
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton

nate@berkeley.edu

Lecture 12:

Lists

Schedule

12 Apr 14-18 Lecture: Lists, lists, lists

Lab: Generalized lists and trees (Tue/Wed)

Sequential Programming (Thur/Fri)

Reading: Simply Scheme chap. 20 (Thur/Fri)

SS ch. 18 is not required, but maybe useful

13 April 21-25 Introduction to the big project

Lab: Big project – introduction, and choose partners

(checkoff #1)

14 April 28 –

May 2
Lecture: Advanced lists, Scheme vs. other lang

Lab: Big project (checkoff #2)

15 May 5 – 9 Lecture (guest):CS at Berkeley and outside…

Lab: Big project (checkoff #3 and due at end)

16 May 12 Final Exam Review

Lab: no more labs!

Any questions about midterm #2?

1. Bowling questions (small
HOF questions)

2. occurs-in-order-in?

(debugging recursion and
tree recursion)

3. Write every using
accumulate (debugging
HOF)

4. early-words (two-
stage recursion and HOF)

5. The game of darts
(accumulating recursion)

Lists

Sentences(words) vs lists: constructors

cons
Takes an element and a list

Returns a list with the element
at the front, and the list
contents trailing

append
Takes two lists

Returns a list with the elements
of each list put together

list
Takes any number of elements

Returns the list with those
elements

sentence
Takes a bunch of words and
sentences and puts "them"
in order in a new sentence.

Sentences(words) vs lists: selectors

car

Returns the first element of
the list

First

Returns the first word

(although, works on non-
words)

cdr

Returns a list of everything

but the first element of the
list

butfirst

Returns a sentence of

everything but the first

word (but, works on lists)

last

butlast

list-ref

Gets a particular item in the

list, with a 0-based index

(note, reversed arguments)

item

Gets a particular item in the

list, with a 1-based index

(define (square-all seq)
(if (null? seq)

'()
(cons (square (car seq))

(square-all (cdr seq)))))

(s-a '(1 2 3))  (cons 1 (cons 4 (cons 9 '())))

(define (square-all seq)
(if (empty? seq)

'()
(se (square (first seq))

(square-all (bf seq)))))

(s-a '(1 2 3))  (se 1 (se 4 (se 9 '())))

What is the point of cons? (2/2)

Sentence (and word) do more, though

(define (reverse lst)
(if (null? lst)

'()
(cons (reverse (cdr lst))

(car lst))
))

• Consider

• What will the following return?

• What is the right construction?

Sentences(words) vs lists: HOF

map

Returns a list where a func is

applied to every element of the

input list.

Can take multiple input lists.

every

Returns a sentence where a

func is applied to every

element of an input sentence
or word.

filter

Returns a list where every

element satisfies a predicate.
Takes a single list as input

keep

Returns a sentence or word

where every element

satisfies a predicate

reduce

Returns the value of applying a

function to successive pairs of

the (single) input list

accumulate

Returns the value of applying

a function to successive

pairs of the input sentence or

word

apply

Takes a function and list of

arguments, and calls that

function with those arguments

…

Fashion matching…

• Write a function pair-up that takes a list of
tops and a list of bottoms, and returns
matches:

(pair-up '(t-shirt sweatshirt tank-top)

'(jeans skirt capris))



((t-shirt jeans) (sweat-shirt skirt)
(tank-top capris))

• And, can you write pair-all, which returns
all pairs of matches?

A few other important topics re: lists

1. map can take multiple arguments

2. apply

3. Association lists

4. Generalized lists
- And data structures they can represent

map can take multiple list arguments

(map + '(1 2 3) '(100 200 300))

(101 202 303)

The argument lists have to be the same length

(define (palindrome? lst)

(all-true?

(map equal? lst (reverse lst))))

(palindrome?

'(a m a n a p l a n a c a n a l p a n a m a))

 #t

apply (not the same as accumulate!)

• apply takes a function and a list, and calls
the function with the elements of the list as
its arguments:

(apply + '(1 2 3))

(apply cons '(joe (bob)))

(apply day-span

'((january 1) (december 31)))

Association lists

• Used to associate key-value pairs

((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000))

• assoc looks up a key and returns a pair
(assoc 'c '((i 1) (v 5) (x 10) …))

 (c 100)

;; Write sale-price, which takes a list of items

;; and returns a total price

(define *price-list*

'((bread 2.89) (milk 2.33)

(cheese 5.21) (chocolate .50)

(beer 6.99) (tofu 1.67) (pasta .69)))

(sale-price '(bread tofu))

Generalize lists and trees

Generalized lists

• Elements of a list can be anything

• A list that contains one or more lists (which
contain…) we call a generalized list.

• e.g.,

()

(this (((list) contains) ((only three))
things) (really))

car-cdr recursion

• Tree recursion for generalized lists

• Write deep-add which returns the sum of all
numbers in the list:

- (deep-add '(1 (2 3) (((4)) 5) 6))

 21

Write deep-member?

(deep-member? 'b

'((a b) (c d) (e f) (g h i)))

 #t

(deep-member? 'x

'((a b) (c d) (e f) (g h i)))

 #f

(deep-member? '(c d)

'((a b) (c d) (e f) (g h i)))

 #t

Trees…

• A tree is a special kind of generalized list,
where each level has a name and a list of
children (trees):

(define (name node) (car node))

(define (children node) (cdr node))

(define (leaf? tree)

(null? (children tree)))

