
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton
nate@berkeley.edu

Lecture 8:
Introduction to

Higher Order Functions

Schedule

8 Mar 10-14 Lecture: Higher Order Functions
Lab: (Tu/W) Introduction to HOF
 (Th/F) Using “lambda”
Reading: Simply Scheme, Ch 7-9
 (7 and 8 [except repeated] for Tue/Wed)
 (9 for Thur/Fri)
Note: MP#2 due Tue/Wed

9 Mar 17-21 Lecture: Advanced HOFs
Lab: Advanced HOF, tic-tac-toe
Reading: "DbD" HOF version
 Simply Scheme, Chap 10

10 Mar 24-28

11 Mar 31 –
Apr

Tree Recursion
Mini-Project #3

12 Apr 7-11 Midterm #2

Spring Break!

What is a
procedure?

(or, a function).

Treating functions as things
• “define” associates a name with a value

- The usual form associates a name with a object
that is a function

 (define (square x) (* x x))
 (define (pi) 3.1415926535)

- You can define other objects, though:
 (define *pi* 3.1415926535)
 (define *month-names*
 ‘(january february march april may
 june july august september
 october november december))

Consider two forms of “month-name”:

 (define (month-name1 date)
 (first date))

 (define month-name2 first)

Are these the same?

Procedures can be taken as arguments…

(define (math-function? func)
 (or (equal? func +)
 (equal? func -)
 (equal? func *)
 (equal? func /)))

…and procedures can be returned from procedures

(define (choose-func name)
 (cond ((equal? name 'plus) +)
 ((equal? name 'minus) -)
 ((equal? name 'divide) /)
 (else 'sorry)))

STk> ((choose-func 'plus) 3 5)
8
STk> ((choose-func 'minus) 3 5)
-2

Higher order function (HOFs)

• A HOF is a function that takes a function as
an argument.

(define (do-math f arg1 arg2)
 (if (and (equal? arg2 0)
 (equal? f /))
 '(uh oh – divide by zero)
 (f arg1 arg2)))

The three we will focus on

• There are three main ones that work with
words and sentences:

every do something to each element

keep return only certain elements

accumulate combine the elements

• Most recursive functions that operate
on a sentence fall into:

Mapping: square-all
Counting: count-vowels, count-evens
Finding: member, first-even
Filtering: keep-evens
Testing: all-even?
Combining: sum-evens

Patterns for simple recursions

<- every

<- keep

<- accumulate

The tricky part… (maybe)
• Writing HOFs (even these three) is easy.

- You’ll do that in lab Tue/Wed

• Predicting what HOFs return is easy.

• Using HOFs with existing functions (like
square to emulate square-all) is pretty easy.

• Writing procedures to be used by HOFs to
solve non-trivial problems… seems to trip
students up.

- More so if the solution involves multiple HOFs

defining variables, let, and lambda

"Global variables"
• Functions are "global", in that they can be

used anywhere:
(define (pi) 3.1415926535)
(define (circle-area radius)

(* (pi) radius radius))

• A "global" variable, similarly, can be used
anywhere:

(define *pi* 3.1415926535)
(define (circle-area radius)

(* *pi* radius radius))

Three ways to define a variable
• In a procedure call (e.g., the variable

proc):
(define (doit proc value)

;; proc is a procedure here…
(proc value))

3. As a global variable
(define *alphabet* '(a b c d e …))
(define *month-name* '(january …))

• With let

Using let to define temporary variables
• let lets you define variables within a

procedure:

(define (scramble-523 wd)
 (let ((second (first (bf wd)))
 (third (first (bf (bf wd))))
 (fifth (item 5 wd))
)
 (word fifth second third)))

(scramble-523 'meaty)  yea

Using let to define temporary variables
• Using let can make code more readable.

Consider (same functionality as before):

(define (scramble-523 wd)
 (word (first (bf wd))
 (first (bf (bf wd)))
 (item 5 wd)
)
)

(scramble-523 'meaty)  yea

(define pi 3.14159265)
(define (… blah …)
 … lots of code here …
 (* pi radius)
 … more code here …

(define (… blah …)
 (let ((pi 3.14159265)))
 … lots of code here …
 (* pi radius)
 … more code here …

Any differences?

alpha beta pi zeta)

alpha beta pi zeta)

YES!

Anonymous functions:

using lambda

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x) (* x x))
)

Using lambda with define

• These are VERY DIFFERENT:

(define (adder-1 y)
 (lambda (x) (+ x 1)))

(define adder-2
 (lambda (x) (+ x 1)))

1

2

Schedule

8 Mar 10-14 Lecture: Higher Order Functions
Lab: (Tu/W) Introduction to HOF
 (Th/F) Using “lambda”
Reading: Simply Scheme, Ch 7-9
 (7 and 8 [except repeated] for Tue/Wed)
 (9 for Thur/Fri)
Note: MP#2 due Tue/Wed

9 Mar 17-21 Lecture: Advanced HOFs
Lab: Advanced HOF, tic-tac-toe
Reading: "DbD" HOF version
 Simply Scheme, Chap 10

10 Mar 24-28

11 Mar 31 –
Apr

Tree Recursion
Mini-Project #3

12 Apr 7-11 Midterm #2

Spring Break!

3

Remember, in STk, when you type something, Scheme is going to (after evaluating it)
print out the (return) value as best it can. A number is printed out directly. A word, or
sentence, is also directly printed (but, without the quote). But what does a function look
like?

Try the following from STk:

STk> +
#[closure arglist=args 753de8]
STk> (define (plus num1 num2) (+ num1 num2))
plus
STk> plus
#[closure arglist=(num1 num2) 12605d8]
STk> (define (square num) (* num num))
square
STk> square
#[closure arglist=(num) 125c298]
STk> (define (square num) (* num num))
square
STk> square
#[closure arglist=(num) 125d608]

4

5

Yep, these are pretty much the same in practice.

In lecture, we also showed:

(define (plus num1 num2)
 (+ num1 num2))

(define plus2 +)

in this case, “plus” and “plus2” are different in the number of arguments that they can
take (“plus2” can take any number of numeric arguments, “plus” can only take 2).

6

7

8

9

Every takes two arguments: a function and a sentence (or word). The function takes
one argument, and is called on every element of the sentence (or word)

(define (factorial n)
 (if (< n 1) 1 (* n (factorial (- n 1)))))

(every factorial '(1 2 3 4 5)) --> (1 2 6 24 120)

Keep takes two arguments: a predicate (function) and a sentence (or word). The
predicate takes one argument, and is called on each element of the sentence or
word.

(keep odd? '(1 2 3 4 5 6 7)) --> (1 3 5 7)

(define (vowel? ltr) (member? ltr '(a e i o u)))
(keep vowel? 'mississippi) --> iiii

Accumulate takes two parameters: a function and a sentence (sometimes a word).
The function here, however, takes two arguments.

(accumulate + '(1 2 3 4 5)) --> 15
(accumulate word '(t hee ndisn ear)) -->

10

The tricky part… (maybe)
• Writing HOFs (even these three) is easy.

- You’ll do that in lab Tue/Wed

• Predicting what HOFs return is easy.

• Using HOFs with existing functions (like
square to emulate square-all) is pretty easy.

• Writing procedures to be used by HOFs to
solve non-trivial problems… seems to trip
students up.

- More so if the solution involves multiple HOFs

defining variables, let, and lambda

13

The asterisks are convention, not required by scheme. Generally, when you
surround a global variable with asterisks, you differentiate it from other variables you
might be using inside functions (which, right now, are passed as parameters). So,
also by convention, don't surround parameter names with asterisks!

Three ways to define a variable
• In a procedure call (e.g., the variable

proc):
(define (doit proc value)

;; proc is a procedure here…
(proc value))

3. As a global variable
(define *alphabet* '(a b c d e …))
(define *month-name* '(january …))

• With let

Using let to define temporary variables
• let lets you define variables within a

procedure:

(define (scramble-523 wd)
 (let ((second (first (bf wd)))
 (third (first (bf (bf wd))))
 (fifth (item 5 wd))
)
 (word fifth second third)))

(scramble-523 'meaty)  yea

Using let to define temporary variables
• Using let can make code more readable.

Consider (same functionality as before):

(define (scramble-523 wd)
 (word (first (bf wd))
 (first (bf (bf wd)))
 (item 5 wd)
)
)

(scramble-523 'meaty)  yea

(define pi 3.14159265)
(define (… blah …)
 … lots of code here …
 (* pi radius)
 … more code here …

(define (… blah …)
 (let ((pi 3.14159265)))
 … lots of code here …
 (* pi radius)
 … more code here …

Any differences?

alpha beta pi zeta)

alpha beta pi zeta)

YES!

Anonymous functions:

using lambda

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

20

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x) (* x x))
)

The top form is just a shortcut, really, for the bottom form. We would get tired having to
type l-a-m-b-d-a all the time, so the above form is quicker.

21

Using lambda with define

• These are VERY DIFFERENT:

(define (adder-1 y)
 (lambda (x) (+ x 1)))

(define adder-2
 (lambda (x) (+ x 1)))

adder1 takes a single argument and returns a procedure (that takes a single argument and
returns 1 more than it)

adder2 takes a single argument and returns one more than it.

