
Spring 2008 final review (in lecture)

Problem 1. Remove-letter

Consider a procedure remove-letter that takes two inputs, a letter and a sentence, and
returns the sentence with all occurrences of the letter removed. For example:

(remove-letter 'e '(here is a

sentence with e in it)
(hr is a sntnc with "" in it)

(remove-letter 'e '(not any

within))
(not any within)

(remove-letter 'e '()) ()

Part A: Write remove-letter without using any explicit recursion (i.e., use higher order
functions instead)

Part B: Write remove-letter without using higher-order functions (i.e., use recursion
instead).

Spring 2008 final review in lecture page 2

Problem 2. Not just a ticky-tack question

In tic-tac-toe, a pivot is an open square that identifies a winning move through the

generation of a fork. In ttt.scm, the pivot procedure takes a sentence of triples and a

player, and returns a sentence of pivots. The code in ttt.scm is reproduced in an
appendix at the end of this exam.

For the board b equal to "x o _ _ x _ _ _ o", for example:

(pivots (find-triples b) 'x)  (4 7)

(pivots (find-triples b) 'o)  ()

Rewrite pivots without using higher order procedures (i.e.,
using only recursion). You can use procedures defined in

ttt.scm as long as those procedures don't use higher order functions. (You may use

appearances).

Make sure to name your helper procedures and parameters well. You only need to comment
when you think it necessary to help explain the intent of your procedure.

Here are some procedures you can use without writing them:

keep-my-singles takes a sentence of triples and a player and returns a sentence

of triples that satisfy my-single? (that is, triples with two empty squares and one
square filled by the player):

 (keep-my-singles (find-triples b) 'x) ("4x6" x47 "3x7")

 (keep-my-singles (find-triples b) 'o) ("78o" "36o")

explode-all takes a sentence of words and returns a sentence with each word
"exploded" into single-letter words:

 (explode-all '(bob joe))  (b o b j o e)

 (explode-all '(25o 7o9))  (2 5 o 7 o 9)

X

X

O

O

Spring 2008 final review in lecture page 3

(define (ttt position me)

 (ttt-choose (find-triples position) me))

(define (find-triples position)

 (every (lambda (comb) (substitute-triple

comb position))

 '(123 456 789 147 258 369 159

357)))

(define (substitute-triple combination

position)

 (accumulate word

 (every (lambda (square)

 (substitute-letter

square position))

 combination)))

(define (substitute-letter square position)

 (if (equal? '_ (item square position))

 square

 (item square position)))

(define (ttt-choose triples me)

 (cond ((i-can-win? triples me))

 ((opponent-can-win? triples me))

 ((i-can-fork? triples me))

 ((i-can-advance? triples me))

 (else (best-free-square triples))

))

(define (i-can-win? triples me)

 (choose-win

 (keep (lambda (triple) (my-pair? triple

me))

 triples)))

(define (my-pair? triple me)

 (and (= (appearances me triple) 2)

 (= (appearances (opponent me)

triple) 0)))

(define (opponent letter)

 (if (equal? letter 'x) 'o 'x))

(define (choose-win winning-triples)

 (if (empty? winning-triples)

 #f

 (keep number? (first winning-

triples))))

(define (opponent-can-win? triples me)

 (i-can-win? triples (opponent me)))

(define (i-can-fork? triples me)

 (first-if-any (pivots triples me)))

(define (first-if-any sent)

 (if (empty? sent)

 #f

 (first sent)))

(define (pivots triples me)

 (repeated-numbers (keep (lambda (triple)

(my-single? triple me))

 triples)))

(define (my-single? triple me)

 (and (= (appearances me triple) 1)

 (= (appearances (opponent me)

triple) 0)))

(define (repeated-numbers sent)

 (every first

 (keep (lambda (wd) (>= (count wd)

2))

 (sort-digits (accumulate

word sent)))))

(define (sort-digits number-word)

 (every (lambda (digit) (extract-digit

digit number-word))

 '(1 2 3 4 5 6 7 8 9)))

(define (extract-digit desired-digit wd)

 (keep (lambda (wd-digit) (equal? wd-digit

desired-digit)) wd))

(define (i-can-advance? triples me)

 (best-move (keep (lambda (triple) (my-

single? triple me)) triples)

 triples

 me))

(define (best-move my-triples all-triples

me)

 (if (empty? my-triples)

 #f

 (best-square (first my-triples) all-

triples me)))

(define (best-square my-triple triples me)

 (best-square-helper (pivots triples

(opponent me))

 (keep number? my-

triple)))

(define (best-square-helper opponent-pivots

pair)

 (if (member? (first pair) opponent-

pivots)

 (first pair)

 (last pair)))

(define (best-free-square triples)

 (first-choice (accumulate word triples)

 '(5 1 3 7 9 2 4 6 8)))

(define (first-choice possibilities

preferences)

 (first (keep (lambda (square) (member?

square possibilities))

 preferences)))

Spring 2008 final review in lecture page 4

Problem 3. The card game Clubs

This question concerns a game called clubs. In this game, card are worth a number of points: 1
point for every club, 13 points for the queen of spades, and 0 points otherwise. A card is a list of the
rank and suit of the card. Ranks are the number or the letter a, j, q, or k. Suits are one of the
letter c, s, d, h (for clubs, spades, diamonds, and hearts).

A player has a hand of up to 5 cards, and the number of points in the hand is the sum of the points
for each card. A hand is represented by a list with the name of the player followed by each of the
cards in the hand. (amy (a d) (3 d) (6 h) (q s)), (jack (2 c)), and (fred) are all
proper hands. These hands are worth 13, 1, and 0 points respectively.

A game-state is defined as a list of hands. It represents the state of the game at one particular time.

Part A: Write the proper selectors to get the rank and suit of a card, and the name and cards of a
hand.

Part B: Write the procedure totals which takes a game-state and returns a table of player names
paired with the total points of their hand. For instance,

(totals '((sam (a c) (2 c) (3 c) (4 c))

 (bob (a h) (2 h) (3 h) (4 h))))


((sam 4)

 (bob 0))

(totals '((amy (a d) (3 d) (6 h) (q s))

 (jack (2 c))

 (fred)))



((amy 13)

 (jack 1)

 (fred 0))

Part C: Write a procedure current-score which takes a game state and a player name and returns
the current score for that players hand. Don't write any additional procedures; assume the
procedures for parts A and B are functioning correctly.

Spring 2008 final review in lecture page 5

Problem 4. Predicates and generalized lists: Deep-any?

Part A: Write a procedure called deep-any?, which takes a one-argument predicate and a

generalized list, and returns #t if any word in within that list or sublist satisfies the predicate.

(deep-any? even? '(5 ((3) ((2))) 11))  #t

(deep-any? even? '(5 ((3) ((7))) 11))  #f

Part B: Fill in the blank in the following procedure so that given a generalized list, the procedure will
return #t if there are any numbers greater than 20 in the list. Note that the list may contain anything
(not necessarily numbers). Don't define any other procedures.

(define (deep-any-numbers-greater-than-20? g-list)

 (deep-any?

 __

 g-list))

Spring 2008 final review in lecture page 6

Problem 5. Election processing with lists

Write a higher-order procedure named electoral-votes which takes a predicate as its single
argument. The procedure will sum up the 2008 electoral votes for states that satisfy the predicate.

 (electoral-votes california?)  55

 (electoral-votes blue-state?)  212

The database of states and their electoral votes is in a global variable *states*:

 ((ca 55) (me 4) (nj 15) …)

The predicate takes the state's two-letter abbreviated name as its argument.

You do not have to write these predicates; rather, you only need to write electoral-votes such
that it works properly with any proper predicate. Do not use explicit recursion.

(define (electoral-votes pred)

