top-level constraint? (Auto negotiation can dynamically change the protocol width)

Secondary Constraints

Width can change
(Auto negotiation)

A

\
|

NN

Data |

i
[From Protocol | | Data
Decision Block] | [To Physical Link]
Clock '7
Packet Buffering

Data Structure
(as Frames)

\ /

Top-level Constraints

v}
o]
=
G
o
(<]

Functional Unit Order

* Four units:
— data width conversion, clock crossing, packet buffering, frame construction

* Arguments:

— Clock Crossing first:
* Clock crossing between arbitrarily separated (in frequency) clocks
* Buffer data after the crossing so that when a packet has been clock-crossed and is fully ready,
system can send 1 word / cycle guaranteed
— Packet Buffering next
* After frame is constructed, we would have to buffer Preamble, CRC, SFD
» Data width can change: doing parallel = serial conversion after the buffer means that the
buffer’s data width need not change dynamically
— Frame construction & Parallel - Serial conversion last:

* Frame fields (preamble, SFD, CRC, IFG (if you count that)) are independent of system-side data
width

* Injecting fields into a parallel->serial converter along with data is natural for parallel = serial
converters

* |f fields were injected into the data stream before the buffer, the final data stream wouldn’t
necessarily be word-aligned to the buffer

