
Jon Kotker, jo_ko_berkeley@berkeley.edu

COMPUTER SCIENCE AT CAL

The True Story (ish)



Jon Kotker, jo_ko_berkeley@berkeley.edu

BEFORE WE BEGIN…

WHO AM I?

Jonathan “Jon” Kotker, EECS sophomore, CS3 TA, 

Sometimes All-Around Nice Guy

WHY AM I TALKING TO YOU?

Because I can.

NO, REALLY.

To explore different aspects of Computer Science 

and EECS at Berkeley.



Jon Kotker, jo_ko_berkeley@berkeley.edu

FUNNY PICTURE TO WAKE YOU UP



Jon Kotker, jo_ko_berkeley@berkeley.edu

WHY CS/EECS AT ALL?

 Get to make products that everyone can use

 CS is a design discipline – has elements 

common with architecture and art

 Programming is not the only profession that CS 

leads into; can also be

 System Administrator

 Project Management

 User Interface Designer

 Lawyer (not kidding!)



Jon Kotker, jo_ko_berkeley@berkeley.edu

WHY CS/EECS AT ALL?

 Similarly, not all current employees in the 
Computer Science field come from the 
Computer Science major!

 Economics

 Statistics

 Applied Mathematics

 Cognitive Science

 Academia

 Teach CS courses as a professor – or take my job

 Perform Computer Science research



Jon Kotker, jo_ko_berkeley@berkeley.edu

CS61A: Fundamentals

 Requires recursion (you've got it!)

 Exposure to several programming paradigms, 

high-level ways to organize programs, related 

areas of computer science

 Like and unlike CS3:

 Scheme is used; UCWISE is not.

 CS3 topics are covered in the first 3-4 weeks

 One cool thing learnt: How to make a chat client 

in Scheme



Jon Kotker, jo_ko_berkeley@berkeley.edu

CS61B: Data Structures

 Requires 61A (with a B- or higher)

 Wide coverage of dynamic data structures: 
queues, trees, arrays, strings, hash tables, etc.

 A lot of programming in this course 

 Language used: Java

 One cool thing learnt: Final project is made 
from scratch; teaches beginning software 
engineering: design, coding, testing, debugging, 
and analysis.



Jon Kotker, jo_ko_berkeley@berkeley.edu

CS61C: Machine Structures

 Low-level programming (i.e., what happens 

when you read data from a disk drive, or hit a 

key on the keyboard)

 Learnt about machine architecture, how 

operating systems actually work, and even do a 

little low-level programming

 Language(s) used: C, MIPS, Verilog

 One cool thing learnt: Design your own 

processor!



Jon Kotker, jo_ko_berkeley@berkeley.edu

CS70: Discrete Math/Prob. Theory

 Requires Math 1B

 Mainly work with proofs, logic problems, and 

algorithms

 Touches on many different areas in CS, such as 

cryptography, networking efficiency, and search/sort 

algorithms

 No programming in this course, but weekly problem 

sets, a lot of proof and deduction problems

 One cool thing learnt: How to obtain information from 

corrupted packets



Jon Kotker, jo_ko_berkeley@berkeley.edu

THIS IS A COMPUTER

•GAMES

•GRAPHICS

•SECURITY

•MEMORY, PROCESSORS

•DATA STORAGE

•OPERATING SYSTEM

•USER INTERFACE

•EDUCATION

•ALGORITHM

STHEORY



Jon Kotker, jo_ko_berkeley@berkeley.edu

THIS IS COMPUTER SCIENCE AT CAL

•GAMES (CS188)

•GRAPHICS 

(CS184)

•SECURITY 

(CS261)

•MEMORY, PROCESSORS (CS61C, 

CS150)

•DATA STORAGE (CS61B)

•OPERATING SYSTEM (CS162)

•USER INTERFACE 

(CS160)

•EDUCATION (CS301)

•ALGORITHM

STHEORY 

(CS70)



Jon Kotker, jo_ko_berkeley@berkeley.edu

UPPER DIVISION COURSES
(Descriptions from a Graduate)

CS150 (Digital Systems)

“Design and implement your own processor!”

CS152 (Computer Architecture)

“Parallel processing awesomeness!”

CS160 (User Interface Design)

“Design, create and determine usability of a theoretical 
application, like a Facebook app!”

CS161 (Security)

“Learn about viruses and cool hacks!”

CS162 (Operating Systems)

“Make your own functional operating system (NachOS)!”



Jon Kotker, jo_ko_berkeley@berkeley.edu

UPPER DIVISION COURSES
(Descriptions from a Graduate)

CS164 (Compilers)

“Write something that actually runs the code people write!”

CS169 (Software Engineering)

“Make something – anything – that you think people might want to 
use! (We made something that tells you about local concerts in your 
area when you listen to those bands.)”

CS170 (Algorithms)

“Mathy awesomeness!”

CS184 (Graphics)

Demonstration from Ketrina Yim

CS186 (Databases)

“Learn the super useful skill of working with databases!”

CS 188 (Artificial Intelligence)

Demonstration from Ramesh Sridharan



Jon Kotker, jo_ko_berkeley@berkeley.edu

CS184



Jon Kotker, jo_ko_berkeley@berkeley.edu

EECS OR CS?

EECS over CS

 I’m in EECS. What else do you need?

 More depth, more math; deals with actual 

physical entities, like circuits

 Can pursue EECS with emphasis on either EE or 

CS – great if you dislike programming, but love 

circuits or making Transformers

 Can focus on a lot of sub-fields



Jon Kotker, jo_ko_berkeley@berkeley.edu

EECS OR CS?

CS over EECS

 CS is uncapped; easier to get into as a major

 CS allows more flexibility over choice of 

courses; allows pursuit of more non-CS courses

 Can double-major in another non-technical field

 Less math



Jon Kotker, jo_ko_berkeley@berkeley.edu

TIPS FOR SUCCESS
 Don’t fall behind.

 CS is hard enough as it is.

 Pay attention in lecture and/or read the book.

 Use your resources.

 Engage your TAs.

 Go to office hours.

 Check out http://hkn.eecs.berkeley.edu for ratings.

 Form study groups.

 Work gets done faster in groups. More importantly, 

it gets done more correctly.

 (Plus, it’s more fun with friends.)


