
CS3:
Introduction to Symbolic

Programming

Spring 2008 Nate Titterton

nate@berkeley.edu

Lecture 14:

Review

Scheme and other languages

Schedule

13 April 21-25 Lecture: Introduction to the big project

Advanced lists

Lab: Big project – introduction, and choose partners

(checkoff #1)

14 April 28 –

May 2
Lecture: Advanced lists

Scheme vs. other Languages

Lab: Big project (checkoff #2)

15 May 5 – 9 Lecture: (guest) CS at Berkeley and outside…

Lab: Big project (checkoff #3, due Friday midnight)

16 May 12 Lecture: Final Exam Review

Lab: no thank you!

Wed,

May 21
Final Exam

12:30-3:30, Bechtel Auditorium

Due dates on the final project

Tues/Wed Thur/Fri

(April 22/23)

Introduction

(April 24/25)

Checkoff 1

(April 29/30) (May 1/2)

Checkoff 2

(May 6/7)

Checkoff 3

(May 9th, Friday)

Due (at midnight)

Any questions about the project?

How about this flatten?

(define (flatten thing)

(if (list? thing)

(reduce _______ (map flatten thing))

(______ thing)))

• Recall flatten, which takes a generalized-
list and returns a "flat" list. You saw three
solutions in lab.

• Fill in the blanks below for a fourth solution:

Tree-structured directories (1)

• From lab:
Consider the following Scheme representation for a

hierarchical file system. A file is represented by a list we'll
call a file entry.

The file entry for a non-directory file is a two-element list
whose first element is the word FILE and whose second
word is the name of the file.

The file entry for a directory is a list whose first two elements
are the word DIRECTORY and the name of the directory,
and whose remaining elements are file entries for the files
within the directory (which may be directories themselves).

Write and test a procedure named file-list that, given as
argument a file entry for a directory, returns a list of names
of the non-directory files anywhere in the corresponding
directory tree.

Tree-structured directories (2)

• Example:

(define *fe1*

(DIRECTORY a

(DIRECTORY b)

(FILE c)

(DIRECTORY d

(DIRECTORY e

(FILE g)

(FILE h)

(FILE i))

(FILE f)))

STk> (file-list *fe1*)

(c f g h i)

Random and sequential programming

• Any questions?

(define (better-converse)

(let ((phrases '((tell me about yourself)

(that is interesting)

(you do not say)

(tell me more)

(please say more about that)

(I never heard something like

that before!))))

(show-line (list-ref phrases

(random (length phrases))))

(let ((what-he-said (read-line)))

(if (equal? what-he-said '(arggh))

(show-line '(oh goodbye then))

(better-converse)))))

Scheme versus other
(sequential) languages

Side-effects

• In Functional programming, this return value
of a procedure is all that matters

• However, computers are asked to do lots of
things other than calculate values that could
be passed to another procedure.

- Printing to a screen or a printer

- "Connecting" over a network

- Getting user input

- Playing sounds or music

- Saving to a file

The language Scheme

• Scheme allows you to ignore tedium and
focus on core concepts
- The core concepts are what we are teaching!

• Other languages:
- Generally imperative, sequential

- Lots and lots of syntactic structure – instead of
parentheses, there are several special symbols.

- Lots and lots of built-in procedures for doing
common things

- Object-oriented is very "popular" now

• You can do most of this stuff in Scheme
- It just takes a little more work

CS3 concepts out in the world

• Scheme/lisp does show up: scripting languages
inside applications (emacs, autocad, flash,
Orbitz.com, etc.)

• Scheme/Lisp is used as a "prototyping" language
- to quickly create working solutions for brainstorming,

testing, to fine tune in other languages, etc.

• Recursion isn't used directly (often), but recursive
ideas show up everywhere

Java

• Java is a very popular programming
language

- Designed for LARGE programs

- Very nice tools for development

- Gobs of libraries (previous solutions) to help
solve problems that you might want solved

Javascript

• A language that is run inside a browser (i.e.,
inside Firefox).

- Special procedures for moving browser windows
around, history lists, etc.

• A modern language, otherwise:
- Higher order functions, object-oriented. Quite

scheme-like, really.

• Not related to Java! (just capitalizing on the
popularity of the name)

PHP

• PHP

- Popular language for web development
(combined with a web-server and database)

- Lots of features, but little overall "sense"

- Because programs in PHP execute behind a
web-server and create, on the fly, programs in
other languages, debugging can be onerous.

