Survey.
Survey.
Research on learning.
Survey.

Research on learning.
 Bloom (what I tell students.)
Survey.

Research on learning.
 Bloom (what I tell students.)
 Retrieval.
Survey.

Research on learning.
 Bloom (what I tell students.)
 Retrieval.
 Summary/myths.
Survey: Likes

Discuss with other TAs.
Survey: Likes

Discuss with other TAs.
Survey: Likes

Discuss with other TAs.

++
Survey: Likes

Discuss with other TAs.

+++
Survey: Likes

Discuss with other TAs.

+ + + +
Survey: Likes

Discuss with other TAs.

+ + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + + + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + + + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + + + + + + + + + + +
Survey: Likes

Discuss with other TAs.

+ + + + + + + + + + + + + + +
Survey: Likes

Discuss with other TAs.

Research Presentation.
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + + +

Research Presentation.
+

Survey: Likes

Discuss with other TAs.
++ + + + + + + + + + +

Research Presentation.
++
++
Survey: Likes

Discuss with other TAs.

Research Presentation.

+ + + + + + + + + + + + + +

+ + +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + +
Research Presentation.
+ + + + .5
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + +

Research Presentation.
+ + + +.5 + .5 +

Video Feedback.
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

+
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

+
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

Self Reflection/feedback.
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

Self Reflection/feedback.
+
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

Self Reflection/feedback.
+ +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + +
Research Presentation.
+ + + .5 + .5 +
Video Feedback.
+
Self Reflection/feedback.
+ + +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + +

Research Presentation.
+ + + .5 + .5 +

Video Feedback.
+

Self Reflection/feedback.
+ + + +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

Self Reflection/feedback.
+ + + + +
Survey: Likes

Discuss with other TAs.
++ + + + + + + + + + +
Research Presentation.
++ + + .5 + .5 +
Video Feedback.
+
Self Reflection/feedback.
++ + + +
Tools For Teaching
Survey: Likes

Discuss with other TAs.

Research Presentation.

Video Feedback.

Self Reflection/feedback.

Tools For Teaching
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

Self Reflection/feedback.
+ + + + +

Tools For Teaching
+ +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + +

Research Presentation.
+ + + + .5 + .5 +

Video Feedback.
+

Self Reflection/feedback.
+ + + + +

Tools For Teaching
+ + +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + + +
Research Presentation.
+ + + + .5 + .5 +
Video Feedback.
+
Self Reflection/feedback.
+ + + + +
Tools For Teaching
+ + + +
Survey: Likes

Discuss with other TAs.
+ + + + + + + + + + + + +
Research Presentation.
+ + + + .5 + .5 +
Video Feedback.
+
Self Reflection/feedback.
+ + + + +
Tools For Teaching
+ + + + +
Questions.

How to deal with time consuming questions when others are waiting/more material to cover?
How to deal with time consuming questions when others are waiting/more material to cover?

Students not willing to work together in groups.
Questions.

How to deal with time consuming questions when others are waiting/more material to cover?

Students not willing to work together in groups.

Some students prefer to work on their own, we shouldn’t make them!
Questions.

How to deal with time consuming questions when others are waiting/more material to cover?

Students not willing to work together in groups.

Some students prefer to work on their own, we shouldn’t make them!

How do you test understanding of a mathematical argument?
Questions.

How to deal with time consuming questions when others are waiting/more material to cover?

Students not willing to work together in groups.

Some students prefer to work on their own, we shouldn’t make them!

How do you test understanding of a mathematical argument?

Too lenient on students.
Questions.

How to deal with time consuming questions when others are waiting/more material to cover?

Students not willing to work together in groups.

Some students prefer to work on their own, we shouldn’t make them!

How do you test understanding of a mathematical argument?

Too lenient on students.

How do you design lesson plans?
Questions.

How to deal with time consuming questions when others are waiting/more material to cover?

Students not willing to work together in groups.

Some students prefer to work on their own, we shouldn’t make them!

How do you test understanding of a mathematical argument?

Too lenient on students.

How do you design lesson plans?

My own issues affects my teaching. How to balance time.
Experiences, Comments

Teaching is harder than it looks.
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Went over debugging strategy in OH.
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Went over debugging strategy in OH.
Student finds bug.
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Went over debugging strategy in OH.
Student finds bug. Student way happy!
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Went over debugging strategy in OH.
Student finds bug. Student way happy!
Success!
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Went over debugging strategy in OH.
Student finds bug. Student way happy!
Success!
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Went over debugging strategy in OH.
Student finds bug. Student way happy!
Success!

Woman being ignored
Experiences, Comments

Teaching is harder than it looks.
Like it when you know their names!
Fun to try things from 375, and some even work!
I taught a man to fish!
Went over debugging strategy in OH.
Student finds bug. Student way happy!
Success!
Woman being ignored...talked over.
I should do better.

Shorter Meetings.
I should do better.

Shorter Meetings. +
I should do better.

Shorter Meetings. + +
I should do better.

Shorter Meetings. + + +.
I should do better.

Shorter Meetings. + + +. I’m hungry!
I should do better.

Shorter Meetings. ++ +. I’m hungry! ++
I should do better.

Shorter Meetings. ++. I’m hungry! ++

How do we apply results from studies?
I should do better.

Shorter Meetings. +++ I’m hungry! ++

How do we apply results from studies?

Better outline of due dates on course website.
I should do better.

Shorter Meetings. + + +. I’m hungry! ++

How do we apply results from studies?

Better outline of due dates on course website.

Talk about the assigned readings. (Again, course website.)
I should do better.

Shorter Meetings. ++ ++. I’m hungry! ++

How do we apply results from studies?

Better outline of due dates on course website.

Talk about the assigned readings. (Again, course website.)

EE vs. CS vs. Grad vs Ugrad.
I should do better.

Shorter Meetings. + + +. I’m hungry! ++

How do we apply results from studies?

Better outline of due dates on course website.

Talk about the assigned readings. (Again, course website.)

EE vs. CS vs. Grad vs Ugrad. Not all the same.
I should do better.

Shorter Meetings. + + +. I’m hungry! ++

How do we apply results from studies?

Better outline of due dates on course website.

Talk about the assigned readings. (Again, course website.)

EE vs. CS vs. Grad vs Ugrad. Not all the same. Not serving everybody.
I should do better.

Shorter Meetings. + + +. I’m hungry! ++

How do we apply results from studies?

Better outline of due dates on course website.

Talk about the assigned readings. (Again, course website.)

EE vs. CS vs. Grad vs Ugrad. Not all the same. Not serving everybody.
Doing well in this class..

The Bloom 2-sigma effect.
Doing well in this class.

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant
Doing well in this class...

The Bloom 2-sigma effect.

One on one instruction and **mastery learning** leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and **mastery learning** leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!

One on one instruction
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!

One on one instructionfor 300 students
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!

One on one instruction for 300 students ???
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!

One on one instructionfor 300 students ???

Resources: office hours, discussion, piazza,...
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!

One on one instructionfor 300 students ???

Resources: office hours, discussion, piazza,... and ..
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!

One on one instructionfor 300 students ???

Resources: office hours, discussion, piazza,...

and .. you!
Doing well in this class..

The Bloom 2-sigma effect.

One on one instruction and mastery learning leads to a two sigma improvement in performance.

50th percentile to the 98th percentile.

The median Harvard applicant would get in!

One on one instructionfor 300 students ???

Resources: office hours, discussion, piazza,...

and .. you!

You have the book, homeworks, exams, slides, and the web...
FIGURE 1. Achievement distribution for students under conventional, mastery learning, and tutorial instruction.
We should..

Capture the bloom effect ..
We should..

Capture the bloom effect..

.. in the classroom.
We should..

Capture the bloom effect..

.. in the classroom.

.. using a computer.
We should..

Capture the bloom effect..
.. in the classroom.
.. using a computer.
Re: the former.
Capture the bloom effect..
.. in the classroom.
.. using a computer.
Re: the former.
- Some improvement in forty years.
We should..

Capture the bloom effect..
.. in the classroom.
.. using a computer.

Re: the former.
- Some improvement in forty years.
- Except for high school.
We should..

Capture the bloom effect..

.. in the classroom.

.. using a computer.

Re: the former.

- Some improvement in forty years.
- Except for high school.

No better on NEAP since 1974.
For the latter...

Computer tutoring: roughly perhaps .79 standard deviations.
Computer tutoring: roughly perhaps .79 standard deviations. Versus Human.
For the latter...

Computer tutoring: roughly perhaps .79 standard deviations.

Versus Human.

Why would humans be better? Discuss.
For the latter...

Computer tutoring: roughly perhaps .79 standard deviations.

Versus Human.

Why would humans be better? Discuss.

In some detail at VanLehn 2011.
For the latter...

Computer tutoring: roughly perhaps .79 standard deviations.
Versus Human.
Why would humans be better? Discuss.
In some detail at VanLehn 2011.
For review, and perhaps support and/or falsification.
Retrieval Learning: The experiment(s)

- A passage.
Retrieval Learning: The experiment(s)

- A passage.
- Study via
Retrieval Learning: The experiment(s)

- A passage.
- Study via
 - 1. Repeated study.
 - 2. Questions.
Fig. 1. Final recall (a) after repeatedly studying a text in four study periods (SSSS condition), reading a text in three study periods and then recalling it in one retrieval period (SSSR condition), or reading a text in one study period and then repeatedly recalling it in three retrieval periods (SRRR condition). Judgments of learning (b) were made on a 7-point scale, where 7 indicated that students believed they would remember material very well. The data presented in these graphs are adapted from Experiment 2 of Roediger and Karpicke (2006b). The pattern of students’ metacognitive judgments of learning (predicted recall) was exactly the opposite of the pattern of students’ actual long-term retention.
One-week Later.

Fig. 3. Proportion correct on final short-answer verbatim questions (a) and inference questions (b) 1 week after learning, and metacognitive judgments of learning (predicted proportion of items correct) made during the initial learning phase (c).
Response.

Comment on “Retrieval Practice Produces More Learning than Elaborative Studying with Concept Mapping”
Joel J. Mintzes1, and a bunch of people.
Comment on “Retrieval Practice Produces More Learning than Elaborative Studying with Concept Mapping”
Joel J. Mintzes1, and a bunch of people.
Karpicke and Blunt (Reports, 11 February 2011, p. 772) reported that retrieval practice produces greater gains in learning than elaborative studying with concept mapping and concluded that this strategy is a powerful way to promote meaningful learning of complex concepts commonly found in science education. We question their findings on methodological and epistemological grounds.
In particular, the conclusion that “Retrieval practice is a powerful way to promote meaningful learning of complex concepts commonly found in science education” may be taken by some as an endorsement of frequent classroom testing in lieu of recent practices in science teaching that are supported by an avalanche of research over a period of three or more decades (4-6).
Response to Response.

Mintzes et al. (1) speculate that students are more familiar with retrieval practice than they are with concept mapping. However, it is questionable to assume that students are highly familiar with retrieval practice. Research on students’ metacognitive awareness consistently shows that most students lack awareness of the benefits of retrieval practice and do not use this strategy (11,12). More important, familiarity with a learning activity need not have anything to do with its effectiveness. For instance, repetitive reading is the most frequently reported strategy among college students (12), yet there are numerous studies in which this familiar strategy produces little or no learning (13). Consider another example: Deleting letters from expository texts improves learning and comprehension because of the generative processing afforded by letter deletion (14). We are confident that students do not commonly read texts with missing letters, yet the activity boosts learning. Mintzes et al. assume a causal link between task familiarity and learning, but that assumption is incorrect.
TABLE 1

Experiment 1: Processing Time, Comprehension Rating, and Proportion of Propositions Recalled as a Function of Type of Task and Type of Text

<table>
<thead>
<tr>
<th>Dependent measure</th>
<th>Type of text</th>
<th>Read-only control</th>
<th>Letter deletion</th>
<th>Embedded questions</th>
<th>Sentence reordering</th>
<th>Outlining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>Fairy tale</td>
<td>.45</td>
<td>.56</td>
<td>.59</td>
<td>.52</td>
<td>.51</td>
</tr>
<tr>
<td></td>
<td>Descriptive</td>
<td>.28</td>
<td>.19</td>
<td>.36</td>
<td>.43</td>
<td>.46</td>
</tr>
<tr>
<td>Time<sup>a</sup></td>
<td>Fairy tale</td>
<td>1.48</td>
<td>8.20</td>
<td>8.25</td>
<td>7.80</td>
<td>8.57</td>
</tr>
<tr>
<td></td>
<td>Descriptive</td>
<td>1.87</td>
<td>12.60</td>
<td>6.75</td>
<td>13.43</td>
<td>13.96</td>
</tr>
<tr>
<td>Comprehension rating<sup>b</sup></td>
<td>Fairy tale</td>
<td>1.50</td>
<td>1.33</td>
<td>2.00</td>
<td>1.92</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>Descriptive</td>
<td>1.83</td>
<td>2.08</td>
<td>1.83</td>
<td>1.75</td>
<td>2.08</td>
</tr>
</tbody>
</table>

^a Measured in minutes.

^b Lower numbers indicate higher comprehension.
TABLE 2

Experiment 2: Processing Time, Comprehension Rating, and Proportion of Propositions Recalled as a Function of Type of Task, Type of Text, and Delay of Testing

<table>
<thead>
<tr>
<th>Dependent measure</th>
<th>Time of recall</th>
<th>Type of text</th>
<th>Read-only control</th>
<th>Letter deletion</th>
<th>Sentence reordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>Immediate</td>
<td>Fairy tale</td>
<td>.45</td>
<td>.56</td>
<td>.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Descriptive</td>
<td>.28</td>
<td>.19</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>One-week</td>
<td>Fairy tale</td>
<td>.23</td>
<td>.36</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Descriptive</td>
<td>.15</td>
<td>.11</td>
<td>.26</td>
</tr>
<tr>
<td>Time(^a)</td>
<td>Immediate</td>
<td>Fairy tale</td>
<td>1.48</td>
<td>8.20</td>
<td>7.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Descriptive</td>
<td>1.87</td>
<td>12.60</td>
<td>13.43</td>
</tr>
<tr>
<td></td>
<td>One-week</td>
<td>Fairy tale</td>
<td>1.57</td>
<td>8.74</td>
<td>9.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Descriptive</td>
<td>2.01</td>
<td>10.18</td>
<td>16.83</td>
</tr>
<tr>
<td>Comprehension rating(^b)</td>
<td>Immediate</td>
<td>Fairy tale</td>
<td>1.50</td>
<td>1.33</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Descriptive</td>
<td>1.83</td>
<td>2.08</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>One-week</td>
<td>Fairy tale</td>
<td>1.58</td>
<td>1.08</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Descriptive</td>
<td>2.42</td>
<td>1.58</td>
<td>2.25</td>
</tr>
</tbody>
</table>

\(^a\) Measured in minutes.

\(^b\) Lower numbers indicate higher comprehension.
What to do?

Questions in text help learning.
What to do?

Questions in text help learning.
Challenging students help learning.
What to do?

Questions in text help learning.
Challenging students help learning.
Discussion.
What to do?

Questions in text help learning.
Challenging students help learning.
Discussion.

- What should we do as teachers?
- What should we suggest as teachers?
Common Sense

Students need to make effort!
Common Sense

Students need to make effort!

Bloom:
Common Sense

Students need to make effort!

Bloom: tutors force it.
Common Sense

Students need to make effort!

Bloom: tutors force it.
Retrieval
Common Sense

Students need to make effort!
 Bloom: tutors force it.
 Retrieval effort.
Common Sense

Students need to make effort!
- Bloom: tutors force it.
- Retrieval effort.
- Muller Video
Common Sense

Students need to make effort!

 Bloom: tutors force it.
 Retrieval effort.
 Muller Video claims it.

Caveat: Perhaps not too much.

Vazirani: Friend at IIT.

Could have been something.

Perhaps grinding out problem after problem is not good.

What to do?
Common Sense

Students need to make effort!

 Bloom: tutors force it.
 Retrieval effort.
 Muller Video claims it.
Common Sense

Students need to make effort!
 Bloom: tutors force it.
 Retrieval effort.
 Muller Video claims it.

Caveat: Perhaps not too much.
Common Sense

Students need to make effort!
 Bloom: tutors force it.
 Retrieval effort.
 Muller Video claims it.

Caveat: Perhaps not too much.
 Vazirani: Friend at IIT.
Common Sense

Students need to make effort!

Bloom: tutors force it.
Retrieval effort.
Muller Video claims it.

Caveat: Perhaps not too much.
Vazirani: Friend at IIT. Could have been something.
Had he not been working so hard.
Common Sense

Students need to make effort!
 Bloom: tutors force it.
 Retrieval effort.
 Muller Video claims it.

Caveat: Perhaps not too much.
 Vazirani: Friend at IIT. Could have been something.
 Had he not been working so hard.

Perhaps grinding out problem after problem is not good.
Common Sense

Students need to make effort!

 Bloom: tutors force it.
 Retrieval effort.
 Muller Video claims it.

Caveat: Perhaps not too much.
 Vazirani: Friend at IIT. Could have been something.
 Had he not been working so hard.

Perhaps grinding out problem after problem is not good.

What to do?
More common sense?

Great teachers
More common sense?

Great teachers?
More common sense?

Great teachers?
Not so much.
More common sense?

Great teachers?

Not so much.
Research.
More common sense?

Great teachers?

Not so much.
Research.

"Research shows 4-6 months of learning gain/year"
More common sense?

Great teachers?
Not so much.
Research.
"Research shows 4-6 months of learning gain/year”
I don’t think this is well supported.
More common sense?

Great teachers?

Not so much.

Research.

"Research shows 4-6 months of learning gain/year"

I don’t think this is well supported.

Modern studies .05-.2 std. devs in math.
More common sense?

Great teachers?

Not so much.
Research.

"Research shows 4-6 months of learning gain/year”
I don’t think this is well supported.
Modern studies .05-.2 std. devs in math.
less in english/language arts.
More common sense?

Great teachers?

Not so much.

Research.

"Research shows 4-6 months of learning gain/year"

I don’t think this is well supported.

Modern studies .05-.2 std. devs in math.

less in english/language arts.
More common sense?

Great teachers?

Not so much.
Research.
“Research shows 4-6 months of learning gain/year”
I don’t think this is well supported.
Modern studies .05-.2 std. devs in math.
less in english/language arts.

Gates Study: 3 year study.
More common sense?

Great teachers?

Not so much.
Research.

"Research shows 4-6 months of learning gain/year"

I don’t think this is well supported.
Modern studies .05-.2 std. devs in math.
less in english/language arts.

Gates Study: 3 year study.

Predict teacher performance from...
More common sense?

Great teachers?

Not so much.
Research.

"Research shows 4-6 months of learning gain/year"
I don’t think this is well supported.
Modern studies .05-.2 std. devs in math.
less in english/language arts.

Gates Study: 3 year study.

Predict teacher performance from...
(1) Student ratings.
More common sense?

Great teachers?

Not so much.
Research.

"Research shows 4-6 months of learning gain/year"
 I don’t think this is well supported.
 Modern studies .05-.2 std. devs in math.
 less in english/language arts.

Gates Study: 3 year study.

Predict teacher performance from...
 (1) Student ratings.
 (2) Observer ratings.
More common sense?

Great teachers?

Not so much.

Research.

"Research shows 4-6 months of learning gain/year"

I don’t think this is well supported.

Modern studies .05-.2 std. devs in math.

less in english/language arts.

Gates Study: 3 year study.

Predict teacher performance from...

(1) Student ratings.

(2) Observer ratings.

(3) Previous test scores.
More common sense?

Great teachers?

Not so much.

Research.

"Research shows 4-6 months of learning gain/year"

I don’t think this is well supported.

Modern studies .05-.2 std. devs in math.

less in english/language arts.

Gates Study: 3 year study.

Predict teacher performance from...

1. Student ratings.
2. Observer ratings.
3. Previous test scores.
Effectiveness Measures Identify Teachers Who Help Students Learn More

These charts compare the actual 2010–11 school year achievement gains for randomly assigned classrooms with the results that were predicted based on the earlier measures of teaching effectiveness. Each dot represents the combination of actual and estimated student performance for 5 percent of the teachers in the study, grouped by the teachers’ estimated effectiveness. The dashed line shows where the dots would be if the actual and predicted gains matched perfectly.

On average, students of teachers with higher teacher effectiveness estimates outperformed students of teachers with lower teacher effectiveness estimates. Moreover, the magnitude of students’ actual gains largely corresponded with gains predicted by their effectiveness measured the previous year. Both the actual and predicted achievement are reported relative to the mean in the randomization block. That is, a zero on either axis implies that the value was no different from the mean for the small group of teachers in a grade, subject, and school within which class lists were randomized.

Impacts are reported in student-level standard deviations. A .25 standard deviation difference is roughly equivalent to a year of schooling. The predicted impacts are adjusted downward to account for incomplete compliance with randomization.
Effectiveness Measures Identify Teachers Who Help Students Learn More

Actual and Predicted Achievement of Randomized Classrooms (Math)

These charts compare the actual 2010–11 school year achievement gains for randomly assigned classrooms with the results that were predicted based on the earlier measures of teaching effectiveness. Each dot represents the combination of actual and estimated student performance for 5 percent of the teachers in the study, grouped by the teachers’ estimated effectiveness. The dashed line shows where the dots would be if the actual and predicted gains matched perfectly.

On average, students of teachers with higher teacher effectiveness estimates outperformed students of teachers with lower teacher effectiveness estimates. Moreover, the magnitude of students’ actual gains largely corresponded with gains predicted by their effectiveness measured the previous year. Both the actual and predicted achievement are reported relative to the mean in the randomization block. That is, a zero on either axis implies that the value was no different from the mean for the small group of teachers in a grade, subject, and school within which class lists were randomized.

Impacts are reported in student-level standard deviations. A .25 standard deviation difference is roughly equivalent to a year of schooling. The predicted impacts are adjusted downward to account for incomplete compliance with randomization.
MET Factors for effectiveness.

Table 1

| Using Teacher Performance Measures in 2009–10 to Predict Student Achievement Growth in 2008–09 |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | Elementary Grades | | | |
| | State Math | State English Language Arts | | |
| | 1 2 3 4 | 5 6 7 8 | | |
| Value-Added Measure from 2009–10| 0.396*** 0.410*** | 0.350*** 0.306*** | | |
| | (0.029) (0.041) | (0.031) (0.040) | | |
| Student Survey Score [Tripod] in 2009–10| 0.060 0.164*** | 0.074* 0.147*** | | |
| | (0.051) (0.053) | (0.040) (0.040) | | |
| Classroom Observation Score (FFT) in 2009–10| 0.042 0.110* | 0.013 0.050 | | |
| | (0.054) (0.058) | (0.042) (0.044) | | |
| Controls for Teacher Experience, MA Degree?| Yes Yes Yes Yes | Yes Yes Yes Yes | | |
| Observations | 782 377 405 392 | 828 390 417 403 | | |
| R-squared | 0.203 0.240 0.032 0.024 | 0.134 0.169 0.038 0.012 | | |
What is the point?

Everybody reads!
What is the point?

Everybody reads!
130 years ago, it was thought only few could.
What is the point?

Everybody reads!
130 years ago, it was thought only few could.
Maybe teachers are good, just not so variable.
What is the point?

Everybody reads!

130 years ago, it was thought only few could.

Maybe teachers are good, just not so variable.

Perhaps measure isn’t so good.
What is the point?

Everybody reads!

130 years ago, it was thought only few could.

Maybe teachers are good, just not so variable.

Perhaps measure isn’t so good. I found my bug!
What is the point?

Everybody reads!
130 years ago, it was thought only few could.
Maybe teachers are good, just not so variable.
Perhaps measure isn’t so good. I found my bug!
Tale of Sisiphus.
Other issues.

Student know when they learn!
Other issues.

Student know when they learn! Not so much.
Other issues.

Student know when they learn! Not so much.
Other issues.

Student know when they learn! Not so much.
Parent involvement must help.
Other issues.

Student know when they learn! Not so much.
Parent involvement must help. Maybe not.
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!

What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
- E.g., negative correlation for PTA!
- What kind of interaction is helpful?
- Actively working on homework!
- Tiger Mom, anyone?

Small classes better?
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17.
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
- E.g., negative correlation for PTA!

What kind of interaction is helpful?
- Actively working on homework!
- Tiger Mom, anyone?

Small classes better?
- Not till they are roughly 13-17. A quarter of std. deviation.
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17. A quarter of std. deviation.

In general:
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17. A quarter of std. deviation.

In general: Real psychological effects
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17. A quarter of std. deviation.

In general: Real psychological effects \rightarrow Effective Practice
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17. A quarter of std. deviation.

In general: Real psychological effects → Effective Practice ???
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17. A quarter of std. deviation.

In general: Real psychological effects \rightarrow Effective Practice ???
 Analogy: $F = ma$
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17. A quarter of std. deviation.

In general: Real psychological effects \rightarrow Effective Practice ???
 Analogy: $F = ma$ \rightarrow
Other issues.

Student know when they learn! Not so much.

Parent involvement must help. Maybe not.
 E.g., negative correlation for PTA!
 What kind of interaction is helpful?
 Actively working on homework!
 Tiger Mom, anyone?

Small classes better?
 Not till they are roughly 13-17. A quarter of std. deviation.

In general: Real psychological effects \rightarrow Effective Practice ???
 Analogy: $F = ma \rightarrow$ The bay bridge?