
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton
nate@berkeley.edu

Lecture 3:
Review of conditionals

The “Difference between dates” case study

Announcements

• Nate's office hours (this week only) :
- Wednesday, 10-12, 329 Soda
- usually they are W 2-4... Better?

• Readers (graders) are coming up to speed
this week, so look for things to be graded
soon…

A video resource

• http://wla.berkeley.edu

Weiner lecture archives

• The "course" is an earlier CS3
- Different emphasis; early lectures may work

better than later ones
- Very different lab experience
- Same book

Schedule

2 Jan 28-Feb1 Lecture: Introduction, Review, Conditionals
Reading: Simply Scheme, ch. 3-6
Lab: (1) Conditionals and booleans
 (2) Words/sentences and conditionals

3 Feb 4-Feb 8 Lecture: Conditionals, Case Studies
Reading: "Difference between Dates" case

 study, in the reader
Lab: Explore "Difference between Dates“
 Start on Miniproject #1

4 Feb 11-15 Lecture: DbD, recursion
Reading (Thur/Fri): Simply Scheme chap. 11
Lab: (1) Miniproject 1
 (2) Recursion

5 Feb 18-22 Lecture: Recursion
Lab: Recursion, Recursion, Recursion

Concepts from last week (1/4)
1. Conditionals

• cond and if
• These are special forms, and don't follow the

standard rules of evaluation

2. Booleans
• truth (#t, or anything) and non-truth (#f)

3. logical operators
• and, or, not

4. Predicates
• procedures that return booleans
• (These end in a ? usually: odd?, vowel?, …)

Spring 2008 CS3: 6

Concepts from last week (2/4)

• Writing conditionals using only and/or or
if/cond.

• Organizing a series of conditionals

Concepts from last week (3/4)

• Testing
- There is much more to programming than

writing code. Testing is crucial, and an
emphasis of this course
- Analysis
- Debugging
- Maintenance.
- "Design"

- Testing is an art (there is no one right way)
- boundary cases, helper procedures, etc.

Concepts from last week (4/4)

• Helper procedures
- Choosing when to write helper procedures is

an … art. There is no one right way.

- Issues include
- Readability – clear and verbose are usually better

than complex and brief
- Maintenance – fixing or adding to code later

- This is an important skill in programming, and
one you will need to focus on.

Functional abstraction

• Abstraction helps make programs
understandable by simplifying them.

- By letting the programmer or maintainer ignore
details about a task at hand

- Helper functions, when done correctly, do this

What does it mean to
“understand a program” ?

This week: Case Studies
• Reading!?

• A case study…
- starts with a problem statement
- ends with a solution
- in between, a story, or narrative
- How a program comes to be

• You will write “day-span”, which calculates
the number of days between two dates in a
year

You need to read this!
• The lab will cover the case study through a

variety of activities.

• We just may base exam questions on it

• It will make you a better programmer!
4 out of 5 educational researchers say so.

Some important points
• There is a large "dead-end" in this text

- Like occur in many programming projects
- Good "style" helps minimize the impacts of

these

• There is (often) a difference between good
algorithms and between human thinking

Miniproject 1

• By the end of the week, you will start on
miniproject 1:

- write century-day-span, extending the
day-span program to correctly handle dates in
(possibly) different years.

- Consider a central lesson of the case study:
there are easier and harder ways to solve
problems. Choose easier.

This is your first large program
Use helper functions

- Break out self-contained tasks into helper
procedures: they should be easy to name.

- If you can get your main procedure to read like
English, you are doing well.

• Test, and test some more.
- Remember to put test cases above each helper

procedure.
• Reuse code that you have already written
• Add comments!

- Above each procedure, at least.
- Within some cond cases, additionally.

