Sample problems for CS3 Midterm 2
(taken from Fall 05)

Problem 4. (3 / 6 points): It was a dark and mysterious recursion…

Consider the recursive procedure gather that takes a sentence of at least two single-character words (i.e., letters such as 'a', 'b', etc.):

;;; sent-of-ltrs is a sentence of at least 2 words that are single letters
(define (gather sent-of-ltrs)
 (cond ((empty? sent-of-ltrs) '())
 ((empty? (bf sent-of-ltrs))
 (se (first sent-of-ltrs)))
 ((equal? (first (first sent-of-ltrs))
 (first (bf sent-of-ltrs)))
 (gather (se (word (first sent-of-ltrs)
 (first (bf sent-of-ltrs)))
 (bf (bf sent-of-ltrs))))
 (else
 (se (first sent-of-ltrs)
 (gather (bf sent-of-ltrs))))))

Part A (3 points). What will (gather '(a b b b c d d)) return?

This expression returns (a bbb c dd).

-1: A common mistake was to return (a bb b c dd). Note that in the third case of gather, if the first two letters are equal, they are formed into a word and passed into gather again. The letters are not extracted until the next letter is different.

-2: Another mistake was to return the argument as is: (a b b b c d d).

-3: No points were given for the answer: (a b c d). No letters from the argument should have been removed.

Some of you put down '(a bbb c dd) with a quote in front. No points were taken off for this. When we ask for a return value, make sure you put down whatever sTK would return, which is without the quote.
Part B (6 points). Write \texttt{gather-hof}, which behaves the same as \texttt{gather} but uses no explicit recursion.

Solution:

\begin{verbatim}
(define (gather-hof sent)
 (accumulate
 (lambda (new so-far)
 (cond ((not (sentence? so-far))
 (if (equal? new-so-far)
 (se (word new-so-far))
 (se new-so-far)))
 ((equal? new (first (first so-far)))
 (se (word new (first so-far)) (bf so-far)))
 (else (se new-so-far)))
 sent))
\end{verbatim}

-2: If you did not take into consideration that \texttt{so-far} could be either a word or a sentence. This is similar to the trick we used in the diagonal homework with the \texttt{position} procedure.

A few of you did a cool trick where the \texttt{so-far} variable is always sentenced. This guarantees that \texttt{so-far} would consistently be a sentence, eliminating the need to check for it being a word or sentence, or the case of taking the \texttt{bf} of a word. In this case, an \texttt{if} with two cases would be sufficient:

\begin{verbatim}
...(lambda (new so-far)
 (if (equal? new (first (first (se so-far)))
 (se (word new (first so-far)) (bf (se so-far)))
 (se new so-far)))
\end{verbatim}

-2: If you did not use \texttt{accumulate} correctly.
1: If the equality check was on only (first so-far). We must use (first (first so-far)) here. Consider the case of so-far being (bb c d): it is just the letter b that we want to compare new to, not the entire word bb. Also, consider the case of so-far being (b c d): the letter b would still be returned from (first (first so-far)) because (first 'b) is still b.

-.5 to -2: If the sentence/return value of lambda is not correct. The number of points taken off depended on how far your answer deviated from the correct solution. One point was taken off if the return value was only (se so-far), discarding new if they were not equal. One point was also taken off if (se (word new (first so-far))) was returned, forgetting about (bf so-far).

Some of you kept the cond (the first two cases) from the given recursion code, and called accumulate in the else case. This was unnecessary! The problem guarantees that the argument given to gather is a sentence of at least two single-character words. No points were taken off for this in this particular problem. However, if you used a cond, but did not correctly include the call to accumulate, say, put it into else, one point was taken off for this.

REMEMBER: wd is not the same as word A good number of you still make the procedure call (wd new so-far). Make sure you know that wd is not a procedure. The procedure you want to use is word. SPELL IT OUT! If you were to type it into sTK, you would get an unbound variable error because wd does not exist! No points were taken off for this, but we might in the future!
Problem 5. (9 points): Does money grow on tree recursions?

Consider a set of three coins: a penny, worth 1 cent; a nickle, worth 5 cents; and a dime, worth 10 cents. Write a procedure named possible-amounts which takes a number n, and returns a sentence of all the possible amounts that any n coins of these three types can make. For instance

<table>
<thead>
<tr>
<th>(possible-amounts 1)</th>
<th>➞</th>
<th>(1 5 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(possible-amounts 2)</td>
<td>➞</td>
<td>(2 6 11 10 15 20)</td>
</tr>
<tr>
<td>(This includes two pennies, a penny and a nickle, a penny and a dime, two nickels, a nickle and a dime, and two dimes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(possible-amounts 3)</td>
<td>➞</td>
<td>(3 7 12 11 16 21 15 20 25 30)</td>
</tr>
</tbody>
</table>

Fill in the blanks to make the definition of possible-amounts work correctly:

```scheme
(define *coin-amounts* ______'(1 5 10)_________)
(define (possible-amounts n)
  (pa-helper *coin-amounts* n))
(define (pa-helper coins n)
  (cond ((<= n 1) ______coins_______)                 ;; base case 1
    ((empty? coins) ______'()__________)           ;; base case 2
    (else (se (add-coin-to-every                   ;; recur case 1
                  (first coins)
                  (pa-helper coins (- n 1)))
              (pa-helper                           ;; recur case 2
                ______(bf coins)___________
                ______n__________) ))))

;; add coin to each element of sent
(define (add-coin-to-every coin sent)
  (every (lambda (num)
            (+ coin num))
    sent))
```

Most of you did well on this problem, which is heartening; this is a rather tricky tree recursion. There are two different recursive cases: the first adds the first coin type to every solution involving this set of coin types with one fewer to use, while the second finds all the solutions where the same number of coins is used but without the first coin type.

Both recursive cases are used each time through, which makes a tree recursion. Since we are counting down both the number of coins to use and the types of coins, there will be base cases for each. When there is only one coin to use, the solution might be any of the available coins. When there are no available coins, no matter how many you are supposed to use, the answer will be the empty set.

You might try playing with this problem in STk to understand it more fully! The first blank was worth 1 point, the other 4 blanks were worth 2 points each.