
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton

nate@berkeley.edu

Lecture 9:

More HOF

tic-tac-toe

Schedule

9 Mar 17-21 Lecture: Advanced HOFs

Lab: Advanced HOF, tic-tac-toe

Miniproject #3 introduced

Reading (Tue/Wed): "DbD" HOF version

Simply Scheme, Chap 10

10 Mar 24-28

11 Mar 31 –

Apr 4
Lecture: Tree Recursion, Midterm review

Lab: Tree Recursion

Mini-Project #3 (Due Friday at midnight)

12 Apr 7-11 Midterm #2

Lab: Introduction to lists

13 Apr 14-18 Advanced lists…

Spring Break!

You can work on mini-project #3 this week

Tue/Wed Thur/Fri

This week
Miniproject introduced,

½ lab to work on it

Next week Spring Break

Third week Full day of tree recursion!

A few review materials

introduced. Otherwise,

open lab. MP#3 due

Friday at midnight

MIDTERM #2…

Tic Tac Toe

X | |

---+---+---

O | O | X

---+---+---

| |

"X _ _"

"O O X"

"_ _ _"

"X _ _ O O X _ _ _"

The board

X | |

---+---+---

O | O | X

---+---+---

| |

"X _ _ O O X _ _ _"

Triples (another representation of a board)

()x23 oox 789 xo7 2o8 3x9 xo9 3o7

Tic-tac-toe hints

• Read the chapter!

• You will need to be familiar with vocabulary
- positions, triples, "forks", "pivots", and so on

• This chapter in the book comes before
recursion.

- You would solve things differently if you used
recursion

• The code (at the end of the chapter) has no
comments.

Higher-order functions: review

Higher order function (HOFs)

• A HOF is a procedure that takes a
procedure as an argument.

• There are three main ones that work with
words and sentences:

- every

- take a one-argument procedure that returns a word

- do something to each element

- keep

- takes a one-argument predicate

- return only certain elements

- accumulate

- takes a two-argument procedure

- combine the elements

A definition of every

(define (my-every proc ws)

(if (empty? ws)

'()

(se (proc (first ws))

(my-every (bf ws))

)))

• HOFs do a lot of work for you:
• Checking the conditional

• Returning the proper base case

• Combing the various recursive steps

• Invoking themselves recursively on the smaller

problem

Accumulate: right to left!

• The direction matters: right to left
- (accumulate / '(4 2 2))

does not equal 1, but 4.

• Think about expanding an accumulate

(accumulate + '(1 2 3 4))

 (+ 1 (+ 2 (+ 3 4)))

(accumulate / '(4 2 2))

 (/ 4 (/ 2 2))

Consider how accumulate is written…

(define (my-accum1 accum-proc sent)

(if (= (count sent) 1) ;;last element

(first sent)

(accum-proc

(first sent)

(my-accum1 accum-proc (bf sent)))))

Accumulate: returning sentences

• accumulate can return a sentence…
(accumulate ?? '(a b c d))

 (ab bc cd)

- the first time accumulate is run, it reads the last
two words of the input sentence

- in later calls, it uses the return value of its
procedure (which is a sentence) as one of its
arguments

Any questions from Tue/Wed last week?

• You wrote and played with every, keep, and
accumulate

• You used them in combination:

(remove-adj-dupls 'mississippi)

 misisipi

(gpa '(A A F C B))

 2.6 (average of 4, 4, 0, 2, 3)

(gpa-with-p/np '(A A F NP P C B))

 2.6 (average of 4, 4, 0, 2, 3)

(true-for-all? even? '(2 4 6 8))

 #t

Which HOFs would you use? (1/2)

1) capitalize-proper-names
(c-p-n '(mr. smith goes to washington))

 (mr. Smith goes to Washington)

2) count-if
(count-if odd? '(1 2 3 4 5))  3

3) longest-word
(longest-word '(I had fun on spring

break))  spring

4) count-vowels-in-each
(c-e-l '(I have forgotten everything))

 (1 2 3 3)

Which HOFs would you use? (2/2)

5) squares-greater-than-100
(s-g-t-100 '(2 9 13 16 9 45))

 (169 256 2025)

6) root of the sum-of-squares
(sos '(1 2 3 4 5 6 7))

 (sqrt (+ (* 1 1) (* 2 2) …)

 30

7) successive-concatenation
(sc '(a b c d e))

 (a ab abc abcd abcde)

Any questions from Thur/Fri last week?

• You wrote and played with lambda and let

Three ways to define a variable

1. In a procedure call (e.g., the variable
proc):
(define (doit proc value)

;; proc is a procedure here…

(proc value))

2. As a global variable
(define *alphabet* '(a b c d e …))

(define *month-name* '(january …))

3. With let

the lambda form

• "lambda" is a special form that returns a
function:

(lambda (arg1 arg2 …)
statements

)

(lambda (x) (* x x))

    

a procedure that takes one argument and multiplies it by itself

Use lambda anywhere you need a function

(define square

(lambda (x) (* x x)))

(every (lambda (x) (* x x))

'(1 2 3))

 (1 4 9)

((lambda (x) (* x x)) 3)

 9

You need lambda when…

…you need a procedure to make reference to
more values than you can pass it.

For instance, when a procedure for use in an
every needs two parameters

(prepend-every 'sir- '(sam mary loin))

 (sir-sam sir-mary sir-loin)

Write prepend-every

Write appearances

make-bookends (a small problem)

• Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi)  ohio

((make-bookends 'to) 'ron)  toronto

(define tom-proc (make-bookends 'tom))

(tom-proc "")  tomtom

Problems

C’mon on down

"The Price is Right" was a game show which started each round
in the same way: several guests would guess at the price of an
item, trying to get as close as possible to the real price without
going over. The person who was closest without going over
would win.

In this question, you will work with a procedure PIR-winner
which takes a sentence of guesses and a real price, and
returns the guess that is closest without being greater than the
real price:

(PIR-winner '(134 245 199 300 160) '200)  199

(PIR-winner '(19 35 56 44 22) '35)  35

(You can assume that there is always at least one guest whose
guess is below or equal to the real price, and that no two
guesses will be the same).

Write as a HOF.

