
CS3 Sample Final
Solutions

Problem 1

List the different ways that the position argument to ttt can be illegal. (Two ways
count as different if they would be checked with different code.)

length 9, all chars either x or o or _

(define (legal? board)
 (and

(= (count board) 9)
(equal? board

(keep (lambda (char) (member? char 'xo_)) board))))

the number of x’s is equal to the number of o’s and there is no x
win, or the number of x’s is one less than the number of o’s and
not an o win

(and
 ...
 (or

 (and
 (= (appearances 'x board) (appearances 'o board))

(not (win? 'x board)))
 (and

(= (appearances 'x board) (+ 1 (appearances 'o board)))
(not (win? 'o board)))

Problem 2

Define a Scheme procedure named updated-hands that takes two arguments. The first is
a list of two hands, each a sentence of cards, with each card being a word in which the
first letter is the suit and the rest is the rank. The second is a rank. Updated-hands should
return the result—again, a list of two hands—of transferring a card of the given rank from
the second hand to the first. You may assume that the second hand contains at least one
card of the given rank, and that hands do not contain duplicate cards. Here's an example:

expression desired result

(updated-hands
 '((ha hk c2)
 (d5 c6 h10 d10 c8))
 10)

((h10 ha hk c2) (d5 c6 d10 c8))
or
((d10 ha hk c2) (d5 c6 h10 c8))

 (define (updated-hands 2hands rank)
 (let ((card (find (cadr 2hands) rank)))
 (list

 (se card (car 2hands))
 (remove-once card (cadr 2hands)))))

 (define (find hand rank)
 (first (keep (lambda (card) (equal? (bf card) rank))
 hand)))

(remove-once appears on page 236 of Simply Scheme)

Problem 3

Consider a data base for a programming class, represented as a list, each element of
which has the form

 (student-name project partner-list)

There is one element in the data base list for each student in the class. The element
contains the student's name, the name of the project she worked on, and a list of the other
students in the class with whom she worked in partnership on the project. This list does
not include the student herself.

For this problem you are to write two versions of a procedure num-submissions that,
given a data base and the name of a project, returns the number of submissions of that
project. One project per partnership will be submitted, so each person in a partnership of
size N will submit 1/N projects. Partnerships in this class may be of any size (unlike in
CS3 this semester).

Part a

Write a version of num-submissions that does not use higher-order procedures. (It may
use recursion.) You may use helper procedures, as long as they too do not use higher-
order procedures.

(define (num-submissions db proj)
 (if (null? db) 0
 (+ (contrib proj (car db)) (num proj (cdr db)))))

(define (contrib proj record)
 (if (equal? (project record) proj)
 (/ 1 (+ 1 (length (partners record))))
 0))

Part b

Write a version of num-submissions that does not use recursion. (It may use higher-
order procedures.) You may use helper procedures, as long as their definitions do not use
recursion.

(define (num-submissions db proj)
 (reduce + ;; apply or accumulate is ok

 (map
(lambda (record) (/ 1 (+ 1 (length (partners record)))))
(filter

(lambda (record) (equal? (project record) proj))
db))))

Problem 4

Given below is a version of the flatten procedure from one of the lab activities. It
doesn't work correctly.

 ; L is a list. Return the list of the atoms that occur in L,
 ; in the left-to-right order they appear in L.
 (define (flatten L)
 (if (null? L) '()
 (reduce append (map flatten L))))

Part a

By filling in the blank below, provide a nonempty argument to flatten that does not
cause an error when the resulting expression is evaluated.

(flatten ______________)

A list in which all elements are empty lists

Part b

List the steps of the evaluation of (flatten '(A B)). (That is, imitate the Replacement
Modeler.) If the result is an error, describe the error message and give the expression
whose evaluation produced the error.

ERROR: input to map isn’t a list:
 (map flatten 'A) or (map flatten 'B)

Part c

Which of the following is a reason that flatten doesn't work correctly? (More than one
may apply.)

1. The base case test (null? L) is incorrect.
2. The base case test is correct, but the empty list is the wrong result to return in that

case.
3. The input passed to the recursive call is not what the procedure expects.
4. The input passed to the recursive call doesn't get closer to the base case.
5. Reduce and append are the wrong procedures to use with (map flatten L) to

get the answer.

Explain your answer(s).

1: The base case should be testing for (word? L) and returning (list L).
3: The procedure wants a list and is getting a word.

Part d

Making as few changes as possible to flatten, fix it. Here's a copy of the code; indicate
clearly what should be inserted, what should be deleted, and what should be changed.

 (define (flatten L)

 (if (null? L) '()

 (reduce append (map flatten L))))

(define (flatten L)
 (if (word? L) (list L)

 (reduce append (map flatten L))))

Problem 5

Consider the following higher-order procedure, which returns the result of combining
some of the elements in its list argument into lists.

 (define (some-paired L pred?)
 (cond
 ((null? L) L) ; case 1
 ((null? (cdr L)) L) ; case 2
 ((pred? (car L) (cadr L)) ; case 3; #t means don't pair
 (cons (car L) (some-paired (cdr L) pred?)))
 (else ; case 4
 (cons
 (list (car L) (cadr L))
 (some-paired (cddr L) pred?)))))

Part a

One may use some-paired to write a procedure grouped-into-frames that groups balls
in a bowling game into frames, leaving strikes ungrouped. Grouped-into-frames, given
the list

 (9 1 0 10 10 10 6 2 7 3 8 2 10 9 0 2 7)

would thus return the list

 ((9 1) (0 10) 10 10 (6 2) (7 3) (8 2) 10 (9 0) (2 7))

Fill in the blank below with a procedure that completes the definition of grouped-into-
frames in terms of some-paired. Don't add anything else to the grouped-into-frames
procedure; you may, however, supply a helper procedure. Assume for this part that the
argument to grouped-into-frames is a list representing a game with a miss in the tenth
frame.

 (define (grouped-into-frames ball-list)
 (some-paired
 ball-list

 (lambda (ball1 ball2) (= ball1 10))

))

Part b (graded only if part a is essentially correct)

What would be the result of supplying the ball list below to your procedure from part a?
(Note the strikes in the tenth frame.) Briefly explain your answer by identifying the cases
in some-paired that handle the last three balls.

(9 1 0 10 10 10 6 2 7 3 8 2 10 9 0 10 10 8)

((9 1) (0 10) 10 10 (6 2) (7 3) (8 2) 10 (9 0) 10 10 8)

The strikes in the tenth frame are handled in case 3 and left untouched by some-
paired; then the (null? (cdr L)) in case 2 succeeds.

Problem 6

Consider a procedure named 1-extra? that, given two words as inputs, should return
true exactly when the first word is the result of inserting a single letter into the second
word. Examples:

expression desired result
(1-extra? 'HEAT 'HAT) true
(1-extra? 'THAT 'HAT) true
(1-extra? 'HATE 'HAT) true
(1-extra? 'ABBC 'ABC) true
(1-extra? 'AT 'HAT) #f
(1-extra? 'HAT 'HAT) #f
(1-extra? 'HATED 'HAT) #f
(1-extra? 'CHEAT 'HAT) #f

A buggy version of 1-extra? appears below.

 (define (1extra? big small)
 (= (num-matches big small) (- (count big) 1)))

(define (num-matches big small)
 (cond
 ((empty? small) 0)
 ((equal? (first big) (first small))
 (+ 1 (num-matches (bf big) (bf small))))
 (else (num-matches (bf big) small))))

Part a

Provide a call to 1-extra? for which it does not perform as intended, that is, it returns
true or crashes when #f is the correct answer, or it returns #f or crashes when true is the
correct answer.

(1-extra? 'AT 'HAT)

Part b

Describe, as completely as possible, the set of words wd for which evaluating the
expression

 (1-extra? wd 'HAT)

produces the correct answer. Briefly explain your answer.

Whenever wd contains the letters H, A, and T in order, it returns the correct answer.
Otherwise it crashes. That’s because both recursive calls to num-matches decrease
the length of big, but the base case doesn’t check whether big is empty.

Problem 7

Consider the following procedure, intended to return the result of inserting commas in the
correct places (every third position starting from the right) in its nonnegative integer
argument.

(define (with-commas n)
 (if (< n 1000)
 n
 (word (with-commas (quotient n 1000)) "," (remainder n 1000))))

For example, (with-commas 12345678) should return the word 12,345,678. The
procedure above, however, has a bug.

Part a

Describe, as completely as possible, the set of nonnegative integer arguments for which
with-commas does not work correctly.

Any value in which a 0 would follow a comma.

Part b

Fix the bug, changing the with-commas procedure as little as possible. You may define a
helper procedure.

Replace the call to remainder by (with-leading-zeroes (remainder n 1000)):

(define (with-leading-zeroes lt1000)
(cond

((< lt1000 10) (word "00" lt1000))
((< lt1000 100) (word "0" lt1000))
(else lt1000)))

	CS3 Sample Final
Solutions
	Problem 1
	Problem 2
	Problem 3
	Part a
	Part b

	Problem 4
	Part a
	Part b
	Part c
	Part d

	Problem 5
	Part a
	Part b (graded only if part a is essentially correct)

	Problem 6
	Part a
	Part b
	Part a
	Part b

