1 —
JIM BLINN’'S CORNER

What's the Deal with the DCT?

James F. Blinn, California institute of Technology

[

The discrete cosine transform is the basis
of most image compression techniques
today. Why is it better than the discrete

Fourier transform?

Image compression is all the rage these days. and many
popular techniques are based on a gimmick called the discrete
cosine transform (DCT). It shows up in JPEG (Joint Photo-
graphic Experts Group) and MPEG (Motion Picture Experts
Group) compression schemes, in techniques for picture phone
transmission, and in all four of the proposals the FCC is con-
sidering as high definition television standards to replace
NTSC. Why is the DCT so wonderful, and in particular, why
is it better than the easier-to-compute discrete Fourier trans-
form (DFT)? In this column, I'm going to play around with
both these transforms, review their properties, and show an
interesting way of thinking about them.

What are we talking about?

A function is a little machine that turns numbers into other
numbers. You feed a number in, you get another number out.
A transform is a somewhat bigger machine that turns func-
tions into other functions. For example, the Fourier transform
takes a continuous function of time (like a sound wave) or
space (like an image), which we’ll call s(x), and turns it into a
continuous function of frequency, F(f). The discrete Fourier
transform takes s,, a list of samples of a function (indexed by
discrete time or space steps) and changes it into a list of sam-
ples of another function (indexed by discrete frequency
steps), F;.

The general DFT and DCT equations have lots of variables
and subscripts that make them a bit confusing to understand.
Fortunately, I can simplify this a bit. All of the above image
compression techniques divide an image into 8 x 8 pixel
blocks and perform a 2D, eight-element DCT on the blocks.
For this reason we only need to discuss eight-element trans-
forms. This lets me explicitly write out some formulas instead
of getting buried in subscripts.

For the purposes of this column, I will describe all frequen-
cies in units of “cycles per eight samples.” Thus a frequency of
1 will be a sine or cosine wave with one cycle across the eight
samples. According to the sampling theorem, we can’t expect
to represent anything higher than a frequency of 4, commonly
called the Nyquist rate.

The discrete Fourier transform

Let’s start by considering only one-dimensional transforms.
We’ll first look at an eight-element DFT. The official defini-
tion is

78

Ff - 2 vaefszx/?%
=0
This takes a list of eight pixel values s, and generates a list of
eight complex numbers F. (Note that the i in the above is not
an index, it’s the square root of -1.) A more edifying way of
writing this is in terms of trigonometric functions. We can
separate the real and imaginary parts of the result as follows:

Fp = 27‘ Sy cos(ngj - ii s, sin [27;]‘):]

x=0 x=0

1’1l be useful to give names to the separate real and imaginary
parts of the F values, so

7
Fre = 2 s, cos [%j

x=0

and

;
Fy = ZSI sin (273‘)()

x=0

Now, let’s admire these equations a bit. See the summation?
See the product of two values under the sum? What does this
remind us of? Hmm . . . Yes! It’s a matrix product. We can
write the Fourier transform as a matrix of cosines and sines
times a vector of samples s,. What’s more, since we only evalu-
ate the sine and cosine at integer multiples of 2n/8 = 45°, the
actual values in the sine and cosine matrices are particularly
simple. Let’s give a name to sin (45°) = cos (45°) = 2R =r.
Explicitly calculating the cosines, we can write the real part of
the transform as

[Fl 1 1 1 1 1 1 1 q 5o |
Fa 1 r 0 -r -1 -r 0 rjis
Fgy 1 0 -1 1 -1 0fs,
Fes| _ |1 -r 0 r -1 r 0 -riis
Feal |1 -1 1 -1 1 -1 1 -1fs,
Fgs 1 =r 0 r -1 r 0 -rlss
Fre 1 0 -1 0 1 0 -1 Ofse
LFr7 L1 r 0 -r -1 —r 0 rfs;]

Giving roman letter names to vectors and boldface names to

[EEE Computer Graphics & Applications

matrices, we can condense this to
Fr=Rs

1 really wanted to write the matrix equation transposed, as a
row vector times the matrix. That would make the condensed
version look more like the summation version. But two eight-
element row vectors don’t fit on the page very well, so we’ll
have to use the column-vector notation.

Anyway, now let’s write the imaginary part of the DFT as a
matrix

Fyy 00 0 0 0 0 0 O0fs]
Fy 0 r 1 r 0 -r -1 -r|s
Fp, 0 1 0 -1 0 1 0 -ifs,
Fsl_| 0 r =1 r 0 -r 1 -r|s
Fal”]0 0 o0 0 0 0 Ofs,
Fis 0 -r 1 -r 0 r =1 rfss
Fje 0 -1 0 1 0 -1 0 1fs,
Fol Lor 0 0 r 1 rfs)

Naming the vectors and matrix, we get
F,=Ss

Let’s pause to observe some patterns in the elements of the
above two matrices. First, note that they are both symmetric
and are both singular (because of repeated rows). Each row
of R is a cosine function digitized at some sample rate, while
each row of § is a sine function digitized at the same rate. |
will call a row of such a matrix, plotted against its index, a
basis function.

A pair of corresponding rows from R and 8, when dotted
with the column vector of samples, gives the real and imagi-
nary part of the frequency response for that frequency: Row 0
(the top row) gives the amount of frequency 0 (also called the
DC component), row 1 gives the amount of frequency 1, and
so forth.

Note that there are lots of common terms in the arithmetic
for computing the matrix products. For example, the product
rs, shows up in rows 1, 3, 5, and 7. The fast Fourier transform
is simply an organized way of exploiting these common com-
putations.

The inverse DFT
The inverse transform is defined as

The reason this works can be easily seen in terms of matrix
products. The forward transform is the matrix

R-iS

July 1993

The matrix form of the inverse is
1 (R +iS)
8
Multiplying these two matrices gives

%((RR + 88) + i(SR - RS))

The basis functions for the Fourier transform (the rows of the
matrix) are orthogonal. That means that, if you take the dot
product of any two different rows, you get zero. This makes
the product of R times R and of S times S easy to calculate
(recall that they’re symmetrical). The result is quite pretty:

8 0 0 0 0 0 O 0}
0 4 0 0 0 0 0 4
0 0 4 0 0 0 4 0
0 0 0 4 0 4 0 0
RR=10 0 0 0 8 0 0 0
0 0 0 4 0 4 0 0
0 0 4 0 0 0 4 0
0 4 0 0 0 0 0 4
The square of the § matrix is
00 0 0 0 0 0 0
0 4 0 0 0 0 0 —4
PO 0 4 0 0 0 -4 0
Gs| 0 0 0 4 0 -4 0 0
00 0 0 0 0 0 0
0 0 0 -4 0 4 0 0
0 04 0 0 0 4 0
L 04 0 0 0 0 0 4

Note that some rows of R and S are identical, otherwise their
squares would be diagonal matrices. Anyway, add these ma-
trices, divide by 8 and, voila, an identity matrix.

Now how about the imaginary component? Well, the prod-
uct of R and S is all zeroes because you always get different
rows when picking one each from R and S.

A more compact form

The eight-element DFT takes a list of eight numbers and
produces 16 numbers (eight real and eight imaginary coeffi-
cients). This seems to violate the law of conservation of infor-
mation. We expect to start with eight numbers into the DFT
and get eight independent numbers out. And that’s really
what happens. Note that, in matrix R, row 3 equals row 5, row
2 equals row 6, and row 1 equals row 7 (we start numbering
from zero). In other words, rows 5, 6, and 7 give redundant
information; there are only 5 independent rows. Likewise, in
matrix S, row 0 and row 4 are really boring, row 3 equals mi-
nus row 3, row 2 equals minus row 6, and row 1 equals minus
row 7; so only rows 1, 2, and 3 give interesting information.

79

FRO

ARAURLbL

Figure 1. Basis functions for the discrete Fourier transform (labeled with the coefficients they generate).

Let’s formulate a transformation matrix that just generates
the interesting information from the DFT. We can define a
new output vector containing just the unique elements of F:
F,, the real and imaginary parts of F,, Fy, and F;, and the real
part of F,. This gives us

[Fro | r+ 11 1 1 1 1 1}'5'01
Rl 1 r 0 -r -1 -r 0 riis§
Fy o r 1 r 0 —-r -1 -ris;
Fe|l |1 0 -1 0 1 0 -1 0} s,
F,|”l0o 1 0-1 0 1 0 1| s,
Frs 1 -r 0 r -1 r 0 -rjss
Fyy 0 r -1 r 0 -r 1 -rjss
{FMJ 1 -1 11 1 -1 1 -1_LS7J

Let’s call this gigantic matrix F. Row 0 gives the DC compo-
nent. Rows 1 and 2 are digitized cosine and sine at frequency
1. Rows 3 and 4 are digitized cosine and sine at frequency 2.
Rows 5 and 6 are digitized cosine and sine of frequency 3.
Row 7 is a cosine of frequency 4. Figure 1 shows a plot of all
eight of these basis functions. In these plots, I overlaid the
curve of the continuous sines and cosines for reference.

We can also think of the results of this transform in terms
of magnitudes and phase angles. We geta magnitude for
frequencies 0, 1,2, 3, and 4, and we get phase angles for fre-
quencies 1,2, and 3. The phase of frequencies 0 and 4 are
implicitly zero.

Figure 2. Centering of the discrete cosine transform basis function G,.

Qriginal 8 points

Reflected 8 points

center
of pixels

80

There’s something special about this matrix. Can you find
it2 It’s based on the orthogonality property of the basis vec-
tors. Orthogonality implies that muitiplying F times the trans-
pose of F gives you something that’s almost an identity
matrix. In particular, you get a diagonal matrix with the diag-
onal elements having values (8,4, 4, 4,4,4,4,8).T'lllet you
ponder this a bit, while I proceed to the DCT.

The discrete cosine transform

As I've indicated, the discrete Fourier transform generates
a complex valued result. We use the discrete cosine transform
as a way of doing frequency analysis without needing com-
plex numbers. There are two ways of thinking about how the
DCT does this: We either modify the signal or we modify the
basis functions.

The signal modification approach works as follows. First,
note that all imaginary components of the Fourier transform
come from multiplication by a digitized sine wave (an anti-
symmetric function) at some frequency. Specifically, each
row of matrix S is antisymmetric about column 4. If the signal
happened to be symmetric, that is, if 5, = s5, $, = S¢, and §3 =S5,
then all the terms would cance! out and all the imaginary
components would be zero. The DCT builds on this concept
with a few modifications. An eight-element DCT generates
an artificial symmetric 16-clement signal by appending a
reversed copy of the signal to itself. The DCT then performs
a variant of a 16-element DFT on the symmetric signal. The
variation, as illustrated in Figure 2, centers the 16-element
signal within the cosine or sine wave. (Of course, since the
signal is symmetric, we don’t have to do the left-hand and
right-hand arithmetic twice.) The result is eight unique
nonzero terms from the cosines and eight zero terms from the
sines.

In the basis function interpretation, we simply use basis
functions that are only cosines, but we also allow half integer
frequencies. That is, instead of using frequencies 0, 1,2,3,and
4, we use frequencies 0, 0.5, 1.1.5,2,2.5,3,and 3.5. Again, for
symmetry, we don’t start digitizing the cosine basis functions
at zero degrees, but at an offset of one half the pixel spacing.

This all boils down to an official definition of the DCT as

s 2x + 1
Gyio = %KMZSX cos((—i:ﬁlzl

x=0

where K, =2/2 and K, =1for u#0.

Now let’s discuss some of the details of this definition.
First, note the somewhat funny “subscripting” of the output
elements, G, 1 did this to label each output coefficient with
the frequency it stands for. I'll tell you the reason for the K|,
factor in a minute.

IEEE Computer Graphics & Applications

Table 1. Values of ¢;.
Angle Value
radians degrees precise numeric polynomial recursive
C 0 0 1 1 1 1
c, /16 11.25 %\/2 42+ 42 0.9807853 ¢, ¢
|
e | 2me 22.50 SV2 V2 0.9238794 2021 20,0,-Gy
Cs 3n/16 33.75 complicated 0.8314695 4¢3-3¢, 2¢,6,-¢
1 —
C4 4m/16 45 5 v 0.7071065 8ci-8c2+1 2¢,65-C,
Cs 5n/16 56.25 complicated 0.5555699 16¢5-20c$+5¢, 20,6,-C5
[—
Cs 6r/16 67.50 3 V2 -2 0.3826829 32¢%-48c4+18c3-1 2¢,¢—C,
c; 7n/16 78.75 7 V2-y2+42 0.1950897 64c7-112¢c5+56¢3-7¢, 20,65

The DCT formula only uses samples of the cosine function
spaced at integer multiples of /16, so we can see what is
going on a bit more easily by defining the function

Cc; = COS(ﬂ
i 16

You really need to know only the values from the first quad-
rant of the cosine function, ¢, . . . ¢;, since you can get the
cosine of all other angles by shifting and reflecting them back
to the first quadrant. I’ve listed these eight values in Table 1.
Since they’re important, I cataloged several ways to compute
them. Some of these might help speed up the computation,
but I’m not sure.

So, finally writing the definition of the DCT as a matrix
gives us

Gy Cy €4 C4 €4 C4 €4 C4 C4So
Gy € 63 G € —Cp =G —C =18
G, €, Cg —Cq —C; —C; —=Cq Cg Cy| S,
Gyjp|_ 1) 3 =¢; - =65 5 o ¢ =G5
G, 2| €4 —C4 —C4 Gy Oy —C4 —Cy Gyl Sy
Gs/a Cs =6 €7 € =€ —C; & —Cs5 | S5
G, Co €2 € =€ =Cq €3 —C3 Ce |56
>G7/2_ L €7 ¢ €3 —¢ ¢ —C (5 —c7ls7_

We’ll name the vector and matrix as follows:
G=Cs

A few notes: The factor 1/2 is built into the matrix C. I left it
outside for neatness when I wrote the explicit matrix. Also,
note that, according to the formula, the top row of the matrix
should be a row of the values Kyc,. Since K,=c,and ¢, =1,1
just used ¢, for the top row.

Perusing the matrix, we can see various patterns. For exam-
ple, if we ignore signs and treat the top row c, as a disguised
¢y, we see that each column contains each value of ¢; exactly
once. Each row of the matrix is a digitized cosine of frequen-
cies 0,0.5,1,1.5,2,2.5, 3, and 3.5. There is no wave at the
Nyquist rate of 4. Note that row 1 has one sign change, row 2
has two sign changes, and so forth. A plot of these basis func-
tions appears in Figure 3.

This matrix C is not symmetric, but it does have the orthog-
onality property. In addition, each row of the matrix dotted
with itself gives the value 1. (We invented the factor of K, to
make this true for the top row too.) In other words, matrix F
times the transpose of matrix F gives an identity matrix; the
transpose is the inverse. And what does this mean?

The DCT matrix is a rotation matrix in eight-dimensional
space.

Figure 3. Basis functions for the discrete cosine transform (labeled with the coefficients they generate).

Al

GO G1/2 GW G3/2

T

GZ G5/2 GS G7/2

July 1993

81

Original Ramp
a b

b + } + + I n 1 t I 4 4 1 + + n i
- T T T T T T T 1 ¥ Y T T T T Y T 1

Reconstruction from
truncated DCT c

Reconstruction from
truncated DFT

Figure 4. A comparison of the accuracy of truncated discrete cosine transforms and discrete Fourier transforms.

Among other things, this means that the Euclidean length of a
sample vector remains unchanged after rotation. So

ZG/Z'/Z :2 sj

This quantity is sometimes referred to as the energy of the
signal. The nice thing about both the DFT and DCT is that
they pack more of the energy into the lower order coeffi-
cients, so we don’t lose energy by dropping some of the high-
order coefficients.

Comparing the DFT with the DCT

Our compact form of the DFT—the matrix F—was almost
a rotation matrix. We can modify it a bit to make it exactly a
rotation by scaling the top and bottom rows by V1/8 and the
inside rows by V1/4. We would then have to define some
scaled frequency components like Foy=1/8 Fro, Fry =
MFM, and so forth, as a result of the transform. I wont
explicitly rewrite the matrix equation for this, but I will use
the pure rotation version in the example below.

The main point of comparing the DFT with the DCT is the
amount of arithmetic necessary. Note that, with the DFT, all
the multiplications involve the rather simple numbers 0,1, -1,
r, and —r. In fact, you can perform the compact DFT with only
four multiplications of r by sy, 53, 55, and s,, and a handful of
additions and subtractions. On the other hand, examining the
DCT matrix product reveals that we must calculate all possi-

ble permutations of products of ¢; with s,. That’s sixty four
multiplications.

Why is the DCT better?

The DCT is harder to compute, so there must be some
good reason for using it. I believe the reason can be simply
stated: We need fewer DCT coefficients than DFT coeffi-
cients to get a good approximation to a typical signal. The
whole reason for performing a transform is that we expect
that the higher frequency coefficients are small in magnitude
and can be more crudely quantized than the low-frequency
coefficients.

For example, consider a simple ramp function, shown in
Figure 4a. The DCT coefficients and the DFT coefficients
appear in Table 2. Now suppose, for compression purposes,
we keep only the three largest coefficients of each of these
transforms and then perform the inverse transform. The
result appears in Table 3 and is plotted in Figures 4b and 4c.
You can see that the DCT result is much better. This is basi-
cally because the DFT approximation is trying to model a
repeated ramp, or sawtooth wave. It has to devote a lot of
high-frequency coefficients to approximate the (actually
spurious) discontinuities from one copy of the wave to the
next. The DCT is effectively operating on a triangle wave,
one formed from the ramp alternating with its reflection.
There is no discontinuity and thus less need for high
frequency coefficients to model one. The DCT is thus better

Table 2. Transforms of ramp function. Table 3. Accuracy of truncated transforms.
S, DcT DFT Truncated DCT IDCT Truncated DFT IDFT
0 356.38 356.38 356.38 2.19 356.38 90.00
36 -213.92 -72.00 -213.92 31.95 -72.00 39.09
72 0.00 -173.82 0.00 73.46 -173.82 39.09
108 —24.24 -72.00 -24.24 110.11 0.00 90.00
144 0.00 -72.00 0.00 141.89 0.00 162.00
180 -7.23 -72.00 0.00 178.54 0.00 212.91
216 0.00 -29.82 0.00 220.05 0.00 212.91
252 -1.83 -50.91 0.00 249.81 0.00 162.00

82

IEEE Computer Graphics & Applications

equipped to model finite-length pieces of a function (eight
samples worth in our examples) that have fairly different
values on their right and left sides. In fact, you can do approx-
imate linear interpolation between any two endpoint values
of a pixel row by using just the two lowest-frequency DCT
basis functions.

The 2D DCT

Image compression uses a 2D DCT applied to blocks of 8 x
8 pixels. The 2D DCT consists of taking a one-dimensional
DCT of each column of pixels followed by a one-dimensional
DCT of each row of the result. As a result, this gives us an 8 x
8 matrix G. In matrix terms this is simply

G =FsF
where each term in the above equation is an 8 x 8 matrix.

Why is this interesting?

DCT-based image compression takes advantage of the fact
that most images don’t have much energy in the high-fre-
quency coefficients. Thinking of the DCT as an eight-dimen-
sional rotation gives us another way to look at this. Consider
a row of eight pixels as a point in eight-dimensional space.
Various rows of eight pixels from various images would make
a cluster of points in this space. For typical images, this cluster

July 1993

is not uniformly dispersed; it is squashed fairly flat in some
directions. The eight-element DCT rotates this cluster so the
flat directions line up along some of the coordinate axes. You
can then get away with representing the points of the cluster
(each of which represents a row of eight pixels) in a lower
dimensional space. The DCT doesn’t always find the flattest
direction, though. In fact, analyzing images for the direction
(in eight-space) where the cluster is flattest corresponds to
looking for other sets of basis vectors to use for a transforma-
tion. This is the idea behind what is called the Karhunen-
Loéve transform. The DCT comes pretty close to the
Karhunen-Loéve, though.

Finally, the representation of the DCT or DFT as a matrix
and the inverse transform as a matrix inversion bolsters my
far-reaching claim:

All problems in computer graphics can be solved with a
matrix inversion. Q

Further DCT reading
R.J. Clarke, Transform Coding of Images, Academic Press, San
Diego, 1985, Ch. 3, “Orthogonal Transforms for Image Coding.”

G.K. Wallace, “The JPEG Still Picture Compression Standard,”
Comm. ACM, Vol. 34, No. 4, April 1991, pp. 31-44.

Erratum

In my last column (May 1993, pp. 75-80), “A Trip
Down the Graphics Pipeline: The Homogeneous Per-
spective Transform,” reference 2 was incorrect. The
correct reference is

R.F. Riesenfeld, “Homogeneous Coordinates and Projec-
tive Planes in Computer Graphics,” IEEE CG&A, Vol. 1,
No. 1, Jan. 1981, pp. 50-55.

83

