
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton

nate@berkeley.edu

Lecture 10:

Tree recursion

Midterm 2

Schedule

11 Mar 31 –

Apr 4
Lecture: Tree Recursion, Midterm review

Lab: Tree Recursion

Mini-Project #3 (Due Friday at midnight)

Reading: “Counting Change” case study

12 Apr 7-11 Midterm #2

Lab: Introduction to lists

13 Apr 14-18 Lecture: Lists, lists, lists

Lab: Generalized lists

Sequential Programming

14 April 21-25 Introduction to the project

15 April 28 –

May 2
The project

Midterm #2

• Next Week (April 7th)
- 90 minutes (4:10-5:40).

- Room Valley Life Sciences 2050
(same as last time)

- Open book, open notes, etc.

- Check for practice exams and solution on the
course portal and in the reader.

• Midterm 2 review session
- Saturday, 2-4 pm

- 306 Soda (as last time)

What does midterm #2 cover?

• Advanced recursion (accumulating, multiple
arguments, etc.).

• Tree-recursion (from this week)

• All of higher order functions

• lambda, let, global variables, etc…

• Those "big" homeworks (bowling, compress, and
occurs-in)

• Elections and number-name miniprojects

• Reading and programs:
- Change making, Roman numerals

- Difference between dates #3 (HOF),

- Tic-tac-toe

• SS chapters 14, 15, 7, 8, 9, 10

• Everything before the first Midterm (although, this
won't be the focus of a question)

The last of Advanced HOF

You need lambda when…

…you need a procedure to make reference to
more values than you can pass it.

For instance, when a procedure for use in an
every needs two parameters

(prepend-every 'sir- '(sam mary loin))

 (sir-sam sir-mary sir-loin)

Write prepend-every

Write appearances

make-bookends (a small problem)

• Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi)  ohio

((make-bookends 'to) 'ron)  toronto

(define tom-proc (make-bookends 'tom))

(tom-proc "")  tomtom

Accumulate: returning sentences

• accumulate can return a sentence…
(accumulate ?? '(a b c d))

 (ab bc cd)

- the first time accumulate is run, it reads the last
two words of the input sentence

- in later calls, it uses the return value of its
procedure (which is a sentence) as one of its
arguments

every containing every

• You can mimic 2-stage recursion, applying a
function to each letter of each word.

• You can get combinatoric effects:

(define (pair-all sent)

(every (lambda (one)

(every (lambda (two)

(word one two))

sent))

sent))

(pair-all '(a b c))  ???

every containing every containing…

(make-kindergarten-words '(s t) '(a o))

 (sas sat sos sot tas tat tos tot)

(make-kindergarten-words '(l n k t s) '(a e i o u))

 225 words!

(define (make-kindergarten-words consonants vowels)

(every (lambda (c)

(every (lambda (v)

vowels))

consonants))

Tree Recursion

What will happen?

• What will countem return for n=1, 2, …?

(define (countem n)

(if (= n 0)

'()

(se (countem (- n 1))

n

(countem (- n 1)))))

Tree recursion

A recursive technique in which more than
one recursive call is made within a recursive
case.

Pascal's triangle

columns (C)

r

o

w

s

(R)

0 1 2 3 4 5 ...

0 1 ...

1 1 1 ...

2 1 2 1 ...

3 1 3 3 1 ...

4 1 4 6 4 1 ...

5 1 5 10 10 5 1 ...

...

Pascal’s

Triangle

• How many ways can you choose C things from R choices?

• Coefficients of the (x+y)^R: look in row R

• etc.

(define (pascal C R)

(cond

((= C 0) 1) ;base case

((= C R) 1) ;base case

(else ;tree recurse

(+ (pascal C (- R 1))

(pascal (- C 1) (- R 1))

)))

> (pascal 2 5)

(+

(pascal 2 5)

(pascal 2 4)

(pascal 1 4)

(+

(+

(pascal 2 3)

(pascal 1 3)

(pascal 1 3)

(pascal 0 3)

(+ (pascal 2 2)

(pascal 1 2)

(pascal 1 2)

(pascal 0 2)

 1

(pascal 1 2)

(pascal 0 2)  1

 1

(+
(pascal 1 1)

(pascal 0 1)  1

 1

(+
(pascal 1 1)  1

(pascal 0 1)  1

 1

(+
(pascal 1 1)  1

(pascal 0 1)  1

Chips and Drinks

(snack 1 2)  3

- This includes (chip, drink, drink), (drink, chip,
drink), and (drink, drink, chip).

(snack 2 2)  6

- (c c d d), (c d c d), (c d d c)
(d c c d), (d c d c), (d d c c)

"I have some bags of chips and some drinks.
How many different ways can I finish all of
these snacks if I eat one at a time?

A variable number of recursive calls…

• Consider “Joe numbers”:
- The nth joe-number is the sum of all the joe-

numbers under it (i.e., joen-1 to joe1).

- Joe1 is simply 1.

• Write a procedure to calculate Joen.

- A procedure down-from that, given n, returns a
sentence of numbers from n to 1 should be
useful. And easy to write!

- (down-from 6)  (6 5 4 3 2 1)

Problems

Write successive-concatenation

(sc '(a b c d e))

 (a ab abc abcd abcde)

(sc '(the big red barn))

 (the thebig thebigred thebigredbarn)

(define (sc sent)

(accumulate

(lambda ??

)

sent))

binary

• Write binary, a procedure to generate the
possible binary numbers given n bits.

(binary 1)(0 1)

(binary 2)(00 01 10 11)

(binary 3)(000 001 010 011 100 101 110 111)

