
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton
nate@berkeley.edu

(Special) Lecture 5:
More Recursion

Midterm problems and review

Schedule

5 Feb 18-22 Lecture: Holiday, no lecture
Reading: “DbD” case study, recursive version
 Simply Scheme, Chapter 12
 (for Tue/Wed)
 “Roman Numerals” case study
 (for Thur/Fri)
Lab: More complex recursion

6 Feb 25-29 Lecture: Midterm #1
Lab: Recursion with multiple arguments
Reading: Simply Scheme ch. 14
Homework: The “big” homeworks…

7 Mar 3-7 Lecture: Advanced Recursion
Lab: Advanced Recursion
 Miniproject #2: Number Spelling

Midterm #1
• Midterm 1

- 90 minutes long (4:10-5:40), 2050 VLSB
- (Some of you will be taking it at 3pm in 606 Soda, IF you

have emailed me beforehand).
- Open book, open notes.

- Nothing that can compute, though.
- Everything we’ve done in class

- Including the coming lab on the “Roman Numerals”
case study.

- Practice exams in your reader
- Do these all at once (to simulate an exam)
- Solutions will be announced

- TA review session
- Saturday, Feb 23, 2-4pm, in 306 soda
- Send questions to us before hand!

All recursion procedures need…

1. Base Case (s)
• Where the problem is simple enough to be solved

directly

2. Recursive Cases (s)
1. Divide the Problem

• into one or more smaller problems
2. Invoke the function

• Have it call itself recursively on each smaller part
3. Combine the solutions

• Combine each subpart into a solution for the whole

(define (find-evens sent)
 (cond ((empty? sent)
 '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))
))

Locate the "parts"

Base Case

Divide the problem Combine the solutions

Invoke the function
recursively

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())))
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

Recursion Lab materials
• "combining method" with

- downup,
- reverse,
- copies,
- sum-in-interval,
- appearances

• Data abstraction with celebrity
• The replacement modeler
• Work with recursive day-span
• Write

- down-to-0
- remove
- all-odd?
- dupls-removed
- is-sorted?

Some midterm like problems

Write sevens

• Write a procedure sevens that takes a
sentence of numbers, and replaces any pairs
of numbers that sum to seven with the
number 7.

> (sevens ‘(2 3 4 5 6))  (2 7 5 6)

> (sevens ‘(3 4 3 2 5))  (7 3 7)

> (sevens ‘(6 1 0 2 7 0 4)) 
 (7 0 2 7 4)

Whatever floats your boat (sp07 mt1) (1/3)

This problem involves a
procedure can-
order?, which takes
two ranks in the United
States navy and returns
#t if and only if the
first rank is “above”
the second and can,
therefore, order the
other one around. The
following table lists
the ranks:

Rank Explanation
5 5 star admiral

3 3 star admiral

1 1 star admiral

cpn captain

cmd commander

ltn lieutenant

en ensign

Whatever floats your boat (sp07 mt1): part A

Write can-order? in the form of the “better
solution” in the Difference Between Dates
case study (the second attempt that
successfully wrote day-span, after the dead
end was reached in the first attempt). You
can assume that the ranks passed to can-
order? are valid.

Chooose good names for your parameters
and helper procedures, and add relevant
comments above every procedure.

- Partial credit will be awarded for solutions that
don't follow the form of the better solution in
Difference Between Dates.

Whatever floats your boat (sp07 mt1): part B

There are many possible valid calls to can-order?. For this problem, you will write test
cases for the procedure.

- We don't want a large list. Instead, we want you
to describe what the general classes of tests
cases are.

- That is, think about how the test cases can be
grouped, such that the cases in a group are
similar in how they check for errors or otherwise
test the program.

- There are not many groups.

For each group, briefly describe what the
similarity is and provide a single test case.
Be sure to include the correct result of the
test.

day-by-day (1/2)

• Fill in the blanks on day-by-day below, a

recursive function which should provide the
same responses as day-span.

• Use all of the framework code provided
below (don't simply cross some out and
ignore it).

• Be sure to use helper procedures where
appropriate, and good procedure and
parameter names – cond statements with 12
cases will be frowned upon. (Feel free to use
any procedure defined in the recursive
version of day-span).

day-by-day (2/2)
;; works as day-span
(define (day-by-day date1 date2)
 (if (equal? date1 date2)

 (+ 1 (day-by-day (next-day date1) date2)))))

(define (next-day date)
 (if (last-day-of-month? date)

 _________________________________))

(define (last-day-of-month? date)

Midterm Problem: sub-cursion?
Write the procedure sub-sentence, which returns a middle
section of a sentence. It takes three parameters; the first
identifies the index to start the middle section, and will be 1 or
greater; the second identifies the length of the middle section,
and will be 0 or greater; and the last is the sentence to work
with.

Do not use any helper procedures.
Do not use the item procedure in your solution.

(sub-sentence 2 3 '(a b c d e f g))  (b c d)
(sub-sentence 3 2 '(a b))  ()
(sub-sentence 3 0 '(a b c d e)  ()
(sub-sentence 3 9 '(a b c d e)  (c d e)

