LCS: A Hardware Design Example

Greg Gibeling
9/24/2009

Problem & Algorithm

- The Problem: LCS
 - Longest common subsequence (discontiguous)
 - The heart of “diff”
 - In this example we compute length only
 - O(N^2) Complexity, O(N) Parallelism, O(N) Space

- OPL Comp Ptrn: Dynamic Programming

```plaintext
function LCS(X:String, Y:String, I:Integer(32) = X.Length-1, J:Integer(32) = Y.Length-1)->Integer(32) {
  if ((I == 0) || (J == 0)) return 0;
  if (X[I-1] == Y[J-1]) return LCS(X, Y, I - 1, J - 1) + 1;
  return Integer.Max(LCS(X, Y, I, J - 1), LCS(X, Y, I - 1, J));
}
```

Parallel Software

- Parallel Software Impl
 - OPL Structural Pattern: Master/Worker
 - Blocking creates coarse parallelism
 - Master/worker allows load balancing
 - Rendezvous in a 2D hashmap

Hardware (1)

- Hardware Impl
 - “LCS Accelerator”
 - OPL Struct Ptn: Pipeline
 - HPL: In Order Pipeline
 - Systolic Array
 - No load balancing or scheduling
 - Perfect Scaling

- Infrastructure
 - Virtual Stream (FIFO)
 - Control/Output registers

Hardware (2)

- Application Patterns
 - Pipeline
 - Dynamic Programming

- Machine Org
 - Systolic (LCS Core)
 - Heterogeneous (CPU + Acc/FPGA)

- PMS Layer
 - In Order Pipeline
 - FIFO/ShiftRegister Memory

- Infrastructure (RCBIOS)
 - Self-Timed (VS Inputs)
 - Multi-Stage Network
 - XLink Comm. Channels
 - Drill down into NoC, XLink, etc...