
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton
nate@berkeley.edu

Lecture 7:
The last of recursion (for a while)

Schedule

6 Feb 25-29 Lecture: Midterm #1
Lab: Recursion with multiple arguments
Homework: The “big” homeworks…

7 Mar 3-7 Lecture: Advanced Recursion
Lab: Advanced Recursion
 Miniproject #2: Number Spelling

8 Mar 10-14 Lecture: Higher Order Functions
Lab: Introduction to HOF
Reading: Simply Scheme, Ch 9, 10
 "DbD" HOF version
Note: MP#2 due Tue/Wed

9 Mar 17-21 Lecture: Advanced HOFs
Lab: Advanced HOF, tic-tac-toe

10 Mar 24-28 Spring Break!

Announcements
• Nate's office hours:

- Wed, 10-12 this week only

Midterm 1

Question 1: fill in the blanks

Question 2: When in Rome

2b:
decimal-values

2c:
valid-prefix?

Q3: look-at and pluralized

Q4: nines

Q5: bring-element-to-front

5c:
buggy betf

5d:
Recursive betf

Q6: mystery

6d:
mystery
without and or or

Goodbye recursion?
• Nope. We'll do more with recursion later

• What have we done in the last few weeks?
- pairwise-recursions

- roman numerals, is-sorted?
- "Advanced recursions": ones that work on

multiple sentences, or do more than one thing at
a time

- zip, merge, my-equal?
- mad-libs takes a sentence to mutate ‘(I saw
a * horse named * with * legs)and
replacement words ‘(fat Henry three)

- Recursive patterns (map, filter, etc)
- Sorting (insertion sort)
- Accumulating recursion (e.g., using so-far)

Patterns in basic recursion (1-3 of 6)
• Mapping

- does something to every part of the input
sentence

- E.g., square-all

• Counting
- Counts the number of elements that satisfy a

predicate
- E.g., count-vowels, count-evens

• Finding
- Return the first element that satisfies predicate

(or, return rest of sentence)
- E.g., member, member-even

Patterns in basic recursion (4-6 of 6)
• Filtering

- Keep or discard elements of input sentence
- E.g., keep-evens

• Testing
- A predicate that checks that every or any

element of input satistfies a test
- E.g., all-even?

• Combining
- Combines the elements in some way…
- E.g., sentence-sum

roman-sum-helper (from lab)
Write roman-sum-helper:

(define (roman-sum number-sent)
(if (empty? number-sent)

 0
 (roman-sum-helper (first number-sent)
 (bf number-sent)
 (first number-sent))))

Roman-sum-helper takes three arguments:
(define (roman-sum-helper so-far number-list most-
recent) ...)

(roman-sum '(100 10 50 1 5)) will recurse with:
(roman-sum-helper 100 '(10 50 1 5) 100)
(roman-sum-helper 110 '(50 1 5) 10)
(roman-sum-helper 140 '(1 5) 50)
(roman-sum-helper 141 '(5) 1)
(roman-sum-helper 144 '() 5)

Accumulating or “tail” recursions

• Accumulating recursions are sometimes
called "tail" recursions (by TAs, me, etc).

- But, not all recursions that keep track of a
number are "tail" recursions.

Tail versus “embedded” recursions

• A tail recursion has no combiner, so it can
end as soon as a base case is reached
- Compilers can do this efficiently

• An embedded recursion needs to combine
up all the recursive steps to form the
answer
- The poor compiler has to keep track everything

Tail or embedded? (1/3)

(define (my-count sent)
 (if (empty? sent)
 0
 (+ 1 (my-count (bf sent)))))

Embedded!

(my-count '(a b c d)) 
 (+ 1 (my-count '(b c d)))
 (+ 1 (+ 1 (my-count '(c d))))
 (+ 1 (+ 1 (+ 1 (my-count '(d)))))
 (+ 1 (+ 1 (+ 1 (+ 1 (my-count '())))))
 (+ 1 (+ 1 (+ 1 (+ 1 0))))
 (+ 1 (+ 1 (+ 1 1)))
 (+ 1 (+ 1 2))
 (+ 1 3)
 4

Tail or embedded? (2/3)

(define (find-evens sent)
 (cond ((empty? sent) '())
 ((odd? (first sent))
 (find-evens (bf sent)))
 (else
 (se (first sent)
 (find-evens (bf sent))))))

 (find-evens '(2 3 4 5 6 7))
 (se 2 (find-evens '(3 4 5 6 7)))
 (se 2 (find-evens '(4 5 6 7)))
 (se 2 (se 4 (find-evens '(5 6 7))))
 (se 2 (se 4 (find-evens '(6 7))))
 (se 2 (se 4 (se 6 (find-evens '(7))))
 (se 2 (se 4 (se 6 (find-evens '()))))
 (se 2 (se 4 (se 6 '())))
 (2 4 6)

Coming up…

• Work on “buggy” recursions

• Two-stage recursions
- Where a recursive procedure calls another

recursive procedure each step
- (You have done things like this without knowing

about it: e.g., remove-dupls)
- Most often, when doing something to each word

in a sentence.
- You saw this (briefly) in no-vowels
- Also (l33t '(I like to type))
  (i 1i/<3 +0 +yP3)

Number Spelling (Miniproject #2)
• A program to write out names of almost any

number
- You can work in a partnership (if you want)
- Read Simply Scheme, page 233, which has hints

• You will be using a new testing library

• Another hint (principle): don't force
"everything" into the recursion.
- Special/border cases may be easier to handle

before you send yourself into a recursion

Any other questions?

