CS 294-73
Software Engineering for Scientific Computing

Lecture 10: Dense Linear Algebra

Slides from James Demmel and Kathy Yelick
Outline

• What is Dense Linear Algebra?
• Where does the time go in an algorithm?
 • Moving Data in Memory hierarchies
• Case studies
 • Matrix Multiplication
 • Gaussian Elimination
What is dense linear algebra?

- Not just Basic Linear Algebra Subroutines (eg matmul)
- Linear Systems: $Ax=b$
- Least Squares: choose x to minimize $||Ax-b||_2$
 - Overdetermined or underdetermined
 - Unconstrained, constrained, weighted
- Eigenvalues and vectors of Symmetric Matrices
 - Standard ($Ax = \lambda x$), Generalized ($Ax=\lambda Bx$)
- Eigenvalues and vectors of Unsymmetric matrices
 - Eigenvalues, Schur form, eigenvectors, invariant subspaces
 - Standard, Generalized
- Singular Values and vectors (SVD)
 - Standard, Generalized
- Different matrix structures
 - Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded …
- Level of detail
 - Simple Driver
 - Expert Drivers with error bounds, extra-precision, other options
 - Lower level routines (“apply certain kind of orthogonal transformation”, …)
Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Where does the time go?

- Hardware organized as Memory Hierarchy
 - Try to keep frequently accessed data in fast, but small memory
 - Keep less frequently accessed data in slower, but larger memory

- Time(flops) ≈ Time(on-chip cache access) << Time(slower mem access)
 - Need algorithms that minimize accesses to slow memory, i.e. “minimize communication”

<table>
<thead>
<tr>
<th>Speed</th>
<th>1ns</th>
<th>10ns</th>
<th>100ns</th>
<th>10ms</th>
<th>10sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>KB</td>
<td>MB</td>
<td>GB</td>
<td>TB</td>
<td>PB</td>
</tr>
</tbody>
</table>
Minimizing communication gets more important every year

- Memory hierarchies are getting deeper
 - Processors get faster more quickly than memory

“Moore's Law”

Processor-Memory Performance Gap: (grows 50% / year)

μProc 60%/yr.

DRAM 7%/yr.
Using a Simple Model of Memory to Optimize

• Assume just 2 levels in the hierarchy, fast and slow
• All data initially in slow memory
 • \(m \) = number of memory elements (words) moved between fast and slow memory
 • \(t_m \) = time per slow memory operation
 • \(f \) = number of arithmetic operations
 • \(t_f \) = time per arithmetic operation \(< \ll \) \(t_m \)
 • \(q = f / m \) average number of flops per slow memory access

• Minimum possible time = \(f \cdot t_f \) when all data in fast memory
• Actual time
 • \(f \cdot t_f + m \cdot t_m = f \cdot t_f \cdot (1 + t_m / t_f \cdot 1/q) \)

• Larger \(q \) means time closer to minimum \(f \cdot t_f \)
 • \(q \geq t_m / t_f \) needed to get at least half of peak speed
 \[\geq 1000 \]
Warm up: Matrix-vector multiplication

\{\text{implements } y = y + A^*x\} \\
\text{for } i = 1:n \\
\hspace{1cm} \text{for } j = 1:n \\
\hspace{2cm} y(i) = y(i) + A(i,j)^*x(j)
Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n
 {read row i of A into fast memory}
 for j = 1:n
 y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n^2
• f = number of arithmetic operations = 2n^2
• q = f / m ≈ 2

• Matrix-vector multiplication limited by slow memory speed
Naïve Matrix Multiply

\{
\text{implements } C = C + A*B \\
\text{for } i = 1 \text{ to } n \\
\hspace{1cm} \text{for } j = 1 \text{ to } n \\
\hspace{2cm} \text{for } k = 1 \text{ to } n \\
\hspace{3cm} C(i,j) = C(i,j) + A(i,k) * B(k,j)
\}\n
Algorithm has $2*n^3 = O(n^3)$ Flops and operates on $3*n^2$ words of memory

q potentially as large as $2*n^3 / 3*n^2 = O(n)$
Naïve Matrix Multiply

\{ \text{implements } C = C + A \times B \} \\
\text{for } i = 1 \text{ to } n \\
\quad \{ \text{read row } i \text{ of } A \text{ into fast memory} \} \\
\quad \text{for } j = 1 \text{ to } n \\
\quad \quad \{ \text{read } C(i,j) \text{ into fast memory} \} \\
\quad \quad \{ \text{read column } j \text{ of } B \text{ into fast memory} \} \\
\quad \text{for } k = 1 \text{ to } n \\
\quad \quad C(i,j) = C(i,j) + A(i,k) \times B(k,j) \\
\quad \{ \text{write } C(i,j) \text{ back to slow memory} \} \\

\[C(i,j) = C(i,j) + A(i,:) \times B(:,j) \]
Naïve Matrix Multiply

\{\text{implements } C = C + A \times B\}

for \(i = 1 \) to \(n \)

\{read row \(i \) of \(A \) into fast memory … \(n^2 \) total reads\}

for \(j = 1 \) to \(n \)

\{read \(C(i,j) \) into fast memory … \(n^2 \) total reads\}

\{read column \(j \) of \(B \) into fast memory … \(n^3 \) total reads\}

for \(k = 1 \) to \(n \)

\[C(i,j) = C(i,j) + A(i,k) \times B(k,j) \]

\{write \(C(i,j) \) back to slow memory … \(n^2 \) total writes\}
Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply
\[m = n^3 \] to read each column of B \(n \) times
\[+ n^2 \] to read each row of A once
\[+ 2n^2 \] to read and write each element of C once
\[= n^3 + 3n^2 \]

So \(q = f / m = 2n^3 / (n^3 + 3n^2) \)
\[\approx 2 \] for large \(n \), no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

\[
\begin{align*}
C(i,j) &= C(i,j) + A(i,:) \times B(:,j)
\end{align*}
\]
Consider A, B, C to be (n/b)-by-(n/b) matrices of b-by-b blocks where b is called the block size; assume fast memory holds 3 b-by-b blocks.

for $i = 1$ to n/b
 for $j = 1$ to n/b
 {read block $C(i,j)$ into fast memory}
 for $k = 1$ to n/b
 {read block $A(i,k)$ into fast memory}
 {read block $B(k,j)$ into fast memory}
 \[C(i,j) = C(i,j) + A(i,k) \times B(k,j) \]
 {matrix multiply on b-by-b blocks}
 {write block $C(i,j)$ back to slow memory}
Blocked (Tiled) Matrix Multiply

Recall:
- m is amount memory traffic between slow and fast memory
- matrix is n-by-n, arranged as (n/b)-by-(n/b) matrix of b-by-b blocks

\[f = 2n^3 \] = number of floating point operations

\[q = f / m = \text{“computational intensity”} \]

So:

\[
m = \frac{n^3}{b} \quad \text{read each block of B} \quad (n/b)^3 \text{ times, so } (n/b)^3 \times b^2 = \frac{n^3}{b} \\
+ \frac{n^3}{b} \quad \text{read each block of A} \quad (n/b)^3 \text{ times} \\
+ 2n^2 \quad \text{read and write each block of C once} \\
= \frac{2n^3}{b} + 2n^2 \\
\]

So computational intensity

\[
q = f / m = \frac{2n^3}{\frac{2n^3}{b} + 2n^2} \\
\approx \frac{2n^3}{(2n^3/b)} = b \quad \text{for large } n
\]

So we can improve performance by increasing the blocksize b

Can be much faster than matrix-vector multiply ($q=2$)
Limits to Optimizing Matrix Multiply

• \#slow_memory_references = m = \frac{2n^3}{b} + 2n^2

• Increasing b reduces m. How big can we make b?

• Recall assumption that 3 b-by-b blocks \(C(i,j), A(i,k) \) and \(B(k,j) \) fit in fast memory, say of size \(M \)
 • Constraint: \(3b^2 \leq M \)

• Tiled matrix multiply cannot reduce m below \(\approx 2 \cdot 3^{1/2} \cdot \frac{n^3}{M^{1/2}} \)

• Theorem (Hong & Kung, 1981): You can’t do any better than this: Any reorganization of this algorithm (that uses only commutativity and associativity) is limited to \#slow_memory_references = \(\Omega(\frac{n^3}{M^{1/2}}) \) \((f(x) = \Omega(g(x)) \) means that \(|f(x)| \geq C \cdot |g(x)| \).
Limits to Optimizing All Dense Linear Algebra

- Theorem [Ballard, Demmel, Holtz, Schwartz, 2011]: Consider any algorithm that is “like 3 nested loops in matrix-multiply”, running with fast memory size M. Then no matter how you optimize it, using only associativity and commutativity,

 \[\#\text{slow_memory_references} = \Omega \left(\frac{\#\text{flops}}{M^{1/2}} \right) \]

- This applies to
 - Basic Linear Algebra Subroutines like matmul, triangular solve, …
 - Gaussian elimination, Cholesky, other variants …
 - Least squares
 - Eigenvalue problems and the SVD
 - Some operations on tensors, graph algorithms …
 - Some whole programs that call a sequence of these operations
 - Multiple levels of memory hierarchy, not just “fast and slow”
 - Dense and sparse matrices
 - \#flops = O(n^3) for dense matrices, usually much less for sparse
 - Sequential and parallel algorithms
 - Parallel case covered in CS267
Can we attain these lower bounds?

• Do algorithms in standard dense linear algebra libraries attain these bounds?
 • LAPACK (sequential), ScaLAPACK (parallel), versions offered by vendors
 • For some problems (eg matmul) they do, but mostly not
 • Note: these libraries are still fast, and should be your first choice on most problems!

• Are there other algorithms that do attain them?
 • Yes, some known for a while, some under development

• Two examples
 • Matmul (again, but for any memory hierarchy)
 • Gaussian Elimination
What if there are more than 2 levels of memory?

• Goal is to minimize communication between all levels
• The tiled algorithm requires finding a good block size
 • Machine dependent: b depends on fast memory size M
 • Need to "block" $b \times b$ matrix multiply in inner most loop
 • 1 level of memory \Rightarrow 3 nested loops (naïve algorithm)
 • 2 levels of memory \Rightarrow 6 nested loops
 • 3 levels of memory \Rightarrow 9 nested loops …

• Cache Oblivious Algorithms offer an alternative
 • Treat $n \times n$ matrix multiply as a set of smaller problems
 • Eventually, these will fit in cache
 • Will minimize # words moved between every level of memory hierarchy (between L1 and L2 cache, L2 and L3, L3 and main memory etc.) – at least asymptotically
Recursive Matrix Multiplication (RMM) (1/2)

• For simplicity: square matrices with $n = 2^m$

\[
C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = A \cdot B = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}
\]

\[
= \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{bmatrix}
\]

• True when each A_{ij} etc 1×1 or $n/2 \times n/2$

```python
func C = RMM (A, B, n)
if n = 1, C = A * B, else
    \{
        C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2)
        C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2)
        C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2)
        C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2)
    \}
return
```
Recursive Matrix Multiplication (2/2)

```
func C = RMM (A, B, n)
  if n=1, C = A * B, else
  {  C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2)
      C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2)
      C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2)
      C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2)  }
  return
```

A(n) = # arithmetic operations in RMM(. , . , n)
= 8 \cdot A(n/2) + 4(n/2)^2 \quad \text{if } n > 1, \quad \text{else } 1
= 2n^3 \quad \text{... same operations as usual, in different order}

W(n) = # words moved between fast, slow memory by RMM(. , . , n)
= 8 \cdot W(n/2) + 4(n/2)^2 \quad \text{if } 3n^2 > M , \quad \text{else } 3n^2
= O(n^3 / (M)^{1/2} + n^2) \quad \text{... same as blocked matmul}

Algorithm called “cache oblivious”, because doesn’t depend on M
Gaussian Elimination (GE) for solving $Ax=b$

- Add multiples of each row to later rows to make A upper triangular
- Solve resulting triangular system $Ux = c$ by substitution

\[
\begin{align*}
\text{... for each column } i \\
\text{... zero it out below the diagonal by adding multiples of row } i \text{ to later rows}
\end{align*}
\]

\[
\begin{align*}
\text{for } i = 1 \text{ to } n-1 \\
\text{... for each row } j \text{ below row } i \\
\text{for } j = i+1 \text{ to } n \\
\text{... add a multiple of row } i \text{ to row } j \\
\end{align*}
\]

\[
\text{tmp} = A(j,i);
\]

\[
\text{for } k = i \text{ to } n
\]

\[
A(j,k) = A(j,k) - \left(\frac{\text{tmp}}{A(i,i)}\right) \times A(i,k)
\]
Refine GE Algorithm (1/5)

• Initial Version

... for each column i
... zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1
 ... for each row j below row i
 for j = i+1 to n
 ... add a multiple of row i to row j
 tmp = A(j,i);
 for k = i to n
 A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

• Remove computation of constant tmp/A(i,i) from inner loop.

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)
Refine GE Algorithm (2/5)

• Last version

```plaintext
for i = 1 to n-1
  for j = i+1 to n
    m = A(j,i)/A(i,i)
    for k = i to n
      A(j,k) = A(j,k) - m * A(i,k)
```

• Don’t compute what we already know: zeros below diagonal in column i

```plaintext
for i = 1 to n-1
  for j = i+1 to n
    m = A(j,i)/A(i,i)
    for k = i+1 to n
      A(j,k) = A(j,k) - m * A(i,k)
```
Refine GE Algorithm (3/5)

• Last version

\[
\begin{align*}
\text{for } i = 1 \text{ to } n-1 \\
\quad \text{for } j = i+1 \text{ to } n \\
\quad \quad m = A(j,i)/A(i,i) \\
\quad \quad \text{for } k = i+1 \text{ to } n \\
\quad \quad \quad A(j,k) = A(j,k) - m \times A(i,k)
\end{align*}
\]

• Store multipliers m below diagonal in zeroed entries for later use

\[
\begin{align*}
\text{for } i = 1 \text{ to } n-1 \\
\quad \text{for } j = i+1 \text{ to } n \\
\quad \quad A(j,i) = A(j,i)/A(i,i) \\
\quad \quad \text{for } k = i+1 \text{ to } n \\
\quad \quad \quad A(j,k) = A(j,k) - A(j,i) \times A(i,k)
\end{align*}
\]
Refine GE Algorithm (4/5)

• Last version

\[
\text{for } i = 1 \text{ to } n-1 \\
\quad \text{for } j = i+1 \text{ to } n \\
\quad \quad A(j,i) = A(j,i)/A(i,i) \\
\quad \quad \text{for } k = i+1 \text{ to } n \\
\quad \quad \quad A(j,k) = A(j,k) - A(j,i) * A(i,k)
\]

• Split Loop

\[
\text{for } i = 1 \text{ to } n-1 \\
\quad \text{for } j = i+1 \text{ to } n \\
\quad \quad A(j,i) = A(j,i)/A(i,i) \\
\quad \quad \text{for } j = i+1 \text{ to } n \\
\quad \quad \quad \text{for } k = i+1 \text{ to } n \\
\quad \quad \quad \quad A(j,k) = A(j,k) - A(j,i) * A(i,k)
\]

Store all m’s here before updating rest of matrix
Refine GE Algorithm (5/5)

- Last version

- Express using matrix operations (BLAS)

Work at step i of Gaussian Elimination

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for j = i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))
 ... BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)
 ... BLAS 2 (rank-1 update)
What GE really computes

- Call the strictly lower triangular matrix of multipliers M, and let $L = I + M$
- Call the upper triangle of the final matrix U
- **Lemma (LU Factorization):** If the above algorithm terminates (does not divide by zero) then $A = L * U$
- Solving $A * x = b$ using GE
 - Factorize $A = L * U$ using GE (cost = $2/3 \, n^3$ flops)
 - Solve $L * y = b$ for y, using substitution (cost = n^2 flops)
 - Solve $U * x = y$ for x, using substitution (cost = n^2 flops)
- Thus $A * x = (L * U) * x = L * (U * x) = L * y = b$ as desired
Problems with basic GE algorithm

- What if some $A(i,i)$ is zero? Or very small?
 - Result may not exist, or be “unstable”, so need to pivot
- Current computation all BLAS 1 or BLAS 2, with low computational intensities ($q \leq 2$), need to use BLAS 3 operations like matmul instead

```
for i = 1 to n-1
    A(i+1:n,i) = A(i+1:n,i) / A(i,i)  ... BLAS 1 (scale a vector)
    A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  ... BLAS 2 (rank-1 update)
    - A(i+1:n , i) * A(i , i+1:n)
```
Recursive, cache-oblivious GE formulation (1/3)

- Toledo (1997)
 - Describe without pivoting for simplicity
 - “Do left half of matrix, then right half”

\[
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 \\ L_{21} & I \end{pmatrix} \cdot \begin{pmatrix} U_{11} & U_{12} \\ 0 & S \end{pmatrix} = \begin{pmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{21}U_{11} & S + L_{21}U_{12} \end{pmatrix}
\]

- Four step recursive algorithm
 1. Factor \(A_{11} = L_{11}U_{11} = L_{11}U_{11} \) same problem with half the columns: solve recursively
 2. Solve \(A_{12} = L_{11}U_{12} \) for \(U_{12} \); call triangular solve (BLAS3)
 3. Solve \(A_{22} = S + L_{21}U_{12} \) for \(S = A_{22} - L_{21}U_{12} \); matmul (BLAS3)
 4. Factor \(S = L_{22}U_{22} \); same problem with half the columns, fewer rows: solve recursively
Recursive, cache-oblivious GE formulation (2/3)

- Toledo (1997)
 - Describe without pivoting for simplicity
 - “Do left half of matrix, then right half”

function \([L, U] = RLU(A)\) ... assume \(A\) is \(m\) by \(n\)
if \((n=1)\)
 \(L = A/A(1,1),\) \(U = A(1,1)\)
else
 \([L1, U1] = RLU(A(1:m, 1:n/2))\) ... do left half of \(A\)
 ... let \(L11\) denote top \(n/2\) rows of \(L1\)
 \(A(1:n/2, n/2+1:n) = L11^{-1} * A(1:n/2, n/2+1:n)\)
 ... update \(A12\) (top \(n/2\) rows of right half of \(A\))
 \(A(n/2+1:m, n/2+1:n) = A(n/2+1:m, n/2+1:n)\)
 - \(A(n/2+1:m, 1:n/2) * A(1:n/2, n/2+1:n)\)
 ... update rest of right half of \(A\), get \(S\)
 \([L2, U2] = RLU(A(n/2+1:m, n/2+1:n))\) ... do right half of \(A\)
return \([L1, [0; L2]]\) and \([U1, [A(:, :) ; U2]]\)
function \([L,U] = \text{RLU}(A)\) … assume \(A\) is \(m\) by \(n\)
if \((n=1)\) \(L = A/A(1,1)\), \(U = A(1,1)\)
else
\[
[L1,U1] = \text{RLU}(A(1:m,1:n/2)) \quad \text{... do left half of } A
\]

… let \(L11\) denote top \(n/2\) rows of \(L1\)
\[
A(1:n/2,n/2+1:n) = L11^{-1} * A(1:n/2,n/2+1:n)
\]

… update \(A12\) (top \(n/2\) rows of right half of \(A\))
\[
A(n/2+1:m,n/2+1:n) = A(n/2+1:m,n/2+1:n) - A(n/2+1:m,1:n/2) * A(1:n/2,n/2+1:n)
\]

… update rest of right half of \(A\), get \(S\)
\[
[L2,U2] = \text{RLU}(A(n/2+1:m,n/2+1:n)) \quad \text{... do right half of } A
\]
return \([L1,[0;L2]]\) and \([U1,[A(.,.) ; U2]]\)

- Performs same flops as original algorithm, just in a different order
- \(W(m,n) = \# \text{ words moved to factor } m\text{-by-}n \text{ matrix}\)
 \[
 = W(m,n/2) + O(\max(m\cdot n,m\cdot n^2/M^{1/2})) + W(m-n/2,n/2)
 \leq 2 \cdot W(m,n/2) + O(\max(m\cdot n,m\cdot n^2/M^{1/2}))
 = O(m\cdot n^2/M^{1/2} + m\cdot n\cdot \log M)
 = O(m\cdot n^2/M^{1/2}) \quad \text{if } M^{1/2}\cdot \log M = O(n) \text{, i.e. usually attains lower bound}\]
Other Topics

• Cache oblivious algorithms not a panacea
 • Recursing down to problems of size 1 add too much overhead
 • Need to switch to blocked algorithm for small enough subproblems
• Algorithms for other linear algebra problems (eg least squares, eigenvalue problems) more complicated
 • Minimizing communication requires different mathematical algorithms, not just different order of execution
• Dense linear algebra possible in $O(n^w)$ flops, with $w < 3$
 • Eg: Strassen’s algorithm has $w = \log_2 7 \sim 2.81$
 • Less communication too
• Only a few algorithms known in sparse case that minimize communication
• See Ma221, CS267 for details
How hard is hand-tuning matmul, anyway?

- Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
- Students given “blocked” code to start with
 - Still hard to get close to vendor tuned performance (ACML)
- For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/
How hard is hand-tuning matmul, anyway?
Industrial-strength dense linear algebra

• Uses the correct abstractions to formulate the algorithms (block matrix-matrix multiply)
• Software building blocks so that those algorithms can be implemented efficiently with high performance (BLAS)
• Machines are really complicated, so some choices of algorithm parameters must be discovered empirically (autotuning).
Basic Linear Algebra Subroutines (BLAS)

• Industry standard interface (evolving)
 • www.netlib.org/blas, www.netlib.org/blas/blast--forum

• Vendors, others supply optimized implementations

• History
 • BLAS1 (1970s):
 • vector operations: dot product, saxpy (y=α*x+y), etc
 • m=2*n, f=2*n, q ~1 or less
 • BLAS2 (mid 1980s)
 • matrix-vector operations: matrix vector multiply, etc
 • m=n^2, f=2*n^2, q~2, less overhead
 • somewhat faster than BLAS1
 • BLAS3 (late 1980s)
 • matrix-matrix operations: matrix matrix multiply, etc
 • m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2

• Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

RS2: Level 1, 2 and 3 BLAS

Peak
BLAS 3

BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)
Dense Linear Algebra: BLAS2 vs. BLAS3

- BLAS2 and BLAS3 have very different computational intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

Data source: Jack Dongarra
Tuning Code in Practice

• Tuning code can be tedious
 • Lots of code variations to try besides blocking
 • Machine hardware performance hard to predict
 • Compiler behavior hard to predict

• Response: “Autotuning”
 • Let computer generate large set of possible code variations, and search them for the fastest ones
 • Field started with CS267 homework assignment in mid 1990s
 • PHiPAC, leading to ATLAS, incorporated in Matlab
 • We still use the same assignment
 • We (and others) are extending autotuning to other motifs

• Still need to understand how to do it by hand
 • Not every code will have an autotuner
 • Need to know if you want to build autotuners
Search Over Block Sizes

- Performance models are useful for high level algorithms
 - Helps in developing a blocked algorithm
 - Models have not proven very useful for block size selection
 - too complicated to be useful
 - too simple to be accurate
 - Multiple multidimensional arrays, virtual memory, etc.
 - Speed depends on matrix dimensions, details of code, compiler, processor
What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned. (Platform: Sun Ultra-Ill, 333 MHz, 667 M flop/s peak, Sun cc v5.0 compiler)
• ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.