Good HW Problems.

Work with the instructor to establish goals for the Design problems to address the goals. Use a mix of qualitative and quantitative problems as appropriate. Avoid re-using old problems or not. Search has become really good, so students usually will find (and copy) old solutions. Solution manuals for textbook problems are available. Add problems that become part of the learning process. Go beyond the in-class material.
Good HW Problems.

Work with the instructor to establish goals for the Design problems to address the goals.
Good HW Problems.

Work with the instructor to establish goals for the Design problems to address the goals.

Use a mix of qualitative and quantitative problems as appropriate.
Good HW Problems.

Work with the instructor to establish goals for the Design problems to address the goals.

Use a mix of qualitative and quantitative problems as appropriate.

Avoid re-using old problems.
Good HW Problems.

Work with the instructor to establish goals for the Design problems to address the goals.

Use a mix of qualitative and quantitative problems as appropriate.

Avoid re-using old problems ... or not.
Good HW Problems.

Work with the instructor to establish goals for the Design problems to address the goals.

Use a mix of qualitative and quantitative problems as appropriate.

Avoid re-using old problems ... or not.

Search has become really good, so students usually will find (and copy) old solutions Solution manuals for textbook problems are available
Good HW Problems.

Work with the instructor to establish goals for the Design problems to address the goals.

Use a mix of qualitative and quantitative problems as appropriate.

Avoid re-using old problems ... or not.

Search has become really good, so students usually will find (and copy) old solutions. Solution manuals for textbook problems are available.

Add problems that become part of the learning process. Go beyond the in-class material.
Designing HW and Exam Problems.

- Ask students to apply concepts learned to real-life problems and experiences.
- Try to tailor examples to students' interests.
- Design tests that emphasize what the students should have learned.
- Test skills other than recall.
- Avoid questions that require the recall of trivial details.
- State questions clearly and precisely.
Designing HW and Exam Problems.

Ask students to apply concepts learned to real-life problems and experiences.
Designing HW and Exam Problems.

Ask students to apply concepts learned to real-life problems and experiences.

- Try to tailor examples to students interests
Designing HW and Exam Problems.

Ask students to apply concepts learned to real-life problems and experiences.

- Try to tailor examples to students interests

Design tests that emphasize what the students should have learned.
Designing HW and Exam Problems.

Ask students to apply concepts learned to real-life problems and experiences.

- Try to tailor examples to students' interests

Design tests that emphasize what the students should have learned

Test skills other than recall. Avoid questions that require the recall of trivial details.
Designing HW and Exam Problems.

Ask students to apply concepts learned to real-life problems and experiences.

- Try to tailor examples to students interests

Design tests that emphasize what the students should have learned

Test skills other than recall Avoid questions that require the recall of trivial details

State questions clearly and precisely
“Bloom” taxonomy: Questions that Measure...

Knowledge:
“Bloom” taxonomy: Questions that Measure...

Knowledge:

- Define
- Identify
- Match
- List
“Bloom” taxonomy: Questions that Measure...

Knowledge:

- Define
- Identify
- Match
- List

Comprehension:
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize
“Bloom” taxonomy: Questions that Measure...

Knowledge:

- Define
- Identify
- Match
- List

Comprehension:

- Explain
- Summarize

Application:
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize

Application:
- Calculate
- Derive
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize

Application:
- Calculate
- Derive

Analysis:

Evaluation:
- Compare/contrast

Synthesis:
- Design
- Construct
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize

Application:
- Calculate
- Derive

Analysis:
- Analyze
- Illustrate

Synthesis:
- Design
- Construct

Evaluation:
- Compare/contrast
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize

Application:
- Calculate
- Derive

Analysis:
- Analyze
- Illustrate

Evaluation:
- Compare/contrast
- Synthesize
- Design
- Construct
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize

Application:
- Calculate
- Derive

Analysis:
- Analyze
- Illustrate

Evaluation:
- Compare/contrast
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize

Application:
- Calculate
- Derive

Analysis:
- Analyze
- Illustrate

Evaluation:
- Compare/contrast

Synthesis:
“Bloom” taxonomy: Questions that Measure...

Knowledge:
- Define
- Identify
- Match
- List

Comprehension:
- Explain
- Summarize

Application:
- Calculate
- Derive

Analysis:
- Analyze
- Illustrate

Evaluation:
- Compare/contrast

Synthesis:
- Design
- Construct
Grading HW/exams.

Work with the reader to define grading metrics. Provide opportunities for students to make-up lost points can add tremendous value to the learning process.
Grading HW/exams.

Work with the reader to define grading metrics.
Grading HW/exams.

Work with the reader to define grading metrics.

Provide opportunities for students to make-up lost points can add tremendous value to the learning process.
Using Rubrics for Grading.

A rubric is a set of components accompanied by definitions of performance levels for each, e.g.

<table>
<thead>
<tr>
<th>Component</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Developing</td>
<td>Provides supporting evidence.</td>
</tr>
<tr>
<td></td>
<td>Competent</td>
<td>Gives some support, but sources not authoritative.</td>
</tr>
<tr>
<td></td>
<td>Exemplary</td>
<td>Supports main assertions but no subsidiary points.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides strong supporting evidence for main and subsidiary points with multiple authoritative sources.</td>
</tr>
</tbody>
</table>

Saves time and improves consistency in grading. Even in development.
Using Rubrics for Grading.

A rubric is a set of components accompanied by definitions of performance levels for each, e.g.

<table>
<thead>
<tr>
<th>Component</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides Supporting Evidence.</td>
<td>Developing</td>
</tr>
<tr>
<td></td>
<td>Gives some support, but sources not authoritative.</td>
</tr>
</tbody>
</table>
Using Rubrics for Grading.

A rubric is a set of components accompanied by definitions of performance levels for each, e.g.

<table>
<thead>
<tr>
<th>Component</th>
<th>Level</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Developing</td>
<td>Competent</td>
</tr>
<tr>
<td>Provides Supporting Evidence.</td>
<td>Gives some support, but sources not authoritative.</td>
<td>Supports main assertions but no subsidiary points.</td>
</tr>
</tbody>
</table>

Saves times and improves consistency in grading.
Using Rubrics for Grading.

A rubric is a set of components accompanied by definitions of performance levels for each, e.g.

<table>
<thead>
<tr>
<th>Component</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides Supporting Evidence</td>
<td>Developing</td>
</tr>
<tr>
<td>Provides some support, but</td>
<td>Gives some</td>
</tr>
<tr>
<td>sources not authoritative.</td>
<td>support, but</td>
</tr>
<tr>
<td></td>
<td>no subsidiary</td>
</tr>
<tr>
<td></td>
<td>points.</td>
</tr>
<tr>
<td></td>
<td>Supports main</td>
</tr>
<tr>
<td></td>
<td>evidence for main</td>
</tr>
<tr>
<td></td>
<td>and subsidiary</td>
</tr>
<tr>
<td></td>
<td>points with</td>
</tr>
<tr>
<td></td>
<td>multiple</td>
</tr>
<tr>
<td></td>
<td>authoritative</td>
</tr>
<tr>
<td></td>
<td>sources.</td>
</tr>
</tbody>
</table>

Provides strong supporting evidence for main and subsidiary points with multiple authoritative sources.

Saves times and improves consistency in grading.

Even in development.
Example?

Rubric:
- Knows p is prime? (My bad.)
- Inverses are relatively prime to p^2.
- Properly count relatively prime numbers.
- ◀ Maybe: The not relatively prime numbers contain factors of p.
- ◀ Therefore: $p^2 - p$...
- ◀ or $p(p-1)$
- ◀ Almost: $(p-1)^2$...
 pattern match with Euler.
Example?

How many numbers in \(\{0, \ldots, N - 1\} \) have inverses mod \(N \), if \(N = p^2 \)?
Example?

How many numbers in \(\{0, \ldots, N - 1\}\) have inverses mod \(N\), if \(N = p^2\)?

Rubric:

Knows \(p\) is prime? (My bad.)

Inverses are relatively prime to \(p^2\).

Properly count relatively prime numbers.

\[\text{\small Maybe: The not relatively prime numbers contain factors of } p.\]

\[\text{\small Therefore: } p^2 - p \ldots \text{ or } p(p - 1)\]

\[\text{\small Almost: } (p - 1)^2 \ldots \text{ pattern match with Euler.}\]
Example?

How many numbers in \{0, \ldots, N - 1\} have inverses mod \(N\), if \(N = p^2\)?

Rubric:

- Knows \(p\) is prime? (My bad.)
Example?

How many numbers in \(\{0, \ldots, N - 1\} \) have inverses mod \(N \), if \(N = p^2 \)?

Rubric:

- Knows \(p \) is prime? (My bad.)
- Inverses are relatively prime to \(p^2 \).
Example?

How many numbers in \(\{0, \ldots, N - 1\} \) have inverses mod \(N \), if \(N = p^2 \)?

Rubric:

- Knows \(p \) is prime? (My bad.)
- Inverses are relatively prime to \(p^2 \).
- Properly count relatively prime prime numbers.
Example?

How many numbers in \(\{0, \ldots, N - 1\} \) have inverses mod \(N \), if \(N = p^2 \)?

Rubric:

- Knows \(p \) is prime? (My bad.)
- Inverses are relatively prime to \(p^2 \).
- Properly count relatively prime numbers.
 - Maybe: The not relatively prime numbers contain factors of \(p \).
Example?

How many numbers in \{0, \ldots, N - 1\} have inverses mod N, if \(N = p^2\)?

Rubric:

- Knows \(p\) is prime? (My bad.)
- Inverses are relatively prime to \(p^2\).
- Properly count relatively prime numbers.
 - Maybe: The not relatively prime numbers contain factors of \(p\).
 - Therefore: \(p^2 - p\...\)
Example?

How many numbers in \(\{0, \ldots, N - 1\} \) have inverses mod \(N \), if \(N = p^2 \)?

Rubric:

- Knows \(p \) is prime? (My bad.)
- Inverses are relatively prime to \(p^2 \).
- Properly count relatively prime numbers.
 - Maybe: The not relatively prime numbers contain factors of \(p \).
 - Therefore: \(p^2 - p \) ... or \(p(p - 1) \)
Example?

How many numbers in \(\{0, \ldots, N - 1\} \) have inverses mod \(N \), if \(N = p^2 \)?

Rubric:

- Knows \(p \) is prime? (My bad.)
- Inverses are relatively prime to \(p^2 \).
- Properly count relatively prime numbers.
 - Maybe: The not relatively prime numbers contain factors of \(p \).
 - Therefore: \(p^2 - p \)…or \(p(p - 1) \)
 - Almost: \((p - 1)^2\)...
Example?

How many numbers in \(\{0, \ldots, N - 1\} \) have inverses mod \(N \), if \(N = p^2 \)?

Rubric:

- Knows \(p \) is prime? (My bad.)
- Inverses are relatively prime to \(p^2 \).
- Properly count relatively prime numbers.
 - Maybe: The not relatively prime numbers contain factors of \(p \).
 - Therefore: \(p^2 - p \)...or \(p(p - 1) \)
 - Almost: \((p - 1)^2 \)...pattern match with Euler.
Example?

How many numbers in \(\{0, \ldots, N - 1\}\) have inverses mod \(N\), if \(N = p^2\)?

Rubric:

- Knows \(p\) is prime? \((\text{My bad.})\)
- Inverses are relatively prime to \(p^2\).
- Properly count relatively prime numbers.
 - Maybe: The not relatively prime numbers contain factors of \(p\).
 - Therefore: \(p^2 - p\)...or \(p(p - 1)\)
 - Almost: \((p - 1)^2\)...pattern match with Euler.