CS3:

Introduction to Symbolic
Programming

(Special) Lecture 5:
More Recursion
Midterm problems and review

Spring 2008 Nate Titterton
nate@berkeley.edu

Schedule

Feb 18-22

Lecture: Holiday, no lecture
Reading: “DbD” case study, recursive version
Simply Scheme, Chapter 12
(for Tue/Wed)
“Roman Numerals” case study
(for Thur/Fri)
Lab: More complex recursion

Feb 25-29

Lecture: Midterm #1

Lab: Recursion with multiple arguments
Reading: Simply Scheme ch. 14
Homework: The “big” homeworks...

Mar 3-7

Lecture: Advanced Recursion
Lab: Advanced Recursion
Miniproject #2: Number Spelling

Midterm #1

* Midterm 1

- 90 minutes long (4:10-5:40), 2050 VLSB

(Some of you will be taking it at 3pm in 606 Soda, IF you
have emailed me beforehand).

- Open book, open notes.
Nothing that can compute, though.

- Everything we’ve done in class

Including the coming lab on the “Roman Numerals”
case study.

- Practice exams in your reader
Do these all at once (to simulate an exam)
Solutions will be announced

- TA review session
Saturday, Feb 23, 2-4pm, in 306 soda
Send questions to us before hand!

All recursion procedures need...

1. Base Case (s)

Where the problem is simple enough to be solved
directly

2. Recursive Cases (s)
1. Divide the Problem

into one or more smaller problems

2. Invoke the function
Have it call itself recursively on each smaller part

3. Combine the solutions
Combine each subpart into a solution for the whole

Locate the "parts™

(define (find-evens sent)
(cond |((empty? sent)
())

2

(find-evens | (bf sent)|) |)

else
(se i)
tfind—evens (bf sent)|))|)
)
Base Case Invoke the function

recursively

Divide the problem Combine the solutions

> (find-evens '(2 3 4 5 6

sent=(23456)

(se 2 sent=(3456)
sent=(456)
(se 4 sent=(56)
sent=(6)
(se 6 sent=()

()

> (se 2 (se 4 (se 6 ())))
> (2 4 6)

Recursion Lab materials

* "combining method" with

- downup,

- reverse,

- copies,

- sum—-in-interval,

- appearances
* Data abstraction with celebrity
* The replacement modeler
* Work with recursive day-span
* Write

- down-to-0

- remove

-all-odd?

- dupls-removed

- is-sorted?

Some midterm like problems

Write sevens

* Write a procedure sevens that takes a
sentence of numbers, and replaces any pairs
of numbers that sum to seven with the
number 7.

> (sevens ‘(2 345 6)) = (2 7 5 6)
> (sevens ‘(3 4 3 25)) = (7 3 17)

> (sevens ‘(61 02 7 0 4)) =
(7 0 2 7 4)

Whatever floats your boat (sp07 mt1) (1/3)

This problem 1nvolves a Rank |Explanation
procedure can- 5 |5 star admiral
order?, which takes 3 | 3 star admiral
two ranks 1n the United 1 |1 star admiral

States navy and returns

o
#t 1f and only if the cpn |captain

: cmd | commander
first rank 1s “above”

the second and can, ltn | ieutenant

therefore, order the en | ensign

other one around. The
following table lists
the ranks:

Whatever floats your boat (sp07 mt1): part A

Write can-order? in the form of the “better
solution” in the Difference Between Dates
case study (the second attempt that
successfully wrote day-span, after the dead
end was reached in the first attempt). You
can assume that the ranks passed to can-
order? are valid.

Chooose good names for your parameters
and helper procedures, and add relevant
comments above every procedure.

- Partial credit will be awarded for solutions that
don’'t follow the form of the better solution in
Difference Between Dates.

Whatever floats your boat (sp07 mt1): part B

There are man){‘ possible valid calls to can-
order?. For this problem, you will write test
cases for the procedure.

- We don't want a large list. Instead, we want you
to describe what the general classes of tests
cases are.

- That is, think about how the test cases can be
grouped such that the cases in a group are
similar in how they check for errors or otherwise
test the program.

- There are not many groups.

For each group, briefly describe what the
similarity is and provide a single test case.
tBe tsure to include the correct result of the

est.

day-by-day (1/2)

* Fill in the blanks on day-by-day below, a
recursive function which should provide the

same responses as day-span.

* Use all of the framework code provided
below (don't simply cross some out and
ignhore it).

* Be sure to use helper procedures where
appropriate, and good procedure and
parameter names — cond statements with 12
cases will be frowned upon. (Feel free to use
any procedure defined in the recursive
version of day-span).

day-by-day (2/2)

;; works as day-span
(define (day-by-day datel date2)
(i1f (equal? datel date2)

(+ 1 (day-by-day (next-day datel) date2)))))

(define (next-day date)
(L1f (last-day-of-month? date)

))

(define (last-day-of-month? date)

Midterm Problem: sub-cursion?

Write the procedure sub-sentence, which returns a middle
section of a sentence. It takes three parameters; the first
identifies the index to start the middle section, and will be 1 or
greater; the second identifies the length of the middle section,
and will be 0 or greater; and the last is the sentence to work
with.

Do not use any helper procedures.
Do not use the item procedure in your solution.

(sub-sentence 2 3 '(abcde £fg)) @ (b cd)
(sub-sentence 3 2 '(a b)) = ()
(sub-sentence 3 0 '"(ab cde) =2 ()
(sub-sentence 3 9 '(abcde) P (cde)

