CS3: Introduction to Symbolic Programming

Lecture 10: Tree recursion Midterm 2

Spring 2008

Nate Titterton nate@berkeley.edu

Schedule

11	Mar 31 – Apr 4	Lecture: Tree Recursion, Midterm review Lab: Tree Recursion Mini-Project #3 (Due Friday at midnight) Reading: "Counting Change" case study
12	Apr 7-11	Midterm #2
		Lab: Introduction to lists
13	Apr 14-18	Lecture: Lists, lists, lists
		Lab: Generalized lists
		Sequential Programming
14	April 21-25	Introduction to the project
15	April 28 – May 2	The project

Midterm #2

- Next Week (April 7th)
 - 90 minutes (4:10-5:40).
 - Room Valley Life Sciences 2050 (same as last time)
 - Open book, open notes, etc.
 - Check for practice exams and solution on the course portal and in the reader.

Midterm 2 review session

- Saturday, 2-4 pm
- 306 Soda (as last time)

What does midterm #2 cover?

- Advanced recursion (accumulating, multiple arguments, etc.).
- Tree-recursion (from <u>this</u> week)
- All of higher order functions
- lambda, let, global variables, etc...
- Those "big" homeworks (bowling, compress, and occurs-in)
- Elections and number-name miniprojects
- Reading and programs:
 - Change making, Roman numerals
 - Difference between dates #3 (HOF),
 - Tic-tac-toe
- SS chapters 14, 15, 7, 8, 9, 10
- Everything before the first Midterm (although, this won't be the focus of a question)

The last of Advanced HOF

You need lambda when...

...you need a procedure to make reference to more values than you can pass it.

For instance, when a procedure for use in an every needs two parameters

Write prepend-every

Write appearances

make-bookends (a small problem)

 Write make-bookends, which is used this way:

((make-bookends 'o) 'hi) 🗲 ohio

((make-bookends 'to) 'ron) 🗲 toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "") → tomtom

Accumulate: returning sentences

• accumulate can return a sentence...

- the *first* time accumulate is run, it reads the last two words of the input sentence
- in *later* calls, it uses the return value of its procedure (which is a sentence) as one of its arguments

every containing every

- You can mimic 2-stage recursion, applying a function to each letter of each word.
- You can get combinatoric effects:

every containing every containing...

```
(define (make-kindergarten-words consonants vowels)
  (every (lambda (c)
```

```
(every (lambda (v)
```



```
consonants))
```

Tree Recursion

• What will countem return for n=1, 2, ...?

A recursive technique in which more than one recursive call is made within a recursive case.

Pascal's triangle

	columns (C)								
		0	1	2	3	4	5		
	0	1							
r	1	1	1						
0 W	2	1	2	1					
S	3	1	3	3	1				
(R)	4	1	4	6	4	1			
	5	1	5	10	10	5	1		

Pascal's Triangle

- How many ways can you choose C things from R choices?
- Coefficients of the (x+y)^R: look in row R

• etc.

```
(define (pascal C R)
  (cond
   ((= C 0) 1) ;base case
   ((= C R) 1) ;base case
   (else ;tree recurse
   (+ (pascal C (- R 1))
        (pascal (- C 1) (- R 1))
   )))
```

> (pascal 2 5)

(pascal 2 5)							
(+	(pascal 2 4)						
	$(+ (pascal 2 3)) + (pascal 2 2) \rightarrow 1$ $(pascal 1 2) + (pascal 1 1) \rightarrow 1$ $(pascal 1 2) + (pascal 1 1) \rightarrow 1$						
	(pascal 1 3) (pascal 1 2) (+ (pascal 1)) → 1 (pascal 0 2) → 1						
	(pascal 1 4)						
	$(+ (pascal 1 3)) + (pascal 1 2) + (pascal 1 2) + (pascal 0 3) \rightarrow 1$						
	(pascal 0 3) → 1						

"I have some bags of chips and some drinks. How many different ways can I finish all of these snacks if I eat one at a time?

(snack 1 2) \rightarrow 3

- This includes (chip, drink, drink), (drink, chip, drink), and (drink, drink, chip).
- (snack 2 2) \rightarrow 6
 - (c c d d), (c d c d), (c d d c) (d c c d), (d c d c), (d d c c)

A variable number of recursive calls...

- Consider "Joe numbers":
 - The nth joe-number is the sum of all the joenumbers under it (i.e., joeⁿ⁻¹ to joe¹).
 - Joe¹ is simply 1.
- Write a procedure to calculate Joeⁿ.
 - A procedure down-from that, given n, returns a sentence of numbers from n to 1 should be useful. And easy to write!

- (down-from 6) \rightarrow (6 5 4 3 2 1)

Problems

Write successive-concatenation

- (sc '(a b c d e))
- ➔ (a ab abc abcd abcde)

```
(sc '(the big red barn))
   (the thebig thebigred thebigredbarn)
```

```
(define (sc sent)
  (accumulate
    (lambda ??
    )
    sent))
```


• Write binary, a procedure to generate the possible binary numbers given n bits.

(binary 1)→(0 1)
(binary 2)→(00 01 10 11)
(binary 3)→(000 001 010 011 100 101 110 111)