CS294-48: Hardware Design Patterns
Meeting 2: BHPL Version 0.2

Krste Asanovic
UC Berkeley
Fall 2009
Course Overview

MP3 bit string

Application(s)

(Berkeley) Hardware Pattern Language

MP3 bit string

Hardware (RTL)

Audio
BHPL Version 0.1

Application Patterns (from OPL)
- Structural Patterns
 - Pipelines
 - Agent&Repository
 - Model-View-Controller
 - Event Based
 - Process Control
 - Iteration
 - Map-Reduce
 - Layered Systems
 - Task Graphs

Computational Patterns
- Circuits
- Dense Linear Algebra
- N-Body Methods
- Sparse Linear Algebra
- Spectral Methods
- Unstructured Grids
- Graph Traversal
- Structured Grids
- Graph Algorithms
- FSMs
- Dynamic Programming

Machine Organizations
- Systolic
- SIMD Shared Memory
- SIMD Distributed Memory
- MIMD Shared Memory
- Homogeneous MIMD Distributed Memory
- Heterogeneous MIMD Distributed Memory

Processing
- In-Order Pipeline
- Out-of-Order Pipeline

Memory
- Banked Memory
- Bypassed Memory
- Cached Memory

Switch
- Bus
- Crossbar
- Multi-Stage Networks

Hardware Building Blocks
- FIFO
- Multiport Memory
- CAM
- Arbiter
- Communication Channel

PMS Layer
- Microcoded Engine
- Threaded Pipeline

FSM

Structural Patterns
- In-Order Pipeline

Structured Patterns
- Model-View-Controller
- Event Based
- Process Control
- Iteration
- Map-Reduce
- Layered Systems
- Task Graphs

Computational Patterns
- Circuits
- Dense Linear Algebra
- N-Body Methods
- Sparse Linear Algebra
- Spectral Methods
- Unstructured Grids
- Graph Traversal
- Structured Grids
- Graph Algorithms
- FSMs
- Dynamic Programming
From Last Time

- Taxonomy plus patterns, not just patterns
- Different types of pattern at each level
 - Mapping from motif to machine organization
 - Mapping of control stream execution needs to pipeline design
- Make less processor-centric
Structural Taxonomy Components

- Controllers
- Datapaths
- Memories
- Networks
Machine Organizations

- Describes overall structure of machine
- Can be composed hierarchically
- Some Important dimensions:
 - SCMD versus MCMD
 - Distributed versus shared memory between datapaths
- Systolic?
SCMD Distributed Memory

Examples: MPP, ICL DAP, CM-1, CM-2, MasPar, Sony Playstation-2 Graphics Engine, Vision processing chips
SCMD Shared Memory

Examples: STARAN, BSP, TI ASC, CDC
Star-100, Multi-Lane Vector Machines
MCMD Shared Memory

- Examples: Burroughs B5x00 series, Network Packet Routers
Homogeneous MCMD
Distributed Memory

- Examples: Caltech Cosmic Cube, Transputer, nCube, Clusters
Heterogeneous MCMD
Distributed Memory

\[P = C + D \]

- Examples: Signal Processing Pipelines,
Systolic

\[P = C + D \]

- Examples: Warp, Raw, Motion Estimation Engines,
Controller Types

- **State Machine Controller**
 - control lines generated by state machine

- **Microcoded Controller**
 - single-cycle datapath, control lines in ROM/RAM

- **In-Order Pipeline Controller**
 - pipelined control, dynamic interaction between stages

- **Out-of-Order Pipeline Controller**
 - operations within a control stream might be reordered internally

- **Threaded Pipeline Controller**
 - multiple control streams one execution pipeline
 - can be either in-order (PPU) or out-of-order
Memory Structures

- **True Multiport Memory**
- **Banked Memory**
 - Interleave lesser-ported banks to provide higher bandwidth
- **Cached Memory**
 - Memory hierarchy to provide higher-bandwidth, lower latency for predictable accesses
- **Bypassed Memory**
 - Reduce latency of pipelined dependent memory accesses
Switches

- Connects multiple agents (processors and/or memories)
- Bus
 - Low-cost, ordered
- Crossbar
 - High-performance
- Multi-stage network
 - Trade cost/performance
Connectors

- How one structural component connects to another

- Control -> Datapath
 - direct
 - pipelined? (maybe don’t need pipelined controller?)

- Datapath <-> Memory
 - fixed latency
 - cannot have shared memory without true multiport
 - decoupled in-order
 - out-of-order

- Control <-> Network <-> Control
 - fixed latency
 - FIFOs
 - addressable messaging