
Reconfigurable Asynchronous Logic
Rajit Manohar

Computer Systems Laboratory
Cornell University, Ithaca, NY 14853.

Abstract—Challenges in mapping asynchronous logic to a
flexible substrate include developing a balance between circuit-
level flexibility, mapping complexity, and logic overhead. We have
developed a reconfigurable dataflow architecture that addresses
these challenges, and have also created the necessary synthesis
flow required to map designs to the architecture. The architecture
exploits some of the unique features of asynchronous logic,
and attains a performance that significantly exceeds previous
asynchronous FPGAs.

I. INTRODUCTION

Post-silicon reconfigurability is becoming an increasingly
attractive method for designing VLSI systems. Verification
and validation of modern VLSI systems that contain hundreds
of millions or even billions of transistors is a daunting task.
The ability to change a design post-fabrication improves the
chances of obtaining a working design on first silicon.
A field-programmable gate array (FPGA) takes this idea to

the extreme. It typically consists of an arrayed set of recon-
figurable blocks that are carefully designed so that any design
can be mapped to the architecture by an appropriate choice of
configuration. The configuration typically corresponds to the
state of a set of switches that are used to control connectivity
and logic function. Developing such a flexible substrate is
challenging because it involves the co-design of both the
underlying hardware as well as a method for mapping designs
to the substrate.
The regular nature of an FPGA is also appealing from the

standpoint of manufacturability. The complexities of modern
lithographic techniques at 90nm and below require careful
physical design to ensure good yield. A regular design re-
duces the overhead involved in satisfying manufacturability
guidelines. Also, the inherent flexibility of the FPGA substrate
allows the architecture to tolerate defects, because the system
can be reconfigured to not use the defective regions of the die.
FPGAs have a number of drawbacks compared to designing

a customized chip, because there is a cost to be paid for
reconfigurability. In particular, this cost can be measured
in terms of reduced performance, higher area for the same
function, and increased power consumption [9]. An easy way
to realize why this is the case is to think of an FPGA as

having circuits that can implement any logic function, with
the FPGA configuration selecting the appropriate subset of the
architecture that corresponds to the logic being implemented.
The increased area of an FPGA makes the problem of dis-
tributing a clock over the entire FPGA harder, because the
same logic function requires significantly more area. Also, the
increased power consumption of FPGAs exacerbates the power
problems plaguing designers today.
Asynchronous logic is a way to design digital systems

without clocks. The approach abandons the notion of global
synchrony in digital design and replaces it with local synchro-
nization among parts of the design that exchange informa-
tion [17]. Asynchronous design is also commonly viewed as a
low-power design method. The elimination of a global clock
combined with potential power benefits makes asynchronous
logic an appealing method for the design of reconfigurable
systems.
Early work on reconfigurable asynchronous logic focused

on developing gate-level programmable logic [4]. Other archi-
tectures were based on “porting” a clocked FPGA architecture,
and the result was relatively low throughput [6], [15], [8].
More recently, there has been work that is similar in spirit
to the design described here, where an asynchronous FPGA
architecture based on programmable pipeline stages was pro-
posed [24]. There has also been a some work on prototyping
asynchronous logic using commercially available synchronous
FPGAs (e.g. [5], [22]).
We present an asynchronous FPGA architecture that is ca-

pable of implementing high-performance asynchronous logic.
The architecture is developed by examining the common com-
ponents used by previously designed complex asynchronous
chips—in particular, fine-grained bit-level pipelined asyn-
chronous designs (Section II). Reconfigurability is introduced
as a method to enable the construction of arbitrary asyn-
chronous pipeline topologies. We pick a level of abstrac-
tion for reconfiguration that enables a designer to focus on
the functionality of the asynchronous logic, without having
to worry about low-level details such as hazard-free logic
synthesis (III). In fact, mapping designs to the architecture
benefits from most (if not all) the common logic optimization
techniques developed for synchronous FPGAs. We discuss the

performance of benchmark applications, commenting on the
benefits and limitations of the architecture (Section IV).

II. ASYNCHRONOUS LOGIC

The term “asynchronous logic” (also called “self-timed”
logic) applies to a wide variety of circuit families that do
not use clock signals for their operation [17]. While the logic
families differ in the nature of the delay assumptions made for
correct operation, the high-level description of asynchronous
logic is similar across all circuit families.
A component in an asynchronous circuit is a block with

input and output ports. Ports can be connected to each other
to form point-to-point communication links called channels.
Data are exchanged between asynchronous blocks by message-
passing over these channels. Communication occurs between
pairs of components, where one participant sends a message
while the other receives a message. Channels do not store
information, and therefore the send and receive actions also
result in rendezvous synchronization—a send operation blocks
until the receive is ready, and vice versa. If a designer would
like a channel to store information, explicit first-in first-out
(FIFO) buffers are introduced.
Channels are implemented by sets of wires. The com-

munication semantics can be implemented using a variety
of handshake protocols. The simplest method is the four-
phase handshake protocol with dual-rail data encoding. In this
method, the channel is implemented using three wires—two to
encode one bit of data and one for the acknowledge. Figure 1
illustrates the protocol. The protocol steps through a sequence
of states: (1) The appropriate data wire is sent high (the choice
of wire determines the bit being transmitted); (2) Once the
receiver has read the bit, the acknowledge is set high; (3) The
data wires are reset; (4) The acknowledge is reset. Once this
is complete, the next bit of data can be transmitted along the
channel. In a protocol where the data wires (or “rails”) initiate
the handshake (as illustrated in Figure 1), the data wires are
sometimes also called request signals since they initiate the
handshake protocol.

A. Quasi Delay Insensitive Logic

Quasi delay-insensitive (QDI) logic is a commonly used
asynchronous circuit family. It is the most conservative circuit
family in terms of timing assumptions. A QDI circuit is one
whose correct operation does not depend on gate delays or
wire delays, except for certain branches known as isochronic
forks [13], [11]. This minimal requirement from the underlying
implementation technology means that QDI circuits are robust
to process variations, voltage fluctuations, and temperature
changes.

data 1

data 0

acknowledge

SENDER RECEIVERdata 1

data 0

acknowledge

Fig. 1. A four-phase handshake protocol with dual-rail data. The arrows
indicate causality—the target transition cannot occur until the source transition
is complete.

The robustness of QDI circuits has been demonstrated in a
variety of complex chips. Asynchronous microprocessor de-
signs have shown that QDI asynchronous circuits are capable
of both high-performance operation [14], as well as ultra low
power consumption [3]. For the purposes of reconfigurable
logic, we focus on QDI circuit families that demonstrate high-
performance operation. In particular, we examine the circuits
that were used to implement the high-performance pipelines
in the MiniMIPS asynchronous processor [14].
Instead of adopting a fully general synthesis approach, the

MiniMIPS processor design adopted a set of parameterized
circuit templates that captured most of the components needed
to implement the processor. The most common circuit template
was the “pre-charge half-buffer” circuit (PCHB), illustrated
in Figure 2 [14]. The gates labeled “C” are C-elements
or consensus elements commonly found in asynchronous
logic [17]. The core computation logic is implemented using n-
transistors (labeled “computation”), and in the buffer example
the computation is simply the identity function. In general,
the n-transistor stack can be complex and implement arbitrary
logic functions just like conventional synchronous dual-rail
domino logic.
The region of the circuit labeled “completion logic” cor-

responds to the additional circuits needed to implement the
handshaking protocol for an asynchronous implementation.
The inverted acknowledge signals implement flow control and
prevent data races. Various optimizations of this template are
possible to change the trade-off between area, performance,
and power. For example, it is possible to replace the NAND
gate with an OR gate whose inputs are taken from the output
of the R0(i+1) inverter. This OR gate can then be shared with
next stage of logic, thereby eliminating a significant fraction
of the completion circuitry. This template was used for about
90% of the logic in the MiniMIPS asynchronous processor.

w

R0(i+1)

_A(i+1)

R0(i)

_A(i)
C

C

R1(i)

_R0(i+1)

_R1(i+1)

en(i)

Completion
logic

Computation

Fig. 2. A pre-charge half-buffer FIFO. The completion logic is shared among
the two data rails, while the computation logic is replicated.

The entire microprocessor operated at a cycle time between
16 and 18 FO4 delays, even though it used QDI logic [14].
Figure 2 also illustrates the overhead associated with QDI

asynchronous logic. The area used by the completion detection
circuitry in the PCHB template is significant, and care must be
taken to ensure that the additional area in fact translates to im-
provements in other metrics (e.g. performance). For instance,
the low power SNAP/LE asynchronous processor primarily
used other QDI circuits rather than the PCHB template, as
performance was not a primary goal [7].
Circuits used to implement asynchronous logic contain both

standard combinational gates and state-holding gates as illus-
trated in Figure 2. High-performance asynchronous circuits
can contain complex pull-up and pull-down stacks. However,
mapping these circuits to a reconfigurable fabric creates chal-
lenges beyond those present in conventional clocked circuits.
In particular, the absence of a clock means that control signals
in asynchronous logic must be hazard-free. Any mapping
to a gate-level configurable fabric requires a method that
preserves the hazard-free nature of the critical control signals.
There has been some work that has developed hazard-free
synthesis methods to map asynchronous logic to both standard
FPGAs (e.g. [5], [22]) as well as FPGAs with support for
asynchronous logic (e.g. [4]). However, the resulting mapping
is not as efficient as conventional synchronous flows due to
the overhead of supporting hazard-free mapping.

B. Pipelined Logic

The computation in asynchronous circuits is data-driven.
When data arrives at the input ports of a component, the
component activates and processes the data, possibly sending
messages to other components. When such a sequence of
components is connected in a linear array, the result is an
asynchronous pipeline as shown in Figure 3.
An asynchronous pipeline has several intriguing properties

that makes them differ from their synchronous counterparts. A

pipeline containing a sequence of PCHB stages can implicitly
latch data. For example, as soon as data arrives on the input
and the output has been computed, “ A(i)” can go low
permitting the input data rails to reset. However, the output
will not change until “ A(i+1)” goes low (i.e. until the output
data has been acknowledged). This is why such pipelines are
considered fine-grained, because data items being operated on
in the pipeline can be separated by very few gates (for a PCHB,
four gate delays that include two inverters; a modification to
the completion logic can enable data to be separated by as
little as two gate delays). The data items flowing through an
asynchronous pipeline are referred to as “tokens,” as shown in
Figure 3.
There is a difference between physical or circuit-level

pipelining, and logical or architectural pipelining in an asyn-
chronous system. By physical pipelining, we mean the in-
troduction of additional fine-grained pipeline stages. Logical
pipelining, on the other hand, is the introduction of a new data
token in the pipeline. To illustrate this difference, consider a
ring topology that constitutes an iterative computation. Even
if the number of circuit-level pipeline stages are changed, this
does not change the number of data tokens in the ring. In the
synchronous case, adding a pipeline stage also adds a new
data token (unless data is explicitly tagged with valid bits). In
general, there is no obvious way to simply add an additional
pipeline stage in a synchronous ring.
Changing the physical pipelining of an asynchronous system

might modify the behavior of the system. However, it has been
shown that under a very general set of conditions, adding phys-
ical pipelining does not affect the result of an asynchronous
computation [12]; it only impacts its performance [23], [10].
These conditions were used to reason about the correctness of
the MiniMIPS asynchronous processor [14].
Our approach to developing an architecture for asyn-

chronous reconfigurable logic is to construct configurable
bit-level pipelines. By introducing configuration memory, we
can develop configurable pipeline blocks where the config-
uration memory controls the computation being performed.
More importantly, the configuration memory cannot specify
the precise set of gates used to implement the logic. This
allows us to think of the reconfigurable logic in terms of
asynchronous pipelines, rather than the detailed asynchronous

gf h

Fig. 3. A linear asynchronous pipeline, with the arrows denoting the data and
acknowledge rails. The solid circles are data tokens, and the labels represent
the function being computed. The pipeline computes h(g(f(x)), where x is
the input data.

function merge split

source sink copy initial

Fig. 4. List of dataflow building blocks for constructing asynchronous
pipelines.

circuit implementation. A designer need not be concerned
with whether or not the circuits are hazard-free—they will
be hazard-free by construction. Instead of having control over
routing individual wires, our architecture will route channels—
wire bundles.

III. ASYNCHRONOUS DATAFLOW ARCHITECTURE

The asynchronous FPGA (AFPGA) architecture we devel-
oped is based on the notion of configurable asynchronous
pipelines. As discussed, asynchronous pipelines can be thought
of as blocks of logic connected in various topologies, where
data tokens are transformed as they flow through the logic.
Thus, the AFPGA can be thought of as implementing a
reconfigurable static dataflow machine [2], [19].

A. Static Dataflow

There are a number of possible building blocks for static
dataflow computations. The ones we chose for the AFPGA
architecture are based on the commonly occurring blocks in
finely pipelined asynchronous designs. Figure 4 shows the
complete list of dataflow blocks, and we describe each of them
below.
Function. The function block has N inputs and one output.
This is the basic logic computation element. It receives a data
token from each of its inputs, computes a function of the
received input data, and produces the value as an output token.
Source. A source produces a stream of constant tokens on its
output.
Sink. A sink consumes any tokens it may receive on its input.
Copy. A copy is used to implement the equivalent of signal
fanout. It replicates every input token it receives on all of its
outputs.
Initial. An initial block begins by producing a token on its
output, and then after that simply copies any input token it
receives to its output.
Merge. The merge block is a conditional block. It receives a
data token from its control input (shown as a horizontal arrow

in Figure 4). The value of this data token is used to select an
input port. The input data on the selected input port (vertical
arrows) will be sent to the output. No other input tokens are
consumed.
Split. The split block is the dual of a merge. It receives a data
token from its control input (shown as a horizontal arrow in
Figure 4). The value of this data token is used to select an
output port. The input data value (vertical arrow) will be sent
to the selected output port.
Arbitrary computations can be constructed from these basic

building blocks. As an example, consider an iterative multiply-
accumulate dataflow graph that has an input port and an
output port and some internal state x. The value produced
on the output is x + ab, where a and b are the new inputs
received. Finally, x is updated with the last value produced on
the output. An asynchronous dataflow graph that implements
this is shown in Figure 5(a). We can augment this with an
additional input c that is used to reset x, by saying that if
the value received on c is zero then the result is ab, and if
the value is a one the result is x + ab. Figure 5(b) shows
a modified dataflow graph that contains this functionality,
illustrating the use of initial tokens, splits, merges, sources, and
sinks. We have developed a systematic method for mapping
computations to such dataflow graphs [21].

B. AFPGA Design

To evaluate these ideas, we developed two asynchronous
dataflow FPGA architectures [18], [20]. We fabricated a small
prototype AFPGA as well, and we discuss the architecture of
the fabricated design.
The AFPGA architecture is an “island-style” architecture,

consisting of an array of configurable logic blocks surrounded
by programmable routing tracks. The routing tracks intersect
at switch boxes that contain programmable connections among
the tracks to enable configurable connectivity. The logic blocks
connect to the routing tracks at connection boxes. Figure 6
shows a block diagram of an island style FPGA architecture.

ADD

MULT

a b

x

output

ADD

MULT

a b

x

output

0

c

0

10

1

(a) (b)

Fig. 5. Asynchronous dataflow graph implementing a multiply-accumulate
function.

LB

LB

CB

CB

CB

CB

SB

SB

LB

LB

CB

CB

CB

CB

SB

SB

Fig. 6. An island-style FPGA architecture. “LB” are the logic blocks, “SB”
are the switch boxes, and “CB” are connection boxes.

We use a very simple logic block that has four inputs
and four outputs distributed on the north, south, east, and
west edge of the block. As noted earlier, we route dual-rail
channels rather than individual wires, so a single routing track
corresponds to three wires.

The configuration logic for the AFPGA is conventional.
The configuration bits are stored in a distributed SRAM; in
fact we adopted a completely synchronous approach to the
configuration logic so as to reduce the area overhead. For
the small prototype, we used a shift-register approach for
simplicity, even though this is not ideal in terms of area.

The asynchronous logic is initialized with a global reset
signal. This reset signal is held high while the configuration
bits are loaded into the AFPGA. Once the configuration bits
have been set, the global reset is lowered and computation
proceeds normally.

The logic block contains each of the dataflow building
blocks shown in Figure 4. Each block is augmented with
configuration bits that controls its functionality. The source
block can be configured to either produce a zero or a one on
its output. The initial block can specify the initial value of
the token on its output. The copy block has a configurable
number of destinations (ranging from one to four). The split
and merge blocks are combined into a single configurable
split/merge called a conditional unit. The conditional unit
can be configured as a two-way split or a two-way merge.
The function block is implemented as a configurable four-
input lookup table. The inputs and outputs to each of the
configurable dataflow blocks can be connected to either the
north, south, east, or west inputs or outputs respectively. A

block diagram of the logic block is shown in Figure 8. As is
common in synchronous FPGA architectures, we augment the
function computation to include a dedicated north-south carry
chain in the AFPGA architecture so as to enable fast adder
support. Also, the function unit has a programmable AND
gate embedded internally so as to improve the performance
of multipliers implemented using the logic block array. The
entire AFPGA logic block is implemented using pipelined
asynchronous logic. As an example, Figure 7 shows the logic
pull-down stack of the programmable four-input lookup table.
The inputs are pre-processed into a one-hot code that selects
one of the sixteen possible output values. The enable signal
(here labeled pchg) is generated by the completion logic.

The connection boxes connect the north, south, east, and
west inputs and outputs to the routing tracks. These connec-
tions are made using pass-transistors, and is similar to existing
synchronous architectures.

Pass transistors in the switch boxes control connectivity
between various routing tracks. These switch boxes are a
source of performance loss in a conventional FPGA archi-
tecture if signal paths are routed through a large number of
switch boxes. In an asynchronous dataflow architecture, it
is easy to establish that we can add circuit-level pipelining
without affecting the result of the computation [12]. Therefore,
to exploit this property, we introduce buffer stages in the
switch boxes to pipeline the routing of data tokens along the
interconnect.

Pipelining the interconnect two major consequences. First,
the architecture has no long circuit-level signal paths. This
helps with signal integrity even in the presence of long routes
because the signals are always buffered. Second, the perfor-
mance of the reconfigurable logic is enhanced in certain cases
because we have local handshakes among circuit components
that are near each other rather than through very long signal
paths that propagate through multiple switch boxes.

input_pchg

configuration

output

Fig. 7. Configurable pull-down stack for the four-input lookup table.

E

S3

Win

Sin

W

S

N

N, E, S, W

N, E, S, W, S1

N, E, S, W, S1

N, E, S, W, S2

N, E, S, W, S3

N, E, S, W

N, E, S, W

N, E, S, W, S3

N, E, S, W, S3

Co2

Y

Z

(to north cell)

Cin
(from south cell)

Cout

X

Ci2

A
B
C
D

A

B

G

X
Y

X
Z

X
Y
Z

Co2

Co2

B

A

Ein

Co2

low−latency copies

Nout
Eout
Sout
Wout

S2

Token Copy (pipelined)

Nin

S1

Input Pipelining and Routing Pipelined Computation Block

Sink

Output
Copy

Token

Output Pipelining and Routing

Unit
Conditional

Unit
Function

State Unit

Token
Source

Token
Source

Token
Source

Input
Buffer

Input
Buffer

Input
Buffer

Input
Buffer

Fig. 8. Design of the logic block, showing the details of the connectivity possible between the inputs, outputs, and the dataflow blocks.

IV. RESULTS AND DISCUSSION

We implemented a prototype AFPGA in TSMC’s 0.18µm
CMOS process through the MOSIS VLSI service. We also
implemented a tool flow that enabled us to map computa-
tions to the AFPGA automatically, including logic synthesis,
optimization, clustering and logic packing, and finally place-
and-route. For most of these steps we used conventional
algorithms [16].
The prototype AFPGA was a small 5×5 array due to limited

die space. We were able to make measurements from the
AFPGA array and calibrate our HSPICE simulations as well
as back-annotate our switch-level simulations. We first report
the measured peak performance of the prototype AFPGA, and
then benchmark results using back-annotated simulations.
The AFPGA configuration used to measure the performance

was the slowest local handshake cycle we found using HSPICE
simulations. This “critical path” corresponded to two adjacent
logic blocks communicating through the channel box (i.e. no
intervening pipelining), with the two blocks both configured as
lookup tables. The AFPGA had an on-chip frequency divider
to simplify the measurement.

A. Measurement Data

Figure 9 shows the results of our measurements. At room
temperature with a supply voltage of 1.8 V (nominal), we
measured a throughput of 674 MHz. To our knowledge, the
only other published configurable asynchronous circuit that
was fabricated is the PCA-1 architecture, and they reported a
peak throughput of 20 MHz in a 0.35µm CMOS process [8].
Even adjusting for feature size, our results show an order of
magnitude improvement.

At nominal temperature (294K), the AFPGA was found to
be functional when we varied the voltage continuously from
130mV to 2.3 V. (We did not attempt to exceed 2.3 V.) The
throughput ranged from 1.7 KHz at 130mV, and increased
with voltage to 870 MHz at 2.3 V. HSPICE simulations had led
us to expect 700 MHz throughput at 1.8 V, and our measured
performance of 674 MHz is in good agreement with simulation
data.
We also made numerous measurements at high temperature

(400K) and low temperature (77K, liquid nitrogen). Both high
and low temperature measurements were made by mounting
the AFPGA in a cryostat. The results are summarized in
Figure 9, with the highest performance point of 1.12 GHz
at 2.3 V at a temperature of 77K. As expected, the AFPGA
stops operating at a higher voltage at low temperature due to
a shift in the threshold voltage.

B. Benchmarking Results

Table I shows the result of several different benchmark
applications. Since the AFPGA is aggressively pipelined and
designed for high-throughput operation, most of our bench-
marks are signal processing/arithmetic kernels. We normalize
the performance of the benchmarks to the peak performance
of the AFPGA. This peak performance is a function of the
supply voltage and temperature.
There were three types of benchmarks considered. The first

set of benchmarks (labeled “S”) were existing synchronous
benchmarks. These synchronous netlists were hand-translated
into an asynchronous dataflow netlist. The second set of bench-
marks (labeled “A”) were from existing asynchronous designs
that we had developed. These were also hand-translated to
an asynchronous dataflow netlist. The final set of benchmarks

(labeled “Auto”) were written in a C-like language and auto-
matically synthesized into an asynchronous dataflow netlist.
All the benchmarks were automatically placed and routed
using VPR, a public domain place and route tool developed
for clocked FPGAs [1].

For benchmarks where the computation is mostly feed-
forward (e.g. adders, multipliers) we obtain performance num-
bers that are close to the peak performance of the AFPGA.
This is expected for a custom implementation, but for re-
configurable logic there is the inefficiency that is introduced
during place-and-route. The reason these benchmarks result in
excellent utilization of the AFPGA is due to the asynchronous
nature of the interconnect. As we said earlier, the slowest
handshake in the AFPGA includes the four-input lookup table.
The interconnect, on the other hand, is simply a FIFO stage
with very simple logic. Our simulation results show that the
interconnect frequency is significantly higher than what we
consider the peak performance of the AFPGA. Therefore, in-
efficiencies introduced during place-and-route such as pipeline
mismatches that could reduce the performance of an asyn-
chronous system [23], [10] do not have a significant impact on
throughput. The higher frequency of the interconnect enables
it to “absorb” some of the mismatch introduced during place-
and-route. Our simulation results show that we need a pipeline
mismatch of six switch box stages before any performance loss
is observed.

We have included one benchmark taken from the instruction
fetch unit of an asynchronous microprocessor. This benchmark
shows significantly degraded performance. An analysis of
the benchmark showed that the reason for this performance
loss was architectural. To illustrate this, consider the simple
multiply-accumulate dataflow graph shown in Figure 5(a).
Suppose we change the computation by increasing the com-
plexity of the dataflow block that implements the “ADD”

 0

 200

 400

 600

 800

 1000

 1200

 0.5 1 1.5 2 2.5

Th
ro

ug
hp

ut
 (M

H
z)

Voltage (V)

Asynchronous FPGA Test Data

294K

77K

Process: TSMC 0.18um
Nominal Vdd: 1.8V

400K

Fig. 9. AFPGA test data showing performance over a wide range of
temperatures and voltages.

function. As the computation becomes more and more com-
plicated, the logic delay along the loop that contains the
variable x keeps increasing. As we keep increasing this delay,
the throughput of the system is limited by the time it takes
for the data token to travel around the loop. This limits the
speed at which the computation in the dataflow graph can
proceed. More generally, the total logic delay along any cycle
divided by the number of initial tokens on the cycle limits the
throughput of the pipeline [23], [10]. (The analysis is more
complicated when split and merge blocks are part of the cycle.)
We refer to this throughput limit as the algorithmic limit of
the design. A careful analysis of the PC unit showed that it is
algorithmically limited to a normalized performance of 0.45,
explaining the low performance of the benchmark.

V. SUMMARY

We described a pipelined asynchronous FPGA architec-
ture that we believe is the highest performing asynchronous
FPGA by an order-of-magnitude. The architecture is inherently
pipelined, and the use of an asynchronous dataflow model
enables interconnect pipelining for increased performance. The
results from both measurement and benchmark simulation
show that the architecture can operate at high throughput.
Measurement results confirm that the architecture is extremely
robust to variations in both operating voltage and temperature.

ACKNOWLEDGMENTS

The work described in this paper is the result of several
years of research by a number of graduate students. The
AFPGA architecture was developed primarily by John Teifel.
The automated synthesis flow was developed primarily by

TABLE I

BENCHMARK RESULTS. PERFORMANCE IS REPORTED AS NORMALIZED

THROUGHPUT, WITH 1.0 BEING THE PEAK PERFORMANCE (674 MHZ AT

NOMINAL VDD AND ROOM TEMPERATURE). S = SYNCHRONOUS

BENCHMARKS THAT WERE CONVERTED TO ASYNCHRONOUS; A =

ASYNCHRONOUS BENCHMARKS; AUTO = BENCHMARKS THAT WERE

AUTOMATICALLY SYNTHESIZED.

Benchmark Name Type Perf.
16-bit adder S/A 0.92
16-bit adder Auto 0.92
12x12 Booth multiplier A 0.96
8-bit scaling accumulator S 0.95
8-tap 8-bit FIR filter S 0.94
8-bit, 7-lag auto cross-correlator S 0.89
systolic convolution S 0.82
MIPS control unit A 0.95
MIPS control unit Auto 0.95
16-bit 6-tap LFSR Auto 0.99
PC unit Auto 0.42

Song Peng and David Fang. John Teifel was supported in part
by an NSF graduate fellowship, and David Fang was supported
in part by an NDSEG graduate fellowship. We would like to
thank Prof. Clifford Pollock for providing us access to his
cryostat.

REFERENCES

[1] V. Betz and J. Rose. VPR: A new packing, placement, and routing
tool for FPGA research. In Proc. International Workshop on Field
Programmable Logic and Applications, 1997.

[2] Jack B. Dennis. The evolution of ’static’ data-flow architecture. In J.-L.
Gaudiot and L. Bic, editors, Advanced Topics in Data-Flow Computing.
Prentice-Hall, 1991.

[3] Virantha Ekanayake, Clinton Kelly IV, and Rajit Manohar. An ultra
low power processor for sensor networks. In Proceedings of the 11th
International Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 27–36, Boston, MA, 2004.

[4] S. Hauck, S. Burns, G. Borriello, and C. Ebeling. An FPGA for
implementing asynchronous circuits. IEEE Design & Test of Computers,
11(3):60–69, 1994.

[5] Q. T. Ho, J-B Rigaud, L. Fesquet, M. Renaudin, and R. Rolland.
Implementing asynchronous circuits on LUT based FPGAs. In Proc.
International Conference on Field Programmable Logic and Applica-
tions, 2002.

[6] D. L. How. A self clocked FPGA for general purpose logic emulation.
In Proc. of the IEEE Custom Integrated Circuits Conference, 1996.

[7] Clinton Kelly IV, Virantha Ekanayake, and Rajit Manohar. Snap: A
sensor network asynchronous processor. In Proceedings of the Ninth
International Symposium on Asynchronous Circuits and Systems, pages
24–35, Vancouver, BC, 2003.

[8] R. Konishi, H. Ito, H. Nakada, A. Nagoya, K. Oguri, N. Imlig, T. Sh-
iozawa, M. Inamori, and K. Nagami. PCA-1: A fully asynchronous self-
reconfigurable LSI. In Proc. International Symposium on Asynchronous
Circuits and Systems, 2001.

[9] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and
asics. In Proceedings of FPGA 2006, 2006.

[10] Andrew Lines. Pipelined asynchronous circuits. Master’s thesis,
California Institute of Technology, 1995.

[11] Rajit Manohar and Alain J. Martin. Quasi delay-insensitive circuits are
turing complete. In Proc. International Symposium on Asynchronous
Circuits and Systems, March 1996.

[12] Rajit Manohar and Alain J. Martin. Slack elasticity in concurrent
computing. In Proc. International Conference on the Mathematics of
Program Construction, 1998.

[13] Alain J. Martin. The limitations to delay-insensitivity in asynchronous
circuits. In Proc. Conference on Advanced Research in VLSI, 1990.

[14] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nyström, Paul
Penzes, Robert Southworth, Uri V. Cummings, and Tak-Kwan Lee.
The design of an asynchronous MIPS R3000. In Proc. Conference on
Advanced Research in VLSI, pages 164–181, September 1997.

[15] R. Payne. Asynchronous FPGA architectures. IEE Computers and
Digital Techniques, 143(5), 1996.

[16] Song Peng, David Fang, John Teifel, and Rajit Manohar. Automated
synthesis for asynchronous fpgas. In Proc. International Symposium on
Field Programmable Gate Arrays, 2005.

[17] Charles L. Seitz. System Timing, volume Introduction to VLSI Systems
by Carver Mead and Lynn Conway, chapter 7. 1979.

[18] John Teifel and Rajit Manohar. Programmable asynchronous pipeline
arrays. In Proc. International Conference on Field Programmable Logic
and Applications, September 2003.

[19] John Teifel and Rajit Manohar. An asynchronous dataflow fpga archi-
tecture. IEEE Transactions on Computers, 53(11), 2004.

[20] John Teifel and Rajit Manohar. Highly pipelined asynchronous FPGAs.
In Proc. International Symposium on Field Programmable Gate Arrays,
February 2004.

[21] John Teifel and Rajit Manohar. Static tokens: Using dataflow to automate
concurrent pipeline synthesis. In Proc. International Symposium on
Asynchronous Circuits and Systems, April 2004.

[22] C. Traver, R. B. Reese, and M. A. Thornton. Cell designs for self-timed
FPGAs. In Proc. of ASIC/SOC Conference, 2001.

[23] Ted E. Williams. Self-Timed Rings and their Application to Division.
PhD thesis, Stanford University, 1991.

[24] Catherine G. Wong, Alain J. Martin, and Peter Thomas. An architecture
for asynchronous fpgas. In IEEE International Conference on Field-
Programmable Technology, December 2003.

