
Spring 2008 final review (in lecture) 

SOLUTIONS 

 

Problem 1.   Remove-letter 

Consider a procedure remove-letter that takes two inputs, a letter and a sentence, and returns 
the sentence with all occurrences of the letter removed.  For example: 
 
(remove-letter 'e '(here is a 

sentence with e in it) 
(hr is a sntnc with "" in it) 

(remove-letter 'e '(not any 

within)) 
(not any within) 

(remove-letter 'e '()) () 

 

Part A: Write remove-letter without using any explicit recursion (i.e., use higher order 
functions instead) 
 
;; solution 1:  

(define (remove-letter ltr sent)  

   (every (lambda (wd)  

             (remove-letter-from-word ltr wd))  

          sent))  

(define (remove-letter-from-word ltr wd)  

   (keep (lambda (ltr-from-wd)  

             (not (equal? ltr ltr-from-wd))  

          wd))  

 

;;solution 2:  

(define (remove-letter ltr sent)  

   (every (lambda (wd)  

             (keep (lambda (ltr-from-wd)  

                      (not (equal? ltr ltr-from-wd))  

                   wd))  

          sent))  

 

;;solution 3:  

(define (remove-letter-from-word ltr wd)  

   (accumulate word  

               (every (lambda (ltr-from-wd)  

                         (if (equal? ltr ltr-from-wd)  

                             ""  

                             ltr-from-wd))  

                      wd))  

 

 



Spring 2008 final review in lecture SOLUTIONS  page 2 
 

Part B: Write remove-letter without using higher-order functions (i.e., use recursion instead). 
  

;; solution 1:  

 (define (remove-char char sent-or-word)  

   (cond ((empty? sent-or-word) sent-or-word)  

         ((sentence? sent-or-word)  

          (se (remove-char (first sent-or-word))  

              (remove-char (bf sent-or-word))))  

         ((equal? (first sent-or-word) char)  

          (remove-char (bf sent-or-word)))  

         (else (word (first sent-or-word)  

                     (remove-char (bf sent-or-word))))))  

 
 ;; solution 2:  

 (define (remove-char char sent)  

   (if (empty? sent)  

       sent  

       (se (remove-char-from-word (first sent))  

           (remove-char (bf sent)))))  

 
 (define (remove-char-from-word char wd)  

   (cond ((empty? wd) wd)  

         ((equal? (first wd) char)  

          (remove-char-from-wd (bf wd)))  

         (else (word (first wd)  

                     (remove-char-from-word (bf wd))))))  

 

 

 

Problem 2.  Not just a ticky-tack question 

In tic-tac-toe, a pivot is an open square that identifies a winning move through the generation of a 

fork.  In ttt.scm, the pivot procedure takes a sentence of triples and a player, and returns a 

sentence of pivots.  The code in ttt.scm is reproduced in an appendix at the end of this exam. 
 

For the board b equal to "x o _ _ x _ _ _ o", for example: 
 
(pivots (find-triples b) 'x)  (4 7) 

(pivots (find-triples b) 'o)  () 

 

Rewrite pivots without using higher order procedures (i.e., using 

only recursion).  You can use procedures defined in ttt.scm as long 

as those procedures don't use higher order functions.  (You may use 

appearances).  
 
Make sure to name your helper procedures and parameters well.  You only need to comment when 
you think it necessary to help explain the intent of your procedure. 
 

X 

X 

O 

O 



Spring 2008 final review in lecture SOLUTIONS  page 3 
 
Here are some procedures you can use without writing them: 
 

keep-my-singles takes a sentence of triples and a player and returns a sentence of 

triples that satisfy my-single?  (that is, triples with two empty squares and one square 
filled by the player): 
  

 (keep-my-singles (find-triples b) 'x) ("4x6" x47 "3x7") 

 (keep-my-singles (find-triples b) 'o) ("78o" "36o") 

 

explode-all takes a sentence of words and returns a sentence with each word 
"exploded" into single-letter words: 
 

 (explode-all '(bob joe))  (b o b j o e) 

 (explode-all '(25o 7o9))  (2 5 o 7 o 9) 

 
Note: simply duplicating the algorithm in the book will get you into trouble.  Remember, 
chapter 10 in Simply Scheme comes before recursion, and would have changed quite a bit 
had recursion been used. 
 
There are a few different solutions, and most involved a helper procedure within which to 
do the recursion.  The tail-recursive solution below does this, recursing down the list 

returned by explode-all.   
 
(define (pivots triples me) 

   (pivots-helper (explode-all (keep-my-singles triples me)) 

                  '())) 

 

(define (pivots-helper squares current-pivots) 

  (cond ((empty? squares) current-pivots) 

        ((or (not (number? (first squares))) 

             (not (member? (first squares) (bf squares))) 

             (member? (first squares) current-pivots)) 

          (pivots-helper (bf squares) current-pivots)) 

        (else (pivots-helper (bf squares)  

                             (se (current-pivots) 

                                 (first squares)))))) 

 

Note that there are two recursive cases: when a pivot is found or when one isn't.  To find a 

pivot involves checking to see that the current square is a number (to ignore the "x"s and 

"o"s that will be in the sentence), checking that the current square appears again later in the 
sentence, and checking that we haven't already found this square.  The last check isn't too 
important – technically there is one rare case where pivots-helper would see the same 
square three times, but it wouldn't affect the rest of the program.  With the embedded 
version of this code, it was very hard to check for this third case!   

 

 



Spring 2008 final review in lecture SOLUTIONS  page 4 
 
Problem 3. The card game "clubs" 

This question concerns a game called clubs.  In this game, card are worth a number of points: 1 
point for every club, 13 points for the queen of spades, and 0 points otherwise.  A card is a list of the 
rank and suit of the card.  Ranks are the number  or the letter a, j, q, or k.  Suits are one of the 
letter c, s, d, h  (for clubs, spades, diamonds, and hearts). 
 
A player has a hand of up to 5 cards, and the number of points in the hand is the sum of the points 
for each card.  A hand is represented by a list with the name of the player followed by each of the 
cards in the hand.   (amy (a d) (3 d) (6 h) (q s)),  (jack (2 c)), and (fred) are all 
proper hands.  These hands are worth 13, 1, and 0 points respectively. 
 
A game-state is defined as a list of hands.  It represents the state of the game at one particular time. 
 
Part A:  Write the proper selectors to get the rank and suit of a card, and the name and cards of a 
hand. 
 
(define (rank card) (car card)) 

(define (suit card) (cadr card)) 

 

(define (name hand) (car hand)) 

(define (cards hand) (cdr hand)) 

 

Part B:  Write the procedure totals which takes a game-state and returns a table of player names 
paired with the total points of their hand.  For instance,   
 
(totals '((sam (a c) (2 c) (3 c) (4 c)) 

          (bob (a h) (2 h) (3 h) (4 h)))) 


((sam 4) 

 (bob 0)) 

(totals '((amy (a d) (3 d) (6 h) (q s)) 

          (jack (2 c)) 

          (fred))) 



((amy 13) 

 (jack 1) 

 (fred 0)) 

 
(define (worth card) 

   (cond ((and (equal? (suit card) 's) 

               (equal? (rank card) 'q)) 

          13) 

         ((equal? (suit card) 'c) 

          1) 

         (else 0))) 

          

(define (score hand) 

   (apply + (map worth (cards hand)))) 

 

(define (totals game-state) 

   (map (lambda (hand) 

           (list (name hand) 

                 (score hand))) 

        game-state)) 



Spring 2008 final review in lecture SOLUTIONS  page 5 
 
 
Part C:  Write a procedure current-score which takes a game state and a player name and returns the 
current score for that players hand.  Don't write any additional procedures; assume the procedures 
for parts A and B are functioning correctly. 
 
(define (current-score gs name) 

   (cadr (assoc name (totals gs)))) 

 
 
 
Problem 4. Predicates and generalized lists: Deep-any? 

Part A:  Write a procedure called deep-any?, which takes a one-argument predicate and a 

generalized list, and returns #t if any word in within that list or sublist satisfies the predicate.  
 
(deep-any? even? '( 5 ((3) ((2))) 11 ))  #t 

(deep-any? even? '( 5 ((3) ((7))) 11 ))  #f 

 
(define (deep-any? pred L) 

   (cond ((null? L) 

          #f) 

         ((list? (car L)) 

          (or (deep-any? pred (car L)) 

              (deep-any? pred (cdr L)))) 

         (else 

          (or (pred (car L)) 

              (deep-any? pred (cdr L)))) 

         )) 

 

(there are plenty of other ways, however...) 
 
 
Part B:  Fill in the blank in the following procedure so that given a generalized list, the procedure will 
return #t if there are any numbers greater than 20 in the list.  Note that the list may contain anything 
(not necessarily numbers).  Don't define any other procedures. 
 
(define (deep-any-numbers-greater-than-20? g-list) 

   (deep-any?  

 

        ______(lambda (e) (and (number? e) (> e 20)))_______ 

 

        g-list)) 

 



Spring 2008 final review in lecture SOLUTIONS  page 6 
 
 

Problem 5.  Election processing with lists 
Write a higher-order procedure named electoral-votes which takes a predicate as its single 
argument.  The procedure will sum up the 2008 electoral votes for states that satisfy the predicate. 
 
        (electoral-votes california?)  55 

 

        (electoral-votes blue-state?)  212 

 
The database of states and their electoral votes is in a global variable *states*: 
 
        ((ca 55) (me 4) (nj 15) …) 

 

The predicate takes the state's two-letter abbreviated name as its argument. You do not have to write 
these predicates; rather, you only need to write electoral-votes such that it works properly with 
any proper predicate.  Do not use explicit recursion. 
 

 

 

 
(define (electoral-votes pred) 

   (apply +  

      (map state-ev 

         (filter (lambda (state) 

                     (pred (state-name state))) 

                 *states*) ) ) ) 

 

 
or, without using filter first 
 

(define (electoral-votes pred) 

   (apply +  

      (map (lambda (state) 

             (if (pred (state-name state)) 

                 (state-ev state) 

                 0)) 

           *states*))) 


