
Abstract*

Multicast is a common method for distributing
audio and video over the Internet. Since receivers
are heterogeneous in processing capability, network
bandwidth, and requirements for video quality, a
single multicast stream is usually insufficient. A
common strategy is to use layered video coding with
multiple multicast groups. In this scheme, a receiver
adjusts its video quality by selecting the number of
multicast groups, and thereby video layers, it
receives. Implementing this scheme requires the
receivers to decide when to join a new group or
leave a subscribed group.

This paper presents a new solution to the
join/leave problem using ThinStreams. In
ThinStreams, a single video layer is multicast over
several multicast groups, each with identical
bandwidth. ThinStreams separates the coding
scheme (i.e., the video layers) from control (i.e., the
multicast groups), helping to bound network
oscillations caused by receivers joining and leaving
high bandwidth multicast groups.

This work evaluates the join/leave algorithms
used in ThinStreams using simulations and
preliminary experiments on the MBONE. It also
addresses fairness among independent video
broadcasts and shows how to prevent interference
between them.

1. Introduction
The use of multicast for transmitting video over

the Internet is well known. If the receivers of a
multicast video are heterogeneous in their
computational ability, network connectivity, and
need for video quality, multicasting a single stream

* This work is supported by funding from the US Air
Force, under contract F49620-94-1-0198

is undesirable. Schemes that require feedback from
the receivers do not scale well, as a “feedback
implosion” can occur if all receivers send feedback
to the sender. Bolot suggested a scaleable feedback
scheme where the minimum of the bandwidth
reported by the receivers, or some percentile of the
minimum (e.g., the bandwidth that 80% of the
receivers can support) is used as the sending rate [2].
For video transmission, such constant bandwidth
schemes usually waste bandwidth on some channels
or cause congestion on others (or both!).

A better solution to the heterogeneous receiver
problem is to use layered video coding and multiple
multicast groups (MMG). A layered video stream
consists of a base layer and several enhancement
layers. By transmitting the layers on different
multicast groups, receivers can adjust the quality of
the displayed video, and the associated computation
and network requirements, by joining or leaving
multicast groups. More layers leads to a better video
quality while fewer layers lead to reduced bandwidth
requirements. To implement this scheme, the
receiver must decide when to join or leave multicast
groups.

McCanne proposed a solution to the join/leave
problem called Receiver-driven Layered Multicast
(RLM) [6]. RLM assumes that the network provides
best effort service and supports IP multicast, and
uses the term session to denote the set of groups
used by a source to send layered video. Receivers in
a session drop layers when they detect congestion
and add layers when spare capacity is available.
RLM detects congestion by measuring packet loss
and uses join-experiments to detect spare capacity.
In a join-experiment, a receiver joins a group and
measures the loss rate over a time interval called the
decision-time. If the loss is too high, the receiver
leaves the group.

Thin Streams: An Architecture for Multicasting Layered Video
Linda Wu Rosen Sharma Brian Smith

lxwu@cs.cornell.edu sharma@cs.cornell.edu bsmith@cs.cornell.edu
Department of Computer Science

Cornell University
Ithaca, New York, 14853

The use of join-experiments can cause large
oscillations in network congestion because most
video compression schemes create high-bandwidth
layers. For example, suppose a receiver subscribes to
a group on which the source is sending data at rate
R, exceeding the capacity of an internal router.
After time T, the receiver detects excess loss and
drops the group. In the worst case, the buffer
occupancy (B) in the router is R*T, where T is the
sum of the join latency (tjoin), the leave latency (tleave),
and the measurement interval (I). T is bounded by
the properties of the Internet Group Membership
Protocol (IGMP) and, depending on the version of
IGMP, can be between a few hundred milliseconds
and a few minutes. Thus, if R is large (as is the case
in video transmission), excess congestion will occur
in the routers, leading to large oscillations in
network congestion.

The real problem here is that the video codec
determines the bandwidth used for the join-
experiments, whereas it should be related to the
network parameters. In our solution, we divide a
thick stream (a video layer) into many thin streams,
each of which is sent on a separate multicast group.
The ThinStreams architecture reduces R, avoiding
excess oscillations in congestion typically caused by
a join experiment.

Using MMG for video transmission raises other
issues. For example, when a network link is shared
by independent sessions, the link bandwidth should
be fairly distributed among the session. Our join-
leave rules achieve link sharing by making the
receivers that have joined few groups more
aggressive in join experiments than the receivers that
have joined many groups.

If two receivers that share a link conduct join
experiments at the same time, they will skew each
other’s results. However, receivers on the same
session should conduct join experiments at the same
time, so they do not overload the network for
excessively long periods. ThinStreams achieves
these goals by sending a clock signal in the base
layer of the video stream. The clock sequence is a
pseudo-noise sequence with a long period, and
receivers only join groups at a clock transition. This
solution allows receivers in the same session to
conduct their join experiments in synchrony, but
prevents receivers in different sessions from

conducting their experiments simultaneously, with
high probability.

The rest of the paper describes and evaluates
ThinStreams in detail. Section 2 reviews related
work. Section 3 describes our join-leave algorithm.
Section 4 discusses our approach to scalability,
section 5 describes how we determine IGMP leave
latency (an important parameter of our architecture),
section 6 reports the results of simulations and
experiments that evaluate ThinStreams, section 7
discusses further issues raised by ThinStreams, and
section 8 concludes the paper.

2. Related Work
Our work addresses the problem of dealing with

heterogeneity among the receivers of a multicast
group and also how each receiver adapts to the
changing network conditions. Related work
includes work on unicast and multicast video
distribution with layered codecs.

Several unicast video distribution systems have
studied the problems associated with storing a
scaleable video stream on a server [9, 10, 11, 12].
The server receives feedback from the client or the
network, and adapts the transmission rate based on a
control algorithm. These algorithms must interact
gracefully with other receivers that may be using the
same algorithm or another congestion control
algorithm (e.g., TCP).

Deering first suggested that IP multicast be used
with layered video coding, mapping layers onto
multiple multicast groups (MMG) [5]. Several
researchers have presented layered compression
algorithms [4,8] and suggesting using MMG, but
they do not specify algorithms for joining and
leaving multicast groups.

An important exception is McCanne's Receiver-
driven Layered Multicast (RLM) [6], which comes
closest in spirit to our work. McCanne explores
algorithms to join and leave groups within a session
(the set of groups used for by a source to send
layered video). McCanne uses packet loss to detect
congestion and join-experiments to determine when
excess capacity is available. If the number of join-
experiments is allowed to grow with the number of
receivers, the network will be constantly overloaded.

Using a protocol like RTCP (Real Time Control
Protocol) [7] reduces the number of join
experiments. Although this allows the protocol to
scale, it slows down the convergence of the
receivers. RLM therefore uses shared learning to
improve convergence. A receiver advertises its
intention of conducting an experiment to other
members of the group. Only receivers that want to
conduct join-experiments for layers below or equal
to the one advertised actually conduct their
experiments, and receivers share the results of the
experiments.

ThinStreams differs from RLM because it
explicitly address link sharing and de-couples the
bandwidth of the unit of network control (the
multicast group) from the video encoding scheme.

3. Rules for Joining and Leaving
Multicast Groups

The problem of joining and leaving groups is
central to the MMG architecture. This section
discusses the join-leave algorithm used in
ThinStreams.

A simple join-leave algorithm is for the receiver
to join a group and then leave if it detects excessive
loss. This process is called a join-experiment.
However, a failed join-experiment (i.e., one that
overloads a link) will cause loss in other groups
sharing the overloaded link, such as independent
sessions sharing the link or the lower layers in the
same session.

This problem is exasperated by the relatively
high bandwidth used in most layered video coding
systems. When such a group is added in a join
experiment, the network buffering (about 4-8 KB for
the Internet [1]) is usually insufficient to absorb the
resulting congestion caused during the join
experiment. For instance, if a 256 Kbps layer is
added in a 2 second join experiment, the network
must buffer up to 64 KB to avoid loss.

We can reduce the adverse effects of failed join
experiments by making two changes to this simple
algorithm. First, we must limit the bandwidth used
in a join experiment so that network buffering can
absorb the temporary overload induced when the
experiment fails. Second, we must use a mechanism

other than loss to detect network overload. These
two ideas are the key insights of the ThinStreams
architecture, and are elaborated in the following
subsections.

3.1 Thin Stream Bandwidth
To limit the bandwidth of a layer, ThinStreams

splits a video layer (a thick stream) into several fixed
bandwidth thin streams. We discuss the interaction
of the ThinStreams architecture and the video codec
in section 7.

The thin stream bandwidth, R, is easily
calculated. If B is the buffering in the network and T
is the duration of the join experiment, then the
buffering required to prevent loss is

TRB ⋅≤ [1]

Using B=4 Kbytes for the Internet (as in TCP Vegas
[1]) and a conservative value for T (2 seconds), we
get R=16 Kbps. Since the values of T and B depend
on network parameters, such as the latency between
joining and leaving a multicast group and the
amount of buffering in the network, R can be
different for each receiver. Therefore the values for
T and R are computed at the source based on
conservative estimates and sent in the base layer. In
our simulations we used 16 Kbps for R.

Of course, such conservative parameters may be
inappropriate for some receivers. For example, if a
receiver is on the same LAN as the source, it can
safely conduct join experiments using much thicker
streams than more remote receivers. Such nearby
receivers achieve this effect by subscribing to
several thin streams as part of one join experiment.

3.2 The Join-leave Algorithm
Each receiver conducts independent join

experiments to add or remove thin streams. If the
receiver uses loss to detect overload during a join
experiment, a failed experiment may adversely
affect other sessions using the shared link. To avoid
such adverse effects, ThinStreams does not use loss
to detect channel overload. Instead, it uses the
difference between the expected and measured
throughput, a solution that was inspired by TCP
Vegas [3].

TCP Vegas uses the difference between the
measured throughput and the expected throughput to
control the size of the TCP window. In TCP Vegas,
the measured throughput is WindowSize/RTT, where
RTT is the measured round trip time, and
WindowSize is the size of the TCP window. The
expected throughput is WindowSize/BaseRTT, where
BaseRTT is the minimum RTT seen so far. The
difference between these quantities corresponds to
the amount of buffering in the network and, by
adjusting WindowSize, is kept between 4-6 KB [1] .
The advantage of this scheme is that, in the ideal
case, it detects congestion before loss has occurred,
and therefore causes less congestion than schemes
that use loss for flow control.

Similarly, in ThinStreams the receiver uses the
difference between the measured throughput and the
expected throughput to make its join-leave decision.
If the difference is large, then the link can not
support the extra layer, and the group is dropped. If
the difference is small and a join-experiment has not
been conducted recently, the receiver joins a new
group. This algorithm is shown in Figure 1 (the
choice of join_threshold,
leave_threshold, and hold_off_time are
discussed in section 3.3).

In this algorithm, the receiver continuously
monitors two quantities, the expected received
bandwidth (E) and the actual received bandwidth
(A). The receiver computes A by measuring the
number of bytes it receives in a measurement
interval (in our tests, it was one second) and
averaging the values thus obtained to reduce
measurement noise. E is the product of the
bandwidth of each group and the number of groups

joined, averaged so that E matches A if there is no
loss in the network.

If the difference between E and A is greater than
a threshold value (leave_threshold), the
receiver drops the group corresponding to the
highest layer. If the difference is below a threshold
value (the join_threshold) and the receiver has
not conducted a join experiment recently (within the
last hold_off_time seconds), it joins the group
corresponding to the next layer.

3.3 Fairness and Convergence
Ideally, the join-leave algorithm should achieve

two goals besides avoiding excessive loss in the
network during join experiments. First, it should
fairly allocate bandwidth among independent
sessions sharing a link. Second, it should converge
quickly, but avoid rapid oscillations in the number of
groups joined that may adversely affect perceived
video quality. It turns out that we can achieve both
goals by carefully selecting the values for
join_threshold, leave_threshold, and
hold_off_time.

Figure 2 illustrates the link-sharing problem. In

S1

S2

R1

R2

1-3

1-7

Figure 2. The link-sharing problem

R = thin stream bandwidth (from base layer)
I = measurement interval
N = number of bytes received in measurement interval
G = number of groups joined

A = α*A + N*(1-α)/I
E = α*E + G*R*(1-α)
leave_threshold = G*R*exp((1-G)/8)

join_threshold = G*R*β
hold_off_time ∝ G
if ((E - A) > leave_threshold)) then leave()
if ((time elapsed since last leave > hold_off_time) &&
 ((E - A) < join_threshold)) then join()

Figure 1: The ThinStreams join-leave algorithm

this example, R1 is subscribed to groups 1-3 of
source S1 and R2 is subscribed to groups 1-7 of
source S2. In order for both receivers to receive
equal portions of the shared link, R2 must leave two
groups and R1 must join two groups (assuming the
groups have equal bandwidth, as in ThinStreams).

We enforce link sharing by adjusting the
leave_threshold based on the number of
groups a receiver has joined. The more groups a
receiver has joined, the lower the leave threshold.
For example, if R1’s leave threshold is higher than
R2’s, then R2 will drop groups and R1 will add
groups. We compute a receiver’s
leave_threshold as an exponentially
decreasing function of the number of G, the number
of subscribed groups. Specifically, we use

leave_threshold = G*R*e(1-G)/8

For the first layer (G=1), leave_threshold is
the bandwidth of one thin stream (R). It decreases
exponentially as more groups are joined. The
constant 8 was determined experimentally, and
could be set to other values to achieve different
fairness policies. For example, if we change it to the
number of groups in the session, then the bandwidth
is proportionally shared among independent
sessions.

To improve convergence when a receiver starts
up (i.e., when few layers are joined), we set
hold_off_time proportional to the number of
subscribed groups. This causes receivers that are
subscribed to few groups to conduct join-
experiments more often than receivers subscribed to
many groups, accelerating convergence. It also
causes receivers that are using little bandwidth to be
more aggressive than receivers using a lot of
bandwidth, promoting fairness.

4. Synchronization among Receivers
Scalability is a problem in all systems that use

join experiments. Figure 3 illustrates the problem.
Receivers R1 and R2 are subscribed to the same
session from source S, and the shared link is the
bottleneck. If both receivers conduct join-
experiments independently, they will overload the
shared link twice as often as a single receiver. If a
large number of receivers are downstream from the
bottleneck link, receivers conducting join-
experiments will almost always overload that link if
the experiments are not coordinated in some way.

ThinStreams solves this problem by
synchronizing the start of join-experiments within a
session. The synchronization is achieved as follows.
The source sends a clock pulse in the base layer and
receivers wait for a zero to one transition of the
clock to a start the join experiment. We call this
clock the ThinStreams clock. Although the
propagation delay of the ThinStreams clock may
cause some skewing in the start time of the join
experiments, the period of the clock and duration of
the experiments are long enough (several seconds)
that the skew is unimportant.

In contrast, when several independent sessions
share a bottleneck link (as in Figure 2), their join
experiments should not be synchronized. If two or
more join experiments occur simultaneously, the
bandwidth of the bottleneck link will increase by
more than the thin stream bandwidth R, causing
exactly the type of congestion that ThinStreams tries
to avoid. To de-synchronize the join-experiments of
independent sessions, the ThinStreams clock pulses
are generated using a pseudo noise (PN) sequence
whose seed is the IP address of the source
concatenated with a random number. Since two

S

R1

R2

Figure 3. The Scaling Problem 0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5

Tij (ms)

T
p

 (
m

s)

Figure 4. Estimating leave latency in IGMP

pseudo noise sequences are uncorrelated, the join
experiments among receivers of different sources
rarely overlap.

5. Estimation of Leave Latency
The time to join and leave multicast groups is an

important parameter in ThinStreams, since it
determines the bandwidth of the thin streams. In
version 1.0 of IGMP, the leave latency could be as
large as two minutes. In version 2.0 it is
configurable, with a minimum of 300 ms. Our
experience on the Internet showed that the latency
varied considerably depending on which
implementation of IGMP was being used. The
minimum leave latency is a property of the router
that acts as the IGMP querier on the network. It does
not vary with time, thus can be determined once and
given as a parameter to the receivers. To determine
leave latency, we use a probing technique similar to
the one used to measure the cache line size on a
processor. A receiver leaves a multicast group and
then joins it again after time tlj. After joining it
receives the first packet after time tp. Fig 4 shows the
effect of increasing tlj on tp. The knee in the curve
represents the time at which the prune is sent
upstream by the router. Until the prune is sent tp

remains small as the packets are already being
transmitted on the local network. If the prune is sent
before the receiver rejoins the group, join needs to

be propagated upstream, leading to a higher value
for tp. The value of tlj at the knee of the curve is used
as an approximation for the leave latency.

6. Experimental Evaluation
We evaluated ThinStreams using both simulation

experiments and the MBone. For the simulation
experiments, we modified the REAL 4.0 simulator
[15] to simulate IP-multicast. This section reports
the results of those studies.

6.1 Simulation
We simulated ThinStreams on different

topologies to stress different aspects of its join-leave
algorithm. In all simulations, the bandwidth of each
thin stream was 16 Kbps, and the packet size was
256 bytes. The averaging interval was 1 second
(implying 8 packets per measurement interval), and
the IGMP leave latency was set to 500 ms.

In the first topology (Figure 5), we wanted to test
how the algorithms behaved in a network where only

S R
68Kbps

Figure 5. Topology 1

0

1

2

3

4

5

6

0 100 200 300

Time (ms)

T
hi

nS
tr

ea
m

s
S

ub
sc

rib
ed

Figure 6. Simulation results for topology 1

B B/2 B/2 B/4

R1 R2 R3 R4

Figure 7: Topology 2 (B = 512 Kbps)

one receiver is connected to a bottleneck router. The
bandwidth of the bottleneck link is 68 Kbps. Since
each thin stream is 16 Kbps, we would expect the
receiver to join 4 groups. Figure 6 plots the number
of thin streams joined as a function of time. As
expected, the receiver quickly subscribes to four thin
streams, but there is not enough capacity to support
the fifth stream. Thus, it’s repeated attempts to join
the fifth thin stream fail.

Our second experiment used the topology shown
in Figure 7. It examined the performance of the
algorithm with many receivers subscribing to the
same source. The receivers have different bottleneck
bandwidths and latencies to the sender. There are
four clusters of receivers, each having 32 receivers,
and identified by their representatives R1, R2, R3 and
R4. The links between routers have a latency of 50
ms. Figure 8 shows the number of groups to which
R1, R2, R3 and R4 subscribed as a function of time.
The plots for other recipients in the same cluster are
similar. R1 subscribes to 20 groups as the source is
sending only 20 groups. R2 and R3 both subscribe to
15 groups corresponding to 256 Kbps of bottleneck
bandwidth and R4 subscribes to 7 groups. It can be
also observed from the plot that the clock sequence

helps to synchronize the experiments.

Our experiments with topology 3 (Figure 9)
studied the interaction between independent sources
using ThinStreams. Groups of receivers identified by
R1, R2 and R3 subscribe to sources S1, S2 and S3

respectively. Figure 10 shows the average bandwidth
received by each receiver. Again, the plots for other
receivers in the same cluster are similar. R1 initially
joins sufficient groups to grab the 200 Kbps of
available bandwidth. It gives up half the bandwidth
for R2 when R2 subscribes to the its source. Both R1

and R2 give up bandwidth for R3 when it subscribes
to the S3. The slight difference in the allocation of
bandwidth is due to the fact that the receivers enter a
meta-stable state where they are not getting enough
bandwidth to join a higher group, but are getting
enough bandwidth not to leave the present group.
We encountered this problem in our simulations, but
not on experiments on the MBone. We conjecture
that oscillations on the MBone caused by other
traffic destabilize the meta-stable state.

6.2 MBone Experiments
We ran experiments using the MBone to verify

our simulation results. Our experiments were limited
by the difficulty of finding hosts that had been
upgraded to the latest version of the IGMP protocol.
Most hosts are still running older versions detects
leaves passively, thus leading to high leave latencies.
The results presented here are from a series of
experiments1 done between hosts in Berkeley and
Cornell. The topology of several relevant hosts in
the MBone route at the time of the experiment is
shown in Figure 11. We started two sources on

1 Other experiments conducted between University of
Delaware and Cornell are similar.

0

5

10

15

20

25

0 100 200 300 400 500
Time (ms)

T
hi

nS
tr

ea
m

s
S

ub
sc

rib
ed

R1

R2

R3
R4

Figure 8: Results for topology 2

S1

S2

S3

R1

R2

R3

200 Kbps

Figure 9: Topology 3

0

50

100

150

200

250

0 200 400 600
Time(ms)

A
ve

ra
ge

 R
ec

ei
ve

d
B

an
dw

id
th

[K
bp

s]

R1

R3R2

Figure 10: Results for topology 3

bugs-bunny.cs.berkeley.edu and two receivers (R1

and R2) at Cornell. Each source produced ten thin
streams to which the receivers could subscribe. We
used an on/off TCP source for cross-traffic.

The results of the experiment are shown in Figure
12. Both receivers are able to share the link capacity
and give up bandwidth equally when cross traffic is
introduced. For the first 15 minutes of the test, the
link was lightly loaded and both receivers subscribe
to the maximal number of streams (10). The periodic
dips in the bandwidth are due to cross traffic
produced by our on/off TCP source. Also note that
R1 occasionally subscribes to more groups than R2

and that the pattern is switches later. This behavior is
due to the different clock sequences that are sent by
the source. In the short term one source may gain
unfairly over another, but the algorithm is fair over
longer time frames. As multimedia sessions are
usually long this is not a major issue.

7. Discussion and Future Work
One question raised by ThinStreams is which

compression algorithms can exploit the ThinStreams
architecture. Some existing codecs, like SPHIT [14]

(an enhancement of Embedded Zero Tree Wavelets)
and HVQ (Hierarchical Vector Quantization [13]),
can be easily split into thin streams.

Others, such as Motion JPEG [28], MPEG [11],
H.261, Haar (NV [10]) require large jumps in
bandwidth to obtain significantly different end
quality. When inter-frame differential coding is used
(such as in H.261 or MPEG), the base layer is
usually a high bandwidth stream, reducing the value
of layering. JPEG can be adapted to ThinStreams by
removing the inter-block dependencies (in JPEG,
this corresponds to not differentially encoding the
DC term) and adding a block address so the decoder
knows where to place the decoded block data in the
output image. In other words, the source can put,
say, 10 blocks per frame in each thin stream and
arrange for the blocks to be independently decodable
and displayable. The grouping of blocks into layers
could be based on conditional block replenishment
considerations. These ideas require further research
and are beyond the scope of this paper.

Splitting a thick stream into many thin steams
introduces overhead at the receiver. The receiver
must manage many groups and, in some cases,
reassemble the thick stream. For an embedded codec
assembling the thick stream is not a difficult task. If
ThinStreams is implemented as a network layer, the
API between the decoder and the thin stream
architecture is an interesting problem. We propose
that the source specify a mapping of thin streams to
thick streams in the base layer. For example, it
might specify that it can use thin streams grouped as
1-3,4-7,8-9,10-16. This means that although the
ThinStreams layer in the receiver might have joined
4 groups, the decoder will only receive the first 3
groups (which correspond to a whole layer). Other
optimizations are possible. For example, on leaving

bugs-bunny.cs.berkeley.edu

mr1.lbl.gov

llml-mr2.es.net

mbone.nsi.nasa.gov

cs-vbns.tc.cornell.edu

mbone-248.cs..cornell.edu

R1 R2

Indicates links with
intermediate hosts deleted

Figure
11:Topology for MBone experiments

0

2

4

6

8

10

12

0 10 20 30 40

Time (min)

T
hi

nS
tr

ea
m

s
su

bs
cr

ib
ed

R2

R1

Figure 12: Experiments results for MBone

one thin stream a receiver might drop all layers of
the corresponding thick stream, then add them one at
a time. These issues are important and will be
addressed in future work.

One of the disadvantages of using ThinStreams is
slow convergence. Since ThinStreams splits a video
layer among many multicast groups, each of which
must be joined separately, many groups must be
joined before the video quality increases
significantly. Our experiences with video perception
[9] show that users do not want the video quality to
oscillate rapidly but prefer it to change more slowly.
Thus, we conjecture that the slow rate of
convergence will not be a problem in practice.

We will continue tuning the algorithm and
architecture. A few enhancements are:

• If successive joins fail, the link is most likely
saturated and join experiments should be done less
frequently. This enhancement can be
implemented by linearly increasing the
hold_off_time parameter when a join-
experiment fails, and resetting it to a base value
when a join-experiment succeeds.

• Using a dynamic value of α for exponential
averaging of expected bandwidth (Figure 1).

• Determine the ideal thin stream bandwidth for a
group of heterogeneous receivers using feedback
to the source. The feedback should specify the
leave latency that a receiver has experimentally
determined, and the source should set the thin
stream bandwidth based on the maximum leave
latency of any receiver.

In future work we will study the interaction of
ThinStreams with other protocols like TCP. We will
also explore the problem of designing a codec that
makes efficient use of this architecture. For example,
we will search for a good scheme where the relative
increase in bandwidth with the addition of each thin
stream is constant might correspond to a uniform
increase in perception.

8. Conclusions
In this paper, we presented a new architecture for

using layered video compression schemes with
multiple multicast groups for scaleable video

delivery. The ThinStreams architecture de-couples
network control and the video codec to prevent
excessive congestion in the network. The scheme
scales well, and shares bandwidth among receivers
within a session and between independent sessions.

References
[1] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan,
“Evaluation of TCP Vegas: Emulation and Experiment,”
Proceedings of ACM Sigcomm, 1995
[2] J. C. Bolot, T. Turletti, and I. Wakeman, “Scalable
feedback control for multicast video distribution,”
Proceedings of ACM Sigcomm, September 1994.
[3] L. S. Brakmo, S. W. O'Malley, and L. L. Peterson,
“TCP Vegas: New Techniques for Congestion Detection
and Avoidance,” Proceedings of ACM Sigcomm,
September 1994
[4] N. Chaddha and A. Gupta, “A framework for live
multicast of video streams over the Internet,” Proceedings
of IEEE Conference on Image Processing, September
1996
[5] S. Deering. “Internet multicast routing. State of art
and open research issues,” MICE Seminar, Stockholm,
October 1993.
[6] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-
driven Layered Multicast,” Proceedings of ACM
Sigcomm, 1996
[7] H. Schulzrinne and S. Casner, “RTP: A transport
Protocol for Real-Time Applications”, Internet Draft,
draft-ietf-avt-rtp-04 October, 1993,
[8] S. Cheung and A. Zakhor, “Scalable Video
Compression With Motion Compensated Prediction,”
IEEE International Conference on Image Processing,
Washington D.C., Oct 1995.
[9] M. Gilge and R. Gusella, “Motion video coding
for packet switched networks -- an integrated
approach,” Proceedings of the SPIE conference on
Visual Communications and Image Processing,
November, 1991.

[10] H. Kanakia, P. P. Mishra, and A. Reibman, “An
Adaptive Congestion Control Scheme for Real Time
Packet Video Transport,” Proceedings of ACM SigComm,
1993.
 [11] P. Pancha and M. El Zarki, “Prioritized
Transmission of Variable Bit Rate MPEG Video,”
Proceedings of IEEE Globecom, December 1992.
[12] A. R. Reibman and A. W. Berger, “On VBR Video
Teleconferencing over ATM Networks,” Proceedings of
IEEE Infocom, 1992
[13] N. Chaddha, “Hierarchical Vector Quantization,”
Data Compression Conference, 1994.

() mm /12 −φ

[14] A. Said and W. A. Pearlman, “A New Fast and
Efficient Image Codec Based on Set Partitioning in
Hierarchical Trees,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 6, pp. 243-250, June
1996.
[15] S. Keshav, REAL simulator (software on-line)2

Appendix A. Pseudo Noise Sequences
Pseudo noise sequences belong to the family of

functions that can be implemented by a linear
feedback shift register (LFSR) as shown in Figure
13. A LFSR is fully characterized by its state vector
S, which is given by (sm-1 , sm-2 , sm-3 ,, s3, s2, s1).
The system takes no input except for the initial state
vector. At each clock cycle the LFSR generates 1 bit
of output and shifts the state vector to the right. An
LFSR is said to have a period T if its output repeats
itself with after T clock cycles.

The characteristic function of a LFSR is defined
as the binary polynomial of degree m

1...)(2
2

1
1 +++++= −

− xxaxaxxP m
m

m

where the aI’s are exclusively from the binary field
{0,1} and all arithmetic is modulo 2. We define the
sequence generated by a binary polynomial as the
sequence generated by the LFSR with this
polynomial as the characteristic function.

LFSR’s can be used to generate clock sequences
by initializing the state vector with the address of the
source. We are interested in LFSRs whose
characteristic functions are primary polynomials. A
primary polynomial is said to be a binary
polynomial is a primary polynomial that cannot be
expressed as a product of two or more binary
polynomials of degree greater than 1 and the
sequence generated by P(x) has a period of 2m-1.
Primary polynomial have several properties,

including

1. The sequence generated by the polynomial has an
equal number of zeros and ones.

2. Sequences generated from different initial state
vectors have low correlation.

3. The number of primary polynomials of degree 2m

for a given degree m are given by

where φ is the Euler function.

Properties 1 and 2 allow us to separate the
collisions between the experiments of two sources.
Property 3 allows us to choose the polynomial to use
at run time. In using the pseudo noise sequences as
clock, we will use the edge transitions as clock
pulses. It can be shown that the sequence of
transitions of a pseudo noise sequence also forms a
pseudo noise sequence.

2 http://minnie.cs.adfa.oz.au/REAL/index.html

sm-2 sm-3 s4 s3 s2 s1

 a1 a2 a3 am-2 am-1

sm-1

Figure 13. Linear Feedback Shift Registers (ai , si ∈ {0,1}).

