

CS3–SP06 FINAL REVIEW by Bobak and Fu

1

CS3 – SP06: FINAL REVIEW SOLUTION

1. count-sublists (credit here to CS3 reader from Dan Garcia Fall 2003)
Write a procedure that takes a generalized list as an argument and returns how many sublists it
contains. EX:
(count-sublists ‘(cs3 is cool)) 0
(count-sublists ‘(((cs 3 is) really) ((cool)))) 4

(define (count-sublists l)
 (cond ((null? l) 0)
 ((list? (car l))
 (+ 1 (count-sublists (car l))
 (count-sublists (cdr l))))
 (else (count-sublists (cdr l)))))

2. deep-filter
Write deep-filter which takes in a list and a predicate, and returns the filtered list (much like
filter). It must preserve the structure of the list. EX:
(deep-filter even? ‘(((3)) 2 1 ((2 3 4)))) ((()) 2 ((2 4)))

(define (deep-filter pred? l)
 (cond ((null? l) ‘())
 ((list? (car l))
 (cons (deep-filter pred? (car l))
 (deep-filter pred? (cdr l))))
 ((pred? (car l))
 (cons (car l) (deep-filter pred? (cdr l))))
 (else (deep-filter pred? (cdr l)))))

3. add-to-roster
Write a procedure, called add-to-roster, that takes three lists — an association list called
current-roster, a list of new player names, and a list of their numbers, correspondingly. This
procedure checks to see if the player is already in the roster, and if he is not, adds the new player,
with its number, appropriately to the beginning of the roster. USE TAIL RECURSION and NO
HELPER FUNCTIONS.
Example of current roster: ((Daei 10) (Mahdavikia 2) (Hashemian 9) (Karimi 8))

(define (add-roster player-names player-numbers current-roster)
 (cond ((null? player-names) current-roster)
 ((assoc (car player-names) current-roster)
 (add-roster (cdr player-names) (cdr player-numbers) current-roster))
 (else (add-roster (cdr player-names)
 (cdr player-numbers)
 (cons (list (car player-names)
 (car player-numbers))
 current-roster)))))

CS3–SP06 FINAL REVIEW by Bobak and Fu

2

4. passed-tests?
Complete the following without the use of explicit recursion or helper functions.
A. Write a procedure that takes in three lists as arguments. The first list is a list of procedures,

each of which only takes a single argument. The second is a list of arguments for those
procedures. The third is a list of expected results. Given these three lists, the procedure
returns true if all of your test cases pass, false if any of them fail.

(define (passed-tests? proc-list arg-list result-list)
 (equal? result-list
 (map (lambda (proc arg)
 (proc arg))
 proc-list
 arg-list)))

Here is another solution:
(define (passed-tests? proc-list arg-list result-list)
 (= (length proc-list)
 (length (filter
 (lambda (bv) bv)
 (map (lambda (proc arg result)
 (equal? (proc arg) result))
 proc-list
 arg-list
 result-list)))))

B. Provide a sample call to the procedure you just wrote, and also include the correct return

value. The procedure list should contain car, even?, and square.

(passed-tests? (list car vowel? square)
 (list '(how are you) 'k 5)
 (list 'how #f 25))

CS3–SP06 FINAL REVIEW by Bobak and Fu

3

5. best-class (Similar to the GPA lab exercise)
Write a procedure called best-class that takes a list as its argument. Each element in this list is
also a list that contains two elements – the teacher’s name and a list of his students’ grades.
best-class returns a list that contains the name of the teacher with the highest total of student
grades and the highest total of student grades. Do NOT write any additional helpers of your own.
EX: (best-class ‘((Johnson (A B A C NP A)) (Smith (C C D P F A)) (Doe (A A B A
A NP))) (Doe 24)

A helper procedure grade-conversion is already written for you. It takes a letter grade as its
argument and returns its corresponding numerical value. However, the only valid arguments are
A, B, C, D and F. Here is the mapping for points: A=5, B=4, C=3, D=2, F=0.

(define (best-class class-lst)
 (reduce (lambda (new so-far)
 (if (> (cadr so-far) (cadr new))
 so-far
 new))
 (map (lambda (class)
 (list (car class)
 (reduce + (map grade-conversion
 (filter (lambda (grade)
 (not (member? grade '(P
NP))))
 (cadr class))))))
 class-lst)))

6. chunking
Write a procedure that groups together similar adjacent elements. Its argument is a list that
contains a mix of numbers, letters, list of numbers, and list of letters, not necessarily in this order.
Examples of similar adjacent elements are a number and a list of numbers like (1 (2 3)), and a
number and a number like (1 2). The return value would be a list of sublist, and each sublist
contains elements of the same type. Use HOF to solve this problem, and use NO helper
procedures. EX:
(chunking ‘(1 a b (c) (2)) ((1) (a b c) (2))
(chunking ‘((1 2) a b (d e f) 3 4 5 g 6)) ((1 2) (a b d e f) (3 4 5) (g) (6))

(define (chunking lst)
 (reduce (lambda (new so-far)
 (let ((fixed-new (if (word? new) (list new) new))
 (fixed-sf (cond ((word? so-far) (list (list so-far)))
 ((not (list? (car so-far))) (list so-far))
 (else so-far))))
 (cond ((equal? (number? (caar fixed-sf))
 (number? (car fixed-new)))
 (cons (append fixed-new (car fixed-sf))
 (cdr fixed-sf)))
 (else (cons fixed-new fixed-sf)))))
 lst))

CS3–SP06 FINAL REVIEW by Bobak and Fu

4

7. Debug/Evaluate
Part 1.

(define (mystery1 lst)
 (map (lambda (elm)
 (cond ((not (list? elm)) elm)
 (else (mystery1 elm))))
 lst))

A. Is there an argument that will make mystery1 crash and generate an error? If so, what is it?

No.

B. What does (mystery1 '(a (b) ((c (d) e ((f)))) g)) return? (Assuming all possible

bugs have been fixed.)

(a (b) ((c (d) e ((f)))) g)

C. What does mystery1 do?

mystery1 returns the argument as is.

Part 2. For each sublist in the argument, mystery2 removes the outer list. Look at the sample
call to a correct mystery2. Note the difference in parentheses between the argument and the
return value.

(define (mystery2 lst)
 (cond ((null? lst) lst)
 ((list? (car lst))
 (append (map mystery2 (car lst))
 (mystery2 (cdr lst))))
 (else (cons (car lst) (mystery2 (cdr lst))))))

(mystery2 ‘(a ((b) (c d)) f ((g ((h)) i))))
 (a (b) (c d) f (g (h) i))

D. Is there an argument that will make mystery2 crash and generate an error? If so, what is the

fix?

(mystery2 '((a)))

(define (mystery2 lst)
 (cond ((null? lst) ‘())
 ((word? Lst) lst) ;;ADD THIS LINE
 ((list? (car lst)) (append …))
 (else (cons (car lst) (mystery2 (cdr lst))))))

E. What does (mystery2 '(a (b) ((c (d) e ((f)))) g)) return? (Assuming all possible

bugs have been fixed.)

(a b (c d e (f)) g)

