Segmentation of Subspace Arrangements
II – GPCA

Allen Y. Yang

Berkeley CS 294-6, Lecture 24

Nov. 27, 2006
1 Vanishing Polynomials
 • Representation of Subspace Arrangements
 • Vanishing Polynomials

2 Veronese Map
 • Veronese Map

3 Derivatives of Vanishing Polynomials
 • Derivatives of Polynomials
Representation of Subspace Arrangements

1. For a single subspace $V \subset \mathbb{R}^D$, if $\dim(V) = d$ and $r = D - d$:

$$
(u_1^T z = 0) \land (u_2^T z = 0) \land \cdots \land (u_r^T z = 0) \iff \begin{cases}
 u_1^T z = 0 \\
 \vdots \\
 u_r^T z = 0
\end{cases}
$$

2. For a subspace arrangement $\mathcal{A} = V_1 \cup V_2 \cup \cdots \cup V_K$,

$$(V_1^\perp)^T z = 0) \lor (V_2^\perp)^T z = 0) \lor \cdots \lor (V_K^\perp)^T z = 0).$$

This constraint can also be written as a system of polynomial constraints:

Example (Hyperplane Arrangements)

- A hyperplane is a subspace of $D - 1$ dimension $\Rightarrow r = 1$.
- For a hyperplane arrangement $\mathcal{A} = V_1 \cup V_2 \cup \cdots \cup V_K$:

$$
(u_{1,1}^T z = 0) \lor (u_{2,1}^T z = 0) \lor \cdots \lor (u_{K,1}^T z = 0),
$$

$$
\Rightarrow (u_{1,1}^T z)(u_{2,1}^T z) \cdots (u_{K,1}^T z) = 0.
$$

- $p(z) \doteq (u_{1,1}^T z)(u_{2,1}^T z) \cdots (u_{K,1}^T z)$ is degree-K homogeneous polynomial.
- For any polynomial vanishing on \mathcal{A} (i.e., $\forall z \in \mathcal{A}, p'(z) = 0$), $p'(z) = p(z)g(z)$ for some polynomial g.
Example (Point Clusters)

- Point clusters can be treated as *zero-dimensional affine* subspaces.

- Recall the standard procedure: Homogenization.
 For the 1-D case, change the sample coordinates to: \(x = [x, 1]^T \).

- All noise-free samples \(z = [x, y]^T \in V_1 \cup V_2 \) satisfy:
 \[
p(z) = (x - b_1 y)(x - b_2 y) = 0.
\]
Kth Degree Vanishing Polynomials

Example (De Morgan’s Law)

Let $\mathcal{A} = V_1 \cup V_2 \subset \mathbb{R}^3$, $\dim(V_1) = 2$, $\dim V_2 = 1$.

$$(u_{1,1}^T z = 0) \lor \left\{ (u_{2,1}^T z = 0) \land (u_{2,2}^T z = 0) \right\} \Rightarrow \left\{ (u_{1,1}^T z = 0) \lor (u_{2,1}^T z = 0) \right\} \land \left\{ (u_{1,1}^T z = 0) \lor (u_{2,2}^T z = 0) \right\} \Rightarrow \left\{ p_1(z) = (u_{1,1}^T z)(u_{2,1}^T z) = 0 \right\} \land \left\{ p_2(z) = (u_{1,1}^T z)(u_{2,2}^T z) = 0 \right\}

- De Morgan’s law: The constraint for a subspace arrangement can be rewritten as

$$(V_1^\perp z = 0) \lor (V_2^\perp z = 0) \lor \cdots \lor (V_K^\perp z = 0) \Leftrightarrow \left\{ \begin{array}{l} p_1(z) = 0 \\ \vdots \\ p_l(z) = 0 \end{array} \right.,$$

where $\deg(p_i) = K$, and $l \equiv r_1 r_2 \cdots r_K$.

- p_1, \cdots, p_l are all Kth degree homogeneous polynomials. Define

$$p' = c_1 p_1 + c_2 p_2 + \cdots + c_l p_l,$$

then $\forall z \in \mathcal{A}, p'(z) = 0$.

Any scalar combination also vanishes on \mathcal{A}.
Vanishing Polynomials

Kth Component of Vanishing Polynomials
- Denote \(J_K = \text{Span}(p_1, p_2, \cdots, p_l) \). \(J_K \) is a polynomial subspace.
- \(h \doteq \dim(J_K) \), \(h \leq l = r_1 r_2 \cdots r_K \).
- **Completeness:** Given \(K \)th degree homogeneous \(f \), if \(\forall z \in \mathcal{A}, f(z) = 0 \), then \(f \in J_K \).

Vanishing Polynomials
- Define a vanishing polynomial of \(\mathcal{A} \) as \(f(z) = 0 \) for all \(z \in \mathcal{A} \).
- Is it possible that \(\deg(f) > K \)?
- Is it possible that \(\deg(f) < K \)?
- Particularly, given \(p \in J_K \), \(g(z)p(z) = 0 \implies gp \) is a vanishing polynomial.
- All vanishing polynomials form a special polynomial set \(I_\mathcal{A} \), called an *ideal* in algebra.
Properties of Vanishing Polynomials

- \(A \) and \(\mathcal{I}_A \) are completely determined by \(J_K \).
- **[Derksen, 2005]** If \(A = V_1 \cup \ldots \cup V_K \) is in general position, then,

\[
h \doteq \dim(J_K) = \sum_S (-1)^{|S|} \binom{K + D - 1 - c_S}{D - 1 - c_S},
\]

where \(c_S = \sum_{j \in S} c_j \) and the sum is over all \(S \subseteq \{1, \ldots, n\} \) (including the empty set) for which \(c_S < D \).

Example (\(\dim(J_K) \) for three subspaces in \(\mathbb{R}^3 \))

From Derksen's equation, \(\dim(J_3(A)) \) can only take four possible values:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(r_2)</td>
<td>(r_3)</td>
<td>(h)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Allen Y. Yang
Segmentation of Subspace Arrangements II – GPCA
Veronese Map

Since J_K completely determines \mathcal{A}, we consider estimating J_K from samples.

- J_K is a polynomial subspace, hence only need to get hold of a set of basis vectors.
- The basis vectors for J_K are homogeneous Kth degree polynomials that are linearly independent.

Example (Basis Vectors of J_K)

1. For hyperplane arrangements, $\dim(J_K) = 1$,
 \[
p(z) = (u_{1,1}^T z)(u_{2,1}^T z) \cdots (u_{K,1}^T z).
 \]
 $\Rightarrow J_K = \text{Span}(p)$.

2. Let $\mathcal{A} = V_1 \cup V_2$, then $u_{1,1} = [0, 0, 1]^T$, $u_{2,1} = [1, 0, 0]^T$, $u_{2,2} = [0, 1, 0]^T$, and $\dim(J_2) = 2$.
 \[
p_1 = (u_{1,1}^T z)(u_{2,1}^T z) = x_1 x_3,
 \]
 \[
p_2 = (u_{1,1}^T z)(u_{2,2}^T z) = x_2 x_3.
 \]
 $\Rightarrow J_K = \text{Span}(p_1, p_2)$.

- What is the space of all homogeneous polynomials of degree K containing J_K?
 \[
 \mathbb{R}_K[x_1, x_2, \ldots, x_D] \cong \text{Span}(x_1^K, x_2^{K-1}, x_2, \ldots, x_D^K).
 \]
 $\Rightarrow \dim(\mathbb{R}_K[x_1, x_2, \ldots, x_D]) = M_K^{[D]} = \binom{K+D-1}{D-1}$
Definition (Veronese Map)

The Veronese map of order k is the map $\nu_k : \mathbb{R}^D \to \mathbb{R}^{M[D]}_k$ given by

$$\nu_k([x_1, \cdots, x_D]^T) = [x_1^k, x_1^{k-1}x_2, x_1^{k-1}x_3, \cdots, x_D^k]^T,$$

where the list of $x_1^k, x_1^{k-1}x_2, x_1^{k-1}x_3, \cdots, x_D^k$ are all the monomials of degree k.

Recovering J_K via the Veronese map

1. Given the number of subspaces K known and N samples $V = \{z_1, \cdots, z_N\}$, construct the data matrix $L_K(V) = [\nu_K(z_1), \nu_K(z_2), \cdots, \nu_K(z_N)] \in \mathbb{R}^{M[D]}_K \times N$.

2. Any Kth degree vanishing polynomial is expressed by the monomials.

$$p = \begin{bmatrix} c_1, \cdots, c_M[D] \end{bmatrix} \begin{bmatrix} x_1^K \\ x_1^{K-1}x_2 \\ \vdots \\ x_D^K \end{bmatrix}.$$

3. Since $p(z) = 0$ for all z_1, \cdots, z_N,

$$\begin{bmatrix} c_1, \cdots, c_M[D] \end{bmatrix} L_K(V) = [p(z_1), p(z_2), \cdots, p(z_N)] = 0_{1 \times N}.$$

4. Hence, the coefficients of a vanishing polynomial as a vector are recovered from $\text{Null}(L_K)$!

$$\dim(\text{Null}(L_K)) = \dim(J_K),$$

and the basis vectors of $\text{Null}(L_K)$ correspond to the basis vectors of J_K.
Derivatives of Polynomials

We have learned how to recover vanishing polynomials from the data. Next, how to recover the bases.

- Estimation of the bases for $V_1^\perp, \cdots, V_K^\perp$ depends on the derivatives of the vanishing polynomials.

Example

- The null space of $L_2(V)$ is

 $c_1 = [0, 0, 1, 0, 0, 0] \Rightarrow p_1 = c_1 \nu_2(x) = x_1 x_3$

 $c_2 = [0, 0, 0, 0, 1, 0] \Rightarrow p_2 = c_2 \nu_2(x) = x_2 x_3$

 $P(x) = [p_1(x) \ p_2(x)] = [x_1 x_3 \ x_2 x_3]$

- $\nabla_x P = [\nabla_x p_1 \ \nabla_x p_2] = \begin{bmatrix} x_3 & 0 \\ 0 & x_3 \\ x_1 & x_2 \end{bmatrix}$.

- Suppose $z = [1, 1, 0]^T \in V_1$, then $\nabla_x P(z) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$. Suppose $z = [0, 0, 1]^T \in V_2$, then $\nabla_x P(z) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$.

- Hence, $\nabla_x P(z)$ returns a set of basis vectors for V_1^\perp and V_2^\perp.

- How to compute derivatives of vanishing polynomials?

 Derivatives of monomials are created alongside with the Veronese map:

 $$\nu_k(x) = \begin{bmatrix} x^k \\ x^k_1 x^{k-1}_2 \\ \vdots \\ x^k_D \end{bmatrix} \leftrightarrow \nabla \nu_k(x) = \left[\begin{array}{cccc} x^{k-1} & x^{k-2} & \cdots & 0 \\ 0 & x^{k-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x^{k-1}_D \end{array}\right].$$
Given a vanishing polynomial \(p(x) = c_1x^K_1 + \cdots + c_{M[D]}x^K_D, \)

\[
\nabla p(x) = c_1 \nabla x^K_1 + \cdots + c_{M[D]} \nabla x^K_D
\]

\[
= \begin{bmatrix}
x_1^{k-1} & x_2^{k-2} & \cdots & 0 \\
0 & x_1^{k-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_D^{k-1}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_{M[D]}
\end{bmatrix}.
\]

Finally, evaluate \(\nabla_x P(z) = \nabla_x [p_1, \cdots, p_h] \) at one point per subspace, we then successfully recover \(V_1^\perp, \cdots, V_K^\perp \)!