
CS3L:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton
nate@berkeley.edu

Lecture 2:
Introduction, and Conditionals

Announcements

• Nate's office hours:
- Wednesday, 2 – 4

 (except once a month as posted)…
- 329 Soda

• Any questions about the course?
- Card keys?
- Working from home?

Schedule
1 Jan 21-25 Lecture: <holiday>

Lab: (1) Introduction, emacs, unix
 (2) Words and sentences

2 Jan 28-Feb1 Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: (1) Conditionals and booleans
 (2) Words/sentences and conditionals
Note: this is a "full" week.

3 Feb 4-Feb 8 Lecture: Conditionals, Case Studies
Reading: "Difference between Dates" case

 study, in the reader
Lab: Explore "Difference between Dates"

4 Feb 11-15 Lecture: Data abstraction in DbD, recursion
Reading (Th/Fri): SS ch. 11
Lab: (1) Miniproject 1
 (2) Recursion

The main topics in the course

(1) Scheme

(2) Recursion

(3) High-order procedures

Also:
 … writing “good” programs

How are the labs?

Are you keeping up?
The software ok?

Fall 2005 Final Survey
What advice would you give to students

who will take CS3 in future semesters?

Common and helpful responses:
- Go to lab and ask lots of questions; GSI are helpful
- Don’t fall behind in lab, catch up as soon as you fall

behind
- Do the reading before lab
- prepare to spend a lot of time with the class and

it's not as bad as you might make it out to be.
- find a good partner to do projects and study for

exams
- Ask for help
- Focus hard on the first two weeks…

Lab: a look back at day 1
1. Evaluation: from the inside out

(+ (* 2 (/ 4 2)) (* (+ 12 1) 2))
• How to define functions
• The scheme machine (pictures)
• sales-tax, discount-price,

 selling-price
• Which single character has changed (to get an

unbound error?
(define (square x)

 (* x x))
6. mystery procedure

(define (mystery x)
 (square (+ 1 (truncate (sqrt (- x 1))))))

7. Write the french revolutionary date program

Terminology (from day 1)

• argument
• body
• expression
• evaluation
• input
• placeholder
• procedure
• result

> (define (prepend-joe name)
 (word 'joe name))
prepend-joe
> (prepend-joe 'bob)
joebob
> (prepend-joe (word 'j 'o 'e))
joejoe

Lab: a look back at day 2
1. Procedures that take words & sentences

first, last, butfirst, butlast
2. Quoting!

- names versus things that are named
3. Constructing words & sentences

with word and sentence (se)
• Add parens and quotes to get (def ghi)

butfirst sentence abc word def ghi
• experiment with appearances
• Evaluation rules with quotes
• Packaging information with sentences

(inch-count '(2 3))  27
(FR-date 31)  (2 1)

8. Some common misconceptions

Quoting

• Quoting something means treating it
literally:
- you are interested in the specific thing follows,

rather than what is named
- Quoting is a shortcut to putting literal things

right in your code. As your programs get bigger,
you will do this less and less.

Quoting is something unique to Scheme

Evaluation of a scheme expression

Parentheses?

Starts with quote?

Starts with procedure?

Correct # arguments?

Return named thingno

yes

no

yes

yes

yes

no

no

Evaluate each argument

error

error

Substitute into
procedure body

Calculate, and return

Return the thing itself

Common misconceptions

1) All arguments to a procedure get quotes.

2) Sentences don't need to be quoted.

3) Sentences of numbers don't need to be
quoted.

4) Words don't need to be quoted.

5) Quotes can go either on the inside or the
outside of a sentence.

Some programming

• “first-two-letters”
- takes a word, returns the first two letters (as a

two-letter word)

• “two-first-letters”
- takes a sentence of two words, returns the first

letter of each (as a two-letter word)

A big idea

• Data abstraction

- Constructors: procedures to make a piece of
data
-word and sentence

- Selectors: procedures to return parts of that data
piece
-first, butfirst, etc.

Coming up: conditionals

• Conditionals allow programs to do different
things depending on data values

- To make decisions

• "Intelligence" depends on this
- it is hard to imagine any interesting program that

doesn't do different things depending on what it
is given

Structure of conditionals

(if <true?> ;; test
 <do something> ;; action (if true)
 <do something else>) ;; action (if false)

(define (smarty x)
 (if (odd? x)
 (se x '(is odd))
 (se x '(is even)))
)

true? or false?

• We need Booleans: something that represents
truth or 'not truth' to the computer:
 #t, #f

 (odd? 3)  #t

- in practice, everything is true except #f
 (if 'joe '(hi joe) '(who are you))
  (hi joe)

- false (the word with 5 letters) is true!
(really, false is #t)

Predicates

• Predicates are procedures that return
#t or #f

- by convention, their names end with a "?"

odd? (odd? 3)  #t
even? (even? 3)  #f
vowel? (vowel? 'a)  #t

(vowel? (first 'fred))  #f
sentence? (sentence? 'fred)  #f

cond is another conditional form

(cond
 (test-1 return-if-test1-true)
 (test-2 return-if-test2-true)
 ...
 (else return-if-no-other-test-is-true)
))

and, or and not to modify booleans

•and takes any number of arguments, and
returns true only if all are true
•or takes any number of arguments, and

returns true if any are true
•not takes a single argument, and returns

true only if the argument is false.

(if (not (and #t #t #t #f))
 'yes
 'awwwww)  yes

testing

There is much more to programming than
writing code

- Testing is crucial, and an emphasis of this
course

- Analysis
- Debugging
- Maintenance.
- "Design"

- How do you test a conditional?

