
 CS 3 PRACTICE Final Exam Summer 2008

Read and fill in this page now

Name:

 Instructional login
(eg, cs3-ab):

 UCWISE login:

Lab section (day and
time):

T.A.:

Name of the person
sitting to your left:

Name of the person
sitting to your right:

You have 3 hours to finish this test, but there
should only be about 2 hours worth of material.
Your exam should contain 6 problems (numbered
0-5) and 1 appendix on 6 total pages.

This is an open-book test. You may consult any
books, notes, or other paper-based inanimate
objects available to you. Read the problems
carefully. If you find it hard to understand a
problem, ask us to explain it.

Restrict yourself to Scheme constructs covered in
this course (i.e., in the lab materials, case studies,
book chapters that were assigned, and lectures).
Use descriptive names in all your code.
Remember, use sentence operators only on
sentences, not lists!

Please write your answers in the spaces provided
in the test; if you need to use the back of a page
make sure to clearly tell us so on the front of the
page.

Partial credit will be awarded where we can, so do
try to answer each question.

Good Luck!

(Pts) Problem Your Score

(1) Prob 0

(3) Prob 1a

(2) 1b

(2) 1c

(5) 2

(5) 3

(5) 4

Raw Total
(out of 22)

Scaled Total

 Page 2

Problem 0: Your name, please! (1 point)

Put your instructional login name (e.g., cs3-ab) on the top of each page.

Problem 1: Loop-de-Loop (Part A: 3 points, Part B: 2 points, Part C: 2 points)

Gilbert has opened up a side business while he is in school... He’s running a new hip airline where
every seat comes with a computer (rather than a TV). He has a bunch of flights lined but he needs
to figure out if once he flies someone somewhere they can get home... He has an association list of
all of his flights. There is only ever ONE flight out of an airport...

(define *flights*

 ‘((Berkeley (San Diego))
((San Diego) Berkeley)
(Seattle Austin)
(Austin (Saint Paul))
(Miami (Saint Paul))
((Saint Paul) Seattle)))

Someone has written a buggy version of can-get-home.

(define (can-get-home? home flights current-location)
 (let ((next-location (assoc current-location flights)))
 (cond
 ((not next-location) #f)
 ((equal? (cadr next-location) home) #t)
 (else
 (can-get-home home flights (cadr next-location))))))

(continued on next page)

San Diego

Seattle

Berkeley

Miami

Saint Paul

Austin

 Page 3

(define (can-get-home? home flights current-location)
 (let ((next-location (assoc current-location flights)))
 (cond
 ((not next-location) #f)
 ((equal? (cadr next-location) home) #t)
 (else
 (can-get-home home flights (cadr next-location))))))

Predict the output

(can-get-home? ‘Berkeley *flights* ‘Berkeley)

(can-get-home? ‘Seattle *flights* ‘Seattle)

(can-get-home? ‘Miami *flights* ‘Miami)

Part B: Describe the bug(s)

Part C: Describe how you might fix the bug(s)

 Page 4

Problem 2: (5 points)
Write a procedure airplane-routes that returns a list representing the path from a particular
location. The last element in the list should be the original location, unless the original location can
not be reached. If a loop occurs, it should contain each of the cities in the loop only once.

(airplane-routes ‘Berkeley *flights*)

 ’((San Diego) Berkeley)

(airplane-routes ‘Seattle *flights*)

 ’(Austin (Saint Paul) Seattle)

(airplane-routes ‘Miami *flights*)

 ’((Saint Paul) Seattle Austin)

 Page 5

Problem 3: (5 points)

Write a procedure parenthesis-to-word-ratio that returns the total number of words in
a list divided by the total number of parentheses in a list.

(parenthesis-to-word-ratio ‘(())) 0

(parenthesis-to-word-ratio ‘((a))) 1/4 or .25

(parenthesis-to-word-ratio ‘(a ((x) a) (b c d e f)) 1

 Page 6

Problem 4: Bowling with Lists (5 points)

Write the procedure bowling-helper that takes a list of bowlling roles and makes a list of lists
representing the frames of the bowling game. (in the example below we’ll assume that a bowling
game consists of 5 frames instead of 10).

(bowling-helper ‘(7 1 3 2 4 0 0 0 0 0))

 ‘((7 1)(3 2)(4 0)(0 0)(0 0))

(bowling-helper ‘(10 10 10 10 0 0)) ‘((10)(10)(10)(10)(0 0))

(bowling-helper ‘(10 10 10 10 10 10 10))

‘((10)(10)(10)(10)(10 10 10))

